toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tit, N.; Al Ezzi, M.M.; Abdullah, H.M.; Yusupov, M.; Kouser, S.; Bahlouli, H.; Yamani, Z.H. pdf  url
doi  openurl
  Title Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity Type A1 Journal article
  Year 2017 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 186 Issue 186 Pages 353-364  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption of CO2 on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N-F); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO2 molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO2 molecules reduces both N-F and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNT5). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O-2, N-2, H-2, H2O, CO and CO2) has shown high sensitivity and selectivity towards CO, CO2 and H2O gases. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000390621200044 Publication Date 2016-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 17 Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 2.084  
  Call Number UA @ lucian @ c:irua:140333 Serial 4465  
Permanent link to this record
 

 
Author Sun, J.-Y.; Wen, D.-Q.; Zhang, Q.-Z.; Liu, Y.-X.; Wang, Y.-N. url  doi
openurl 
  Title The effects of electron surface interactions in geometrically symmetric capacitive RF plasmas in the presence of different electrode surface materials Type A1 Journal article
  Year 2019 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 26 Issue 6 Pages 063505  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Particle-in-cell/Monte Carlo collision (PIC/MCC) simulations are performed to investigate the asymmetric secondary electron emission (SEE) effects when electrons strike two different material electrodes in low pressure capacitively coupled plasmas (CCPs). To describe the electron-surface interactions, a realistic model, considering the primary electron impact energy and angle, as well as the corresponding surface property-dependent secondary electron yields, is employed in PIC/MCC simulations. In this model, three kinds of electrons emitted from the surface are considered: (i) elastically reflected electrons, (ii) inelastically backscattered electrons, and (iii) electron induced secondary electrons (SEs, i.e., delta-electrons). Here, we examined the effects of electron-surface interactions on the ionization dynamics and plasma characteristics of an argon discharge. The discharge is driven by a voltage source of 13.56MHz with amplitudes in the range of 200-2000V. The grounded electrode material is copper (Cu) for all cases, while the powered electrode material is either Cu or silicon dioxide (SiO2). The simulations reveal that the electron impact-induced SEE is an essential process at low pressures, especially at high voltages. Different electrode materials result in an asymmetric response of SEE. Depending on the instantaneous local sheath potential and the phase of the SEE, these SEs either are reflected by the opposite sheath or strike the electrode surface, where they can induce delta-electrons upon their residual energies. It is shown that highly energetic delta-electrons contribute significantly to the ionization rate and a self-bias forms when the powered electrode material is assumed to be made of SiO2. Complex dynamics is observed due to the multiple electron-surface interaction processes and asymmetric yields of SEs in CCPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000474440600043 Publication Date 2019-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 1 Open Access  
  Notes Approved (up) Most recent IF: 2.115  
  Call Number UA @ admin @ c:irua:161353 Serial 6327  
Permanent link to this record
 

 
Author Liang, Y.-S.; Xue, C.; Zhang, Y.-R.; Wang, Y.-N. doi  openurl
  Title Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas Type A1 Journal article
  Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas  
  Volume 28 Issue 1 Pages 013510  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, a self-consistent fluid model is developed focusing on the plasma parameters in capacitively coupled 20% N 2-80% Ar discharges. Measurements of ion density are performed with the help of a floating double probe, and the emission intensities from Ar(4p) and N 2 ( B ) transitions are detected by an optical emission spectroscopy to estimate their relative densities. The consistency between the numerical and experimental results confirms the reliability of the simulation. Then the plasma characteristics, specifically the reaction mechanisms of active species, are analyzed under various voltages. The increasing voltage leads to a monotonous increase in species density, whereas a less homogeneous radial distribution is observed at a higher voltage. Due to the high concentration of Ar gas, Ar + becomes the main ion, followed by the N 2 +</mml:msubsup> ion. Besides the electron impact ionization of neutrals, the charge transfer processes of Ar +/ N 2 and N 2 +</mml:msubsup>/Ar are found to have an impact on the ionic species. The results indicate that adopting the lower charge transfer reaction rate coefficients weakens the Ar + ion density and yields a higher N 2 +</mml:msubsup> ion density. However, the effect on the species spatial distributions and other species densities is limited. As for the excited-state species, the electron impact excitation of background gases remains overwhelming in the formation of Ar(4p), N 2 ( B ), and N 2 ( a ' ), whereas the <mml:msub> N 2 ( A ) molecules are mainly formed by the decay of <mml:msub> N 2 ( B ). In addition, the dissociation of <mml:msub> N 2 collided by excited-state Ar atoms dominates the N generation, which are mostly depleted to produce N + ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000629931300002 Publication Date 2021-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 2.115  
  Call Number UA @ admin @ c:irua:177669 Serial 6767  
Permanent link to this record
 

