|
Abstract |
Particle-in-cell/Monte Carlo collision (PIC/MCC) simulations are performed to investigate the asymmetric secondary electron emission (SEE) effects when electrons strike two different material electrodes in low pressure capacitively coupled plasmas (CCPs). To describe the electron-surface interactions, a realistic model, considering the primary electron impact energy and angle, as well as the corresponding surface property-dependent secondary electron yields, is employed in PIC/MCC simulations. In this model, three kinds of electrons emitted from the surface are considered: (i) elastically reflected electrons, (ii) inelastically backscattered electrons, and (iii) electron induced secondary electrons (SEs, i.e., delta-electrons). Here, we examined the effects of electron-surface interactions on the ionization dynamics and plasma characteristics of an argon discharge. The discharge is driven by a voltage source of 13.56MHz with amplitudes in the range of 200-2000V. The grounded electrode material is copper (Cu) for all cases, while the powered electrode material is either Cu or silicon dioxide (SiO2). The simulations reveal that the electron impact-induced SEE is an essential process at low pressures, especially at high voltages. Different electrode materials result in an asymmetric response of SEE. Depending on the instantaneous local sheath potential and the phase of the SEE, these SEs either are reflected by the opposite sheath or strike the electrode surface, where they can induce delta-electrons upon their residual energies. It is shown that highly energetic delta-electrons contribute significantly to the ionization rate and a self-bias forms when the powered electrode material is assumed to be made of SiO2. Complex dynamics is observed due to the multiple electron-surface interaction processes and asymmetric yields of SEs in CCPs. |
|