 
Author Xiaoyan, S.; Zhang, Y.-R.; Wang, Y.-N.; He, J.-X. doi  openurl
  Title Fluid simulation of the superimposed dual-frequency source effect in inductively coupled discharges Type A1 Journal article
  Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas  
  Volume 28 Issue 11 Pages 113504-113510  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Superimposition of dual frequencies (DFs) is one of the methods used for controlling plasma distribution in an inductively coupled plasma (ICP) source. The effects of a superimposed DF on the argon plasma characteristics have been investigated using a two-dimensional self-consistent fluid model. When both currents are fixed at 6A, the plasma density drops with decrease in one of the source frequencies due to less efficient heating and the plasma uniformity improves significantly. Moreover, for ICP operated with superimposed DFs (i.e., 4.52MHz/13.56MHz and 2.26MHz/13.56MHz), the current source exhibits the same period as the low frequency (LF) component, and the plasma density is higher than that obtained at a single frequency (i.e., 4.52 and 2.26MHz) with the same total current of 12A. However, at superimposed current frequencies of 6.78MHz/13.56MHz, the plasma density is lower than that obtained at a single frequency of 6.78MHz due to the weaker negative azimuthal electric field between two positive maxima during one period of 6.78MHz. When the superimposed DF ICP operates at 2.26 and 13.56MHz, the rapid oscillations of the induced electric field become weaker during one period of 2.26MHz as the current ratio of 2.26MHz/13.56MHz rises from 24A/7 A to 30A/1 A, and the plasma density drops with the current ratio due to weakened electron heating. The uniformity of plasma increases due to sufficient diffusion under the low-density condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760326100004 Publication Date 2021-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.115 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 2.115  
  Call Number UA @ admin @ c:irua:187245 Serial 7974  
Permanent link to this record
 

 
Author Yu, M.Y.; Yu, W.; Chen, Z.Y.; Zhang, J.; Yin, Y.; Cao, L.H.; Lu, P.X.; Xu, Z.Z. url  doi
openurl 
  Title Electron acceleration by an intense short-pulse laser in underdense plasma Type A1 Journal article
  Year 2003 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 10 Issue 6 Pages 2468-2474  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000183316500031 Publication Date 2003-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 41 Open Access  
  Notes Approved (up) Most recent IF: 2.115; 2003 IF: 2.146  
  Call Number UA @ lucian @ c:irua:103293 Serial 904  
Permanent link to this record
 

 
Author Cai, H.-bo; Yu, W.; Zhu, S.-ping; Zheng, C.-yang; Cao, L.-hua; Li, B.; Chen, Z.Y.; Bogaerts, A. doi  openurl
  Title Short-pulse laser absorption in very steep plasma density gradients Type A1 Journal article
  Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 13 Issue Pages 094504,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000240877800057 Publication Date 2006-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 17 Open Access  
  Notes Approved (up) Most recent IF: 2.115; 2006 IF: 2.258  
  Call Number UA @ lucian @ c:irua:59375 Serial 2995  
Permanent link to this record
 

 
Author Liu, Y.H.; Chen, Z.Y.; Huang, F.; Yu, M.Y.; Wang, L.; Bogaerts, A. doi  openurl
  Title Simulation of disk- and band-like voids in dusty plasma systems Type A1 Journal article
  Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 13 Issue Pages 052110,1-6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000237943000011 Publication Date 2006-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 20 Open Access  
  Notes Approved (up) Most recent IF: 2.115; 2006 IF: 2.258  
  Call Number UA @ lucian @ c:irua:57858 Serial 3011  
Permanent link to this record
 

 
Author Vranjes, J.; Petrovic, D.; Pandey, B.P.; Poedts, S. doi  openurl
  Title Electrostatic modes in multi-ion and pair-ion collisional plasmas Type A1 Journal article
  Year 2008 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 15 Issue 7 Pages 072104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The physics of plasmas containing positive and negative ions is discussed with special attention to the recently produced pair-ion plasma containing ions of equal mass and opposite charge. The effects of the density gradient in the direction perpendicular to the ambient magnetic field vector are discussed. The possible presence of electrons is discussed in the context of plasma modes propagating at an angle with respect to the magnetic field vector. It is shown that the electron plasma mode may become a backward mode in the presence of a density gradient, and this behavior may be controlled either by the electron number density or the mode number in the perpendicular direction. In plasmas with hot electrons an instability may develop, driven by the combination of electron collisions and the density gradient, and in the regime of a sound ions' response. In the case of a pure pair-ion plasma, for lower frequencies and for parameters close to those used in the recent experiments, the perturbed ions may feel the effects of the magnetic field. In this case the plasma mode also becomes backward, resembling features of an experimentally observed but yet unexplained backward mode. (C) 2008 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000258175800004 Publication Date 2008-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 54 Open Access  
  Notes Approved (up) Most recent IF: 2.115; 2008 IF: 2.427  
  Call Number UA @ lucian @ c:irua:103554 Serial 1023  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
  Year 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 17 Issue 11 Pages 113512-113512,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000285486500105 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 30 Open Access  
  Notes Approved (up) Most recent IF: 2.115; 2010 IF: 2.320  
  Call Number UA @ lucian @ c:irua:84763 Serial 429  
Permanent link to this record
 

 
Author Si, X.-J.; Zhao, S.-X.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma Type A1 Journal article
  Year 2011 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 18 Issue 3 Pages 033504-033504,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000289151900073 Publication Date 2011-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 7 Open Access  
  Notes Approved (up) Most recent IF: 2.115; 2011 IF: 2.147  
  Call Number UA @ lucian @ c:irua:87876 Serial 1233  
Permanent link to this record
 

 
Author Matnazarova, S.; Khalilov, U.; Yusupov, M. url  doi
openurl 
  Title Effect of endohedral nickel atoms on the hydrophilicity of carbon nanotubes Type A1 Journal article
  Year 2023 Publication Molecular simulation Abbreviated Journal  
  Volume 49 Issue 17 Pages 1575-1581  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Carbon nanotubes (CNTs) have been successfully used in biomedicine, including cancer therapy, due to their unique physico-chemical properties. Because pristine CNTs exhibit hydrophobic behaviour, they can have a cytotoxic effect on cells, which limits their practical use in biomedicine. The toxicity of CNTs can be reduced by adding water-soluble functional radicals to their surface, i.e. by increasing their hydrophilicity. Another possibility for increasing the hydrophilicity of CNTs is probably filling them with endohedral metal atoms, which has not yet been studied. Thus, in this study, we use computer simulations to investigate the combined effect of endohedral nickel atoms and functional groups on the hydrophilicity of CNTs. Our simulation results show that the introduction of endohedral nickel atoms into CNTs increases their binding energy with functional groups. We also find that the addition of functional groups to the surface of CNT, along with filling it with endohedral nickel atoms, leads to an increase in the dipole moment of the CNT as well as its interaction energy with water, thereby increasing the hydrophilicity of the CNT and, consequently, its solubility in water. This, in turn, can lead to a decrease in CNT toxicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001059544800001 Publication Date 2023-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0892-7022 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.1 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.1; 2023 IF: 1.254  
  Call Number UA @ admin @ c:irua:199261 Serial 9027  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title First-principles study of strained 2D MoS2 Type A1 Journal article
  Year 2014 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 56 Issue Pages 416-421  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic and vibrational properties of 2D honeycomb structures of molybdenum disulfide (MoS2) subjected to strain have been investigated using first-principles calculations based on density functional theory. We have studied the evolution of the electronic properties of bulk and layered MoS2, going down from a few layers up to a mono-layer, and next investigated the effect of bi-axial strain on their electronic structure and vibrational frequencies. Both for tensile and compressive biaxial strains, the shrinking of the energy band-gap of MoS2 with increasing level of applied strain is observed and a transition limit of the system from semiconducting to metallic is predicted to occur for strains in the range of 8-10%. We also found a progressive downshift (upshift) of both the E-2g(1) and A(1g) Raman active modes with increasing level of applied tensile (compressive) strain. Interestingly, significant changes in the curvature of the conduction and valence band near their extrema upon the application of strain are also predicted, with correlated variations of the electron and hole effective masses. These changes present interesting possibilities for engineering the electronic properties of 2D structures of MoS2. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000330815800070 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 72 Open Access  
  Notes Approved (up) Most recent IF: 2.221; 2014 IF: 2.000  
  Call Number UA @ lucian @ c:irua:115761 Serial 1220  
Permanent link to this record
 

 
Author Bogaerts, A.; Ameye, L.; Bijlholt, M.; Amuli, K.; Heynickx, D.; Devlieger, R. url  doi
openurl 
  Title INTER-ACT : prevention of pregnancy complications through an e-health driven interpregnancy lifestyle intervention: study protocol of a multicentre randomised controlled trial Type A1 Journal article
  Year 2017 Publication BMC pregnancy and childbirth Abbreviated Journal Bmc Pregnancy Childb  
  Volume 17 Issue Pages 154  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Centre for Research and Innovation in Care (CRIC)  
  Abstract Background Excessive maternal pre-pregnancy and gestational weight gain are related to pregnancy- and birth outcomes. The interpregnancy time window offers a unique opportunity to intervene in order to acquire a healthy lifestyle before the start of a new pregnancy. Methods INTER-ACT is an e-health driven multicentre randomised controlled intervention trial targeting women at high risk of pregnancy- and birth related complications. Eligible women are recruited for the study at day 2 or 3 postpartum. At week 6 postpartum, participants are randomised into the intervention or control arm of the study. The intervention focuses on weight, diet, physical activity and mental well-being, and comprises face-to-face coaching, in which behavioural change techniques are central, and use of a mobile application, which is Bluetooth-connected to a weighing scale and activity tracker. The intervention is rolled out postpartum (4 coaching sessions between week 6 and month 6) and in a new pregnancy (3 coaching sessions, one in each trimester of pregnancy); the mobile app is used throughout the two intervention phases. Data collection includes data from the medical record of the participants (pregnancy outcomes and medical history), anthropometric data (height, weight, waist- and hip circumferences, skinfold thickness and body composition by bio-electrical impedance analysis), data from the mobile app (physical activity and weight; intervention group only) and questionnaires (socio-demographics, breastfeeding, food intake, physical activity, lifestyle, psychosocial factors and process evaluation). Medical record data are collected at inclusion and at delivery of the subsequent pregnancy. All other data are collected at week 6 and month 6 postpartum and every subsequent 6 months until a new pregnancy, and in every trimester in the new pregnancy. Primary outcome is the composite endpoint score of pregnancy-induced hypertension, gestational diabetes mellitus, caesarean section, and large-for-gestational-age infant in the subsequent pregnancy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402116300002 Publication Date 2017-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2393 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.263 Times cited 4 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 2.263  
  Call Number UA @ lucian @ c:irua:143234 Serial 4663  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C. pdf  doi
openurl 
  Title Effects of silicon doping on strengthening adhesion at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2019 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 159 Issue 159 Pages 228-234  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper we employ first-principles calculations to investigate the effect of substitutional Si doping in the amorphous calcium-phosphate (a-HAP) structure on the work of adhesion, integral charge transfer, charge density difference and theoretical tensile strengths between an a-HAP coating and amorphous titanium dioxide (a-TiO2) substrate systemically. Our calculations demonstrate that substitution of a P atom by a Si atom in a-HAP (a-Si-HAP) with the creation of OH-vacancies as charge compensation results in a significant increase of the bonding strength of the coating to the substrate. The work of adhesion of the optimized Si-doped interfaces reaches a value of up to -2.52 J m(-2), which is significantly higher than for the stoichiometric a-HAP/a-TiO2. Charge density difference analysis indicates that the dominant interactions at the interface have significant covalent character, and in particular two Ti-O and three Ca-O bonds are formed for a-Si-HAP/a-TiO2 and one Ti-O and three Ca-O bonds for a-HAP/a-TiO2. From the stress-strain curve, the Young's modulus of a-Si-HAP/a-TiO2 is calculated to be about 25% higher than that of the a-HAP/a-TiO2, and the yielding stress is about 2 times greater than that of the undoped model. Our calculations therefore demonstrate that the presence of Si in the a-HAP structure strongly alters not only the bioactivity and resorption rates, but also the mechanical properties of the a-HAP/a-TiO2 interface. The results presented here provide an important theoretical insight into the nature of the chemical bonding at the a-HAP/a-TiO2 interface, and are particularly significant for the practical medical applications of HAP-based biomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457856900023 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 1 Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 2.292  
  Call Number UA @ admin @ c:irua:157480 Serial 5272  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C. pdf  url
doi  openurl
  Title Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide Type A1 Journal article
  Year 2014 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 95 Issue Pages 579-591  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A reactive ReaxFF force field is developed for studying the influence of intrinsic point defects on the chemistry with TiO2 condensed phases. The force field parameters are optimized to ab initio data for the equations of state, relative phase stabilities for titanium and titanium dioxide, potential energy differences for (TiO2)n-clusters (n = 116). Also data for intrinsic point defects in anatase were added. These data contain formation energies for interstitial titanium and oxygen vacancies, diffusion barriers of the oxygen vacancies and molecular oxygen adsorption on a reduced anatase (101) surface. Employing the resulting force field, we study the influence of concentration of oxygen vacancies and expansion or compression of an anatase surface on the diffusion of the oxygen vacancies. Also the barrier for oxygen diffusion in the subsurface region is evaluated using this force field. This diffusion barrier of 27.7 kcal/mol indicates that the lateral redistribution of oxygen vacancies on the surface and in the subsurface will be dominated by their diffusion in the subsurface, since both this barrier as well as the barriers for diffusion from the surface to the subsurface and vice versa (17.07 kcal/mol and 21.91 kcal/mol, respectively, as calculated with DFT), are significantly lower than for diffusion on the surface (61.12 kcal/mol as calculated with DFT).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343781700077 Publication Date 2014-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 15 Open Access  
  Notes Approved (up) Most recent IF: 2.292; 2014 IF: 2.131  
  Call Number UA @ lucian @ c:irua:119409 Serial 682  
Permanent link to this record
 

 
Author Vohra, A.; Makkonen, I.; Pourtois, G.; Slotte, J.; Porret, C.; Rosseel, E.; Khanam, A.; Tirrito, M.; Douhard, B.; Loo, R.; Vandervorst, W. url  doi
openurl 
  Title Source/drain materials for Ge nMOS devices: phosphorus activation in epitaxial Si, Ge, Ge1-xSnx and SiyGe1-x-ySnx Type A1 Journal article
  Year 2020 Publication Ecs Journal Of Solid State Science And Technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 9 Issue 4 Pages 044010-44012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper benchmarks various epitaxial growth schemes based on n-type group-IV materials as viable source/drain candidates for Ge nMOS devices. Si:P grown at low temperature on Ge, gives an active carrier concentration as high as 3.5 x 10(20) cm(-3) and a contact resistivity down to 7.5 x 10(-9) Omega.cm(2). However, Si:P growth is highly defective due to large lattice mismatch between Si and Ge. Within the material stacks assessed, one option for Ge nMOS source/drain stressors would be to stack Si:P, deposited at contact level, on top of a selectively grown n-SiyGe1-x-ySnx at source/drain level, in line with the concept of Si passivation of n-Ge surfaces to achieve low contact resistivities as reported in literature (Martens et al. 2011 Appl. Phys. Lett., 98, 013 504). The saturation in active carrier concentration with increasing P (or As)-doping is the major bottleneck in achieving low contact resistivities for as-grown Ge or SiyGe1-x-ySnx. We focus on understanding various dopant deactivation mechanisms in P-doped Ge and Ge1-xSnx alloys. First principles simulation results suggest that P deactivation in Ge and Ge1-xSnx can be explained both by P-clustering and donor-vacancy complexes. Positron annihilation spectroscopy analysis, suggests that dopant deactivation in P-doped Ge and Ge1-xSnx is primarily due to the formation of P-n-V and SnmPn-V clusters. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000531473500002 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access  
  Notes ; The imec core CMOS program members, European Commission, the TAKEMI5 ECSEL project, local authorities and the imec pilot line are acknowledged for their support. Air Liquide Advanced Materials is acknowledged for providing advanced precursor gases. A. V. acknowledges his long stay abroad grant and a grant for participation in congress abroad from the Research Foundation-Flanders (Application No. V410518N and K159219N). I. M. acknowledges financial support from Academy of Finland (Project Nos. 285 809, 293 932 and 319 178). CSC-IT Center for Science, Finland is acknowledged for providing the computational resources. ; Approved (up) Most recent IF: 2.2; 2020 IF: 1.787  
  Call Number UA @ admin @ c:irua:169502 Serial 6607  
Permanent link to this record
 

 
Author Leigh, S.; Doyle, S.J.; Smith, G.J.; Gibson, A.R.; Boswell, R.W.; Charles, C.; Dedrick, J.P. url  doi
openurl 
  Title Ionization and neutral gas heating efficiency in radio frequency electrothermal microthrusters : the role of driving frequency Type A1 Journal article
  Year 2024 Publication Physics of plasmas Abbreviated Journal  
  Volume 31 Issue 2 Pages 023509-23513  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The development of compact, low power, charge-neutral propulsion sources is of significant recent interest due to the rising application of micro-scale satellite platforms. Among such sources, radio frequency (rf) electrothermal microthrusters present an attractive option due to their scalability, reliability, and tunable control of power coupling to the propellant. For micropropulsion applications, where available power is limited, it is of particular importance to understand how electrical power can be transferred to the propellant efficiently, a process that is underpinned by the plasma sheath dynamics. In this work, two-dimensional fluid/Monte Carlo simulations are employed to investigate the effects of applied voltage frequency on the electron, ion, and neutral heating in an rf capacitively coupled plasma microthruster operating in argon. Variations in the electron and argon ion densities and power deposition, and their consequent effect on neutral-gas heating, are investigated with relation to the phase-averaged and phase-resolved sheath dynamics for rf voltage frequencies of 6-108 MHz at 450 V. Driving voltage frequencies above 40.68 MHz exhibit enhanced volumetric ionization from bulk electrons at the expense of the ion heating efficiency. Lower driving voltage frequencies below 13.56 MHz exhibit more efficient ionization due to secondary electrons and an increasing fraction of rf power deposition into ions. Thermal efficiencies are improved by a factor of 2.5 at 6 MHz as compared to the more traditional 13.56 MHz, indicating a favorable operating regime for low power satellite applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001207449000001 Publication Date 2024-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.2 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.2; 2024 IF: 2.115  
  Call Number UA @ admin @ c:irua:205506 Serial 9156  
Permanent link to this record
 

 
Author Bogaerts, A.; van de Sanden, R. pdf  url
doi  openurl
  Title Special Issue of Papers by Plenary and Topical Invited Lecturers at the 22nd International Symposium on Plasma Chemistry (ISPC 22), 5–10 July 2015, Antwerp, Belgium: Introduction Type Editorial
  Year 2016 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 36 Issue 36 Pages 1-2  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370720800001 Publication Date 2016-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.355 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.355  
  Call Number c:irua:130713 Serial 4003  
Permanent link to this record
 

 
Author Neyts, E.C. pdf  url
doi  openurl
  Title Plasma-Surface Interactions in Plasma Catalysis Type A1 Journal article
  Year 2016 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 36 Issue 36 Pages 185-212  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper the various elementary plasma—surface interaction processes occurring in plasma catalysis are critically evaluated. Specifically, plasma catalysis at atmospheric pressure is considered. The importance of the various processes is analyzed for the most common plasma catalysis sources, viz. the dielectric barrier discharge and the gliding arc. The role and importance of surface chemical reactions (including adsorption, surface-mediated association and dissociation reactions, and desorption), plasma-induced surface modification, photocatalyst activation, heating, charging, surface discharge formation and electric field enhancement are discussed in the context of plasma catalysis. Numerous examples are provided to demonstrate the importance of the various processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370720800011 Publication Date 2015-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.355 Times cited 66 Open Access  
  Notes The author is indebted to many colleagues for fruitful discussions. In particular discussions with A. Bogaerts (University of Antwerp, Belgium), H.-H. Kim (AIST, Japan), J. C. Whitehead (University of Manchester, UK) and T. Nozaki (Tokyo Institute of Technology, Japan) are greatfully acknowledged and appreciated. Approved (up) Most recent IF: 2.355  
  Call Number c:irua:130742 Serial 4004  
Permanent link to this record
 

 
Author Bekeschus, S.; Lin, A.; Fridman, A.; Wende, K.; Weltmann, K.-D.; Miller, V. url  doi
openurl 
  Title A comparison of floating-electrode DBD and kINPen jet : plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions Type A1 Journal article
  Year 2018 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 38 Issue 1 Pages 1-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A comparative study of two plasma sources (floating-electrode dielectric barrier discharge, DBD, Drexel University; atmospheric pressure argon plasma jet, kINPen, INP Greifswald) on cancer cell toxicity was performed. Cell culture protocols, cytotoxicity assays, and procedures for assessment of hydrogen peroxide (H2O2) were standardized between both labs. The inhibitory concentration 50 (IC50) and its corresponding H2O2 deposition was determined for both devices. For the DBD, IC50 and H2O2 generation were largely dependent on the total energy input but not pulsing frequency, treatment time, or total number of cells. DBD cytotoxicity could not be replicated by addition of H2O2 alone and was inhibited by larger amounts of liquid present during the treatment. Jet plasma toxicity depended on peroxide generation as well as total cell number and amount of liquid. Thus, the amount of liquid present during plasma treatment in vitro is key in attenuating short-lived species or other physical effects from plasmas. These in vitro results suggest a role of liquids in or on tissues during plasma treatment in a clinical setting. Additionally, we provide a platform for correlation between different plasma sources for a predefined cellular response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000419479000001 Publication Date 2017-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.355 Times cited 12 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 2.355  
  Call Number UA @ lucian @ c:irua:155653 Serial 5084  
Permanent link to this record
 

 
Author Vandenbroucke, A.M.; Aerts, R.; Van Gaens, W.; De Geyter, N.; Leys, C.; Morent, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge Type A1 Journal article
  Year 2015 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 35 Issue 35 Pages 217-230  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000347285800014 Publication Date 2014-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324;1572-8986; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.355 Times cited 9 Open Access  
  Notes Approved (up) Most recent IF: 2.355; 2015 IF: 2.056  
  Call Number c:irua:118882 Serial 2108  
Permanent link to this record
 

 
Author Kaganovich, I.; Misina, M.; Berezhnoi, S.; Gijbels, R. url  doi
openurl 
  Title Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge Type A1 Journal article
  Year 2000 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 61 Issue 2 Pages 1875-1889  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electron distribution function (EDF) in an electron cyclotron resonance (ECR) discharge is far from Maxwellian. The self-consistent simulation of ECR discharges requires a calculation of the EDF on every magnetic line for various ion density profiles. The straightforward self-consistent simulation of ECR discharges using the Monte Carlo technique for the EDF calculation is very computer time expensive, since the electron and ion time scales are very different. An electron Boltzmann kinetic equation averaged over the fast electron bouncing and pitch-angle scattering was derived in order to develop an effective and operative tool for the fast modeling (FM) of low-pressure ECR discharges. An analytical solution for the EDF in a loss cone was derived. To check the validity of the FM, one-dimensional (in coordinate) and two-dimensional (in velocity) Monte Carlo simulation codes were developed. The validity of the fast modeling method is proved by comparison with the Monte Carlo simulations. The complete system of equations for FM is presented and ready for use in a comprehensive study of ECR discharges. The variations of plasma density and of wall and sheath potentials are analyzed by solving a self-consistent set of equations for the EDF.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000085410600117 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 31 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2000 IF: 2.142  
  Call Number UA @ lucian @ c:irua:34069 Serial 910  
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Kinetic modeling of relaxation phenomena after photodetachment in a rf electronegative SiH4 discharge Type A1 Journal article
  Year 2001 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 63 Issue 2Part 2 Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The global relaxation process after pulsed laser induced photodetachment in a rf electronegative SIH4 discharge is studied by a self-consistent kinetic one-dimensional particle-in-cell-Monte Carlo model. Our results reveal a comprehensive physical picture of the relaxation process, including the main plasma variables, after a perturbation up to the full recovery of the steady state. A strong influence of the photodetachment on the discharge is found, which results from an increase of the electron density, leading to a weaker bulk field, and hence to a drop in the high energy tail of the electron energy distribution function (EEDF), a reduction of the reaction rates of electron impact attachment and ionization, and a subsequent decrease of the positive and negative ion densities. All the plasma quantities related to electrons recover synchronously. The recovery time of the ion densities is about 1-2 orders of magnitude longer than that of the electrons due to different recovery mechanisms. The modeled behavior of all the charged particles agrees very well with experimental results from the literature. In addition, our work clarifies some unclear processes assumed in the literature, such as the relaxation of the EEDF, the evolution of the electric field, and the recovery of negative ions.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000167022500057 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 4 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2001 IF: 2.235  
  Call Number UA @ lucian @ c:irua:34148 Serial 1757  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Effect of small amounts of hydrogen added to argon glow discharges: hybrid Monte-Carlo-fluid model Type A1 Journal article
  Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages 056402  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid Monte Carlofluid modeling network is developed for an argon-hydrogen mixture, to predict the effect of small amounts of hydrogen added to a dc argon glow discharge. The species considered in the model include the Ar gas atoms, electrons, Ar+ ions and fast Ar atoms, ArH+, H+, H+2 and H+3 ions, and H atoms and H2 molecules, as well as Ar metastable atoms, sputtered Cu atoms, and the corresponding Cu+ ions. Sixty-five reactions between these species are incorporated in the model. The effect of hydrogen on various calculation results is investigated, such as the species densities, the relative role of different production and loss processes for the various species, the cathode sputtering rate and contributions by different bombarding species, and the dissociation degree of H2 and the ionization degree of Ar and Cu. The calculation results are presented and discussed for 1% H2 addition, and comparison is also made with a pure argon discharge and with only 0.1% H2 addition.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000176552500086 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 33 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:40183 Serial 835  
Permanent link to this record
 

 
Author Okhrimovskyy, A.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Electron anisotropic scattering in gases: a formula for Monte Carlo simulations Type A1 Journal article
  Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages 037402  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The purpose of this Brief Report is to point out the mistake in a formula for anisotropic electron scattering, previously published in Phys. Rev. A 41, 1112 (1990), which is widely used in Monte Carlo models of gas discharges. Anisotropic electron scattering is investigated based on the screened Coulomb potential between electrons and neutral atoms. The approach is also applied for electron scattering by nonpolar neutral molecules. Differential cross sections for electron scattering by Ar, N2, and CH4 are constructed on the basis of momentum and integrated cross sections. The formula derived in this paper is useful for Monte Carlo simulations of gas discharges.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000174549000088 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 57 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:40179 Serial 909  
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R.; Goedheer, W.J. url  doi
openurl 
  Title Local and fast relaxation phenomena after laser-induced photodetachment in a strongly electronegative rf discharge Type A1 Journal article
  Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages 016408  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000173407500073 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 2 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:37255 Serial 1823  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W. url  doi
openurl 
  Title Modeling of the formation and transport of nanoparticles in silane plasmas Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 70 Issue Pages 056407,1-8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The behavior of nanoparticles in a low-pressure silane discharge is studied with the use of a self-consistent one-dimensional fluid model. Nanoparticles of a given (prescribed) radius are formed in the discharge by the incorporation of a dust growth mechanism, i.e., by including a step in which large anions (typically Si12H−25), produced in successive chemical reactions of anions with silane molecules, are transformed into particles. Typically a few thousand anions are used for one nanoparticle. The resulting particle density and the charge on the particles are calculated with an iterative method. While the spatial distribution and the charge of the particles are influenced by the plasma, the presence of the nanoparticles will in turn influence the plasma properties. Several simulations with different particle radii are performed. The resulting density profile of the dust will greatly depend on the particle size, as it reacts to the shift of the balance of the different forces acting on the particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225970700092 Publication Date 2004-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 31 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:49432 Serial 2132  
Permanent link to this record
 

 
Author Georgieva, V.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Numerical investigation of ion energy distribution functions in single and dual frequency capacitively coupled plasma reactors Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 69 Issue Pages 026406  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220255500058 Publication Date 2004-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 97 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:44025 Serial 2395  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Gijbels, R.; Goedheer, W. doi  openurl
  Title Numerical investigation of particle formation mechanisms in silane discharges Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 69 Issue Pages 056409,1-16  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000221813400085 Publication Date 2004-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 74 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:45497 Serial 2396  
Permanent link to this record
 

 
Author Cao, L.-H.; Yu, W.; Xu, H.; Zheng, C.-Y.; Liu, Z.-J.; Li, B.; Bogaerts, A. url  doi
openurl 
  Title Terahertz radiation from oscillating electrons in laser-induced wake fields Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 70 Issue Pages 046408,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Strong terahertz (1THz=1012Hz) radiation can be generated by the electron oscillation in fs-laser-induced wake fields. The interaction of a fs-laser pulse with a low-density plasma layer is studied in detail using numerical simulations. The spatial distribution and temporal evolution of terahertz electron current developed in a low-density plasma layer are presented, which enables us to calculate the intensity distribution of THz radiation. It is shown that laser and plasma parameters, such as laser intensity, pulse width, and background plasma density, are of key importance to the process. The optimum condition for wake-field excitation and terahertz emission is discussed upon the simulation results. Radiation peaked at 6.4 THz, with 900 fs duration and 9% bandwidth, can be generated in a plasma of density 5×1017cm−3. It turns out that the maximum radiation intensity scales as n03a04 when wake field is resonantly excited, where n0 and a0 are, respectively, the plasma density and the normalized field amplitude of the laser pulse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225689600086 Publication Date 2004-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 9 Open Access  
  Notes Approved (up) Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:49818 Serial 3509  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: