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Abstract A comparative study of two plasma sources (floating-electrode dielectric barrier

discharge, DBD, Drexel University; atmospheric pressure argon plasma jet, kINPen, INP

Greifswald) on cancer cell toxicity was performed. Cell culture protocols, cytotoxicity

assays, and procedures for assessment of hydrogen peroxide (H2O2) were standardized

between both labs. The inhibitory concentration 50 (IC50) and its corresponding H2O2

deposition was determined for both devices. For the DBD, IC50 and H2O2 generation were

largely dependent on the total energy input but not pulsing frequency, treatment time, or

total number of cells. DBD cytotoxicity could not be replicated by addition of H2O2 alone

and was inhibited by larger amounts of liquid present during the treatment. Jet plasma

toxicity depended on peroxide generation as well as total cell number and amount of liquid.

Thus, the amount of liquid present during plasma treatment in vitro is key in attenuating

short-lived species or other physical effects from plasmas. These in vitro results suggest a

role of liquids in or on tissues during plasma treatment in a clinical setting. Additionally,

we provide a platform for correlation between different plasma sources for a predefined

cellular response.
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Introduction

In the study of plasma medicine, partially ionized gases and their physico-chemical

effectors are investigated for beneficial biological responses [1–3]. The observed beneficial

effects in wound healing [4–6] and cancer [7–9] have significantly spurred research efforts

and novel findings in recent years. Promising in vitro research investigations are an ethical

and scientific necessity for translation of plasma applications to in vivo models and

eventually to humans. However, there are technical and methodological challenges for

direct plasma applications, especially with regard to different types of plasma sources and

comparison of results. Major among them is the extent to which in vitro plasma effects

depend on long-lived species or other effectors of the multicomponent system plasma, such

as UV-radiation or electrical fields. Therefore, two main types of plasma sources, a

floating-electrode dielectric barriers discharge [10] and an atmospheric pressure argon

plasma jet [11] were compared with regard to cell growth reduction and its dependence on

main plasma active components. The sources were chosen because they have been of

relevance in plasma medical research for more than a decade and thus were subject to

extensive physical characterization [12]. To compare plasma effects across labs which is

easy to perform, cheap and could be applicable for clinical device calibration, a simple

biological read-out was chosen.

Plasma medical research inevitably involves experiments on reactive species because

these were found to be central effectors in a number of biological targets exposed to

plasma, such as skin cells [13–15], immune cells [16–18], and cancer cells [19–52]. In

many instances, hydrogen peroxide (H2O2) was an important mediator in these in vitro

experiments [53–55]. H2O2 is not necessarily toxic by itself but rather exerts its biological

effects through secondary processes, for example, Fenton reaction [56], by acting as

substrate for oxygenases [57], and in redox signaling events enabling the translation of

redox events into distinct biological responses [58]. We selected CT26 murine colon

cancer cells for this work because H2O2 has been previously identified as inducing

apoptotic but not the necroptotic cell death pathway in these cells [59, 60]. CT26 colon

cancer monolayer cultures were exposed to either DBD or argon jet plasma. Plasma source

dependent, our results demonstrate that H2O2 correlates with inhibition of CT26 metabolic

activity. It plays a central but not exclusive role in plasma-induced cell toxicity.

Materials and Methods

Cell Culture

Murine CT26 colon cancer cells were maintained in cell culture flasks in Rosswell Park

Memorial Institute 1640 (RPMI1640) cell culture medium supplemented with 10% fetal

bovine serum (FCS), 2% glutamine, and 1% penicillin/streptomycin (all Sigma). For

culturing and experiments, cells were maintained in standard incubation conditions at

37 �C with 95% humidified atmosphere and 5% carbon dioxide.

DBD Plasma Treatment

Treatment of cells with the DBD plasma system was performed in the absence of liquid

unless otherwise specified. The DBD electrode used was 1.3 cm in diameter and fit into the

wells of a 24-well plate. Cells were treated with plasma as previously described [61].
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Briefly, CT26 cells were seeded at 1.5 9 105 cells per well in 0.5 ml of fully supplemented

cell culture medium and incubated overnight at 37 �C with 5% CO2. Prior to plasma

treatment, cells were washed twice with PBS, and PBS from the second wash was removed

immediately before plasma exposure. Plasma was generated by applying a high voltage

pulse to the DBD electrode 1 mm above the cells in the well. The pulse was generated with

a nanosecond pulser (FPB-20-05NM, FID GmbH, Burbach, Germany) and the frequency

of pulses was controlled with an external function generator (TTi, TG5011 LXT,

Philadelphia, PA, USA). Treatment time was fixed at 10 s unless otherwise specified. In

some experiments, either treatment time or pulse frequency was altered to deliver a fixed

plasma treatment energy over different times. For the DBD comparative study, a

microsecond pulse (0.07 mJ/pulse) was also used. The energy per pulse from both system

was measured as previously described [62, 63] and total plasma energy delivered to the

cells for both systems were calculated from treatment time, pulse frequency and energy per

pulse. Complete media was added to each well after plasma treatment and cells were

incubated overnight before viability was measured. Pulse parameters of both the

nanosecond- and the microsecond-pulsed DBD system are summarized in Table 1.

Jet Plasma Treatment

Treatment with the genotoxically-safe [64–66] atmospheric pressure argon plasma jet

kINPen 11 (similar in construction to the kINPen MED that has received accreditation as

medical device in Germany; neoplas control, Germany) operated at a feed gas flux of three

standard liters per minute (SLPM) of Argon gas (Air Liquide, France) was performed as

described previously [67]. It is a DBD-like jet, with a central pin electrode shielded against

an outer electrode by a dielectric, powered by 2–6 kV at 1 MHz. Briefly, 1 9 105 CT26

cells in 1 ml of fully supplemented cell culture medium were added to each well of a

24-well plate, and incubated overnight. In some experiments, 5 lg/ml of the H2O2-scav-

enging enzyme catalase (Sigma) was added prior to plasma treatment. A layout was

programmed for a computer-driven xyz-table (CNC, Germany) hovering the plasma jet

over the center of each well at a predetermined distance for the indicated treatment time.

Table 1 Technical parameters
of the two DBD plasma settings
applied to cells

Nanosecond-pulsed DBD plasma parameters

Voltage 29 kV

Energy per Pulse 0.9 mJ/pulse

Pulse Width 20 ns

Gap Distance 1 mm

Pulse Frequency 0, 5, 15, 30, 75, 150 Hz

Treatment Time 10 s

Plasma Energy 0, 50, 100, 300, 700, 1000 mJ

Microsecond-pulsed DBD plasma parameters

Voltage 30 kV

Energy per Pulse 0.07 mJ/pulse

Pulse Width 1.65 ls

Gap Distance 1 mm

Pulse Frequency 50 Hz

Treatment Time 0, 15, 30, 90, 200, 290 s

Plasma Energy 0, 50, 100, 300, 700, 1000 mJ
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To compensate for evaporation of liquid, a predetermined amount of double-distilled water

was added after plasma treatment.

Cytotoxicity

Cytotoxicity was assessed as a measure of total metabolic activity. After treatment, cells

were incubated for 21 h at 37 �C. The medium was replaced with 1 ml of fully supple-

mented cell culture medium without phenol red and containing 100 lM of resazurin (Alfa

Aesar, USA). Metabolically active cells generate NADPH that is used by intracellular

enzymes to create highly fluorescent resorufin from resazurin. Both compounds freely

diffuse through cell membranes for a convenient readout in cell culture supernatants. After

incubation for 3 h at 37 �C, 4 9 200 ll of each well were transferred to a flat-bottom

96-well plate. Fluorescence was read at kex 535 nm and kem 590 nm using a microplate

reader. Background fluorescence of cell culture medium alone containing resazurin was

subtracted from all sample and control readings. Relative fluorescence of samples was then

normalized to that of untreated controls cells.

Hydrogen Peroxide

H2O2 was quantified in double-distilled water (Drexel) or PBS (INP) using the amplex red

detection reagent (Thermo, USA). If plasma does not acidify the solution, double-distilled

water and PBS are in principle interchangeable. The pH of distilled water did not change

under any of the treatment conditions used in this study for DBD therefore peroxide

measurements were made in water. Plasma treated water or PBS was diluted 1:20 in

amplex red reagent (5 lM) in PBS supplemented with horseradish peroxide (10U/ml).

After incubation for 15 min in dark, fluorescence was read at kex 535 nm and kem 590 nm

using a microplate reader. Relative fluorescence units were quantified against a linear

regression delineated from a H2O2 standard curve (5000–78 nM), and multiplied by

dilution factors to retrieve actual concentrations.

Software

Graphing, calculation of mean and standard deviation (S.D.), and linear regressions were

done using prism software (Graphpad, USA). One-way analysis of variances was per-

formed using prism as well.

Results

DBD and Jet Growth Inhibition of CT26 Cells and Relationship to H2O2

Deposition in Liquids

CT26 cells were treated with DBD (Fig. 1a) or jet (Fig. 1b) plasma, and metabolic activity

was assessed after 24 h. At constant treatment times of 10 s, DBD toxicity increased with

higher energy doses, giving a 50% inhibitory concentration (IC50) at about 740 mJ

(Fig. 2a). The kINPen plasma cannot be tuned electrically as settings are fixed. Hence,

dosimetry and increase in ‘energy’ can only be achieved by extending the treatment time.

As expected, the latter was proportional to cellular toxicity with an IC50 of 100 s (Fig. 2b).
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At IC50 treatment conditions, H2O2 deposition by DBD and jet plasma was 50 lM
(Fig. 2c) and 115 lM (Fig. 2d), respectively. In both cases, H2O2 levels increased with

energy or time of exposure. Therefore, toxicity increased proportionally with increased

energy and/or plasma treatment time, and concentrations of plasma-generated H2O2 cor-

related with that.

Fig. 1 DBD and jet plasma. a DBD treatment of cells in a 24-well plate. b Atmospheric pressure argon
plasma jet treatment of cells in a 24-well plate

Fig. 2 IC50 and generation of H2O2. a DBD treatment of CT26 cells at different energy dosages.
b Atmospheric pressure argon plasma jet treatment of CT26 cells at different treatment times. c H2O2

deposition of DBD plasma at different energy dosages. d H2O2 deposition of jet plasma at different
treatment times. In (a) and (b), metabolic activity was assessed after 24 h and normalized to that of
untreated control cells. Data are presented as mean with SD
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Energy Input and Amount of Liquid were Imperative for DBD Plasma
Toxicity

CT26 cells were treated with varying nanosecond-pulsed DBD plasma treatment times

having an overall constant energy input of IC50-related 700 mJ. Overall toxicity was very

similar under all treatment conditions (Fig. 3a). Corroborating these results, similar H2O2

concentrations were measured for all treatment times having the same total energy input

(Fig. 3b). To understand the impact of plasma pulse duration, the DBD plasma was

operated at microsecond instead of nanosecond pulsing. Toxicity correlated with

increasing energy dosages yielding an IC50 of 768 mJ (Fig. 3b). This energy generated

about 47 lM of H2O2 (Fig. 3d). Both the IC50 (768 mJ) and H2O2 generation (47 lM) in

microsecond plasma mode were very similar to that of the nanosecond plasma (742 mJ and

50 lM, respectively). These observations suggest that the impact of the pulsing frequency

and treatment time on toxicity were negligible as long as the total plasma energy was

maintained. In addition, H2O2 seemed to correlate well with metabolic attenuation of cells.

This was, at least in part, supported by the finding that with increasing cell densities, IC50

values began to increase for cell densities exceeding 1.25 9 105/well (Fig. 4a). Specifi-

cally, metabolic inhibition of cell densities below 2 9 105 differed significantly although

statistical comparison between all other groups was non-significant. Nonetheless, this

result indicates the involvement of additional contributors to plasma toxicity other than

Fig. 3 Electrical parameters of DBD plasma on cell viability and H2O2 production. a Different treatment
times with varying energy were applied onto CT26 cells so that total energy deposition was kept constant at
700 mJ. b H2O2 concentrations for treatment regimens applied in (a). ls instead of ns pulsing of DBD
plasma at different energies applied to CT26 cells. d H2O2 concentrations for treatment regimens applied in
(c). In a and c, metabolic activity was assessed after 24 h and normalized to that of untreated control cells.
Data are presented as mean with SD

6 Plasma Chem Plasma Process (2018) 38:1–12

123



H2O2 in the DBD treatment to satisfy stoichiometry. Next, the impact on liquid presence

on top of the cells during DBD plasma treatment was evaluated. In all DBD plasma

treatments above, cell culture medium was removed prior to exposure. Here, varying

amounts of PBS were added prior to treatment. Only 50 ll of liquid halved overall toxicity

from 50 to 25% (Fig. 4b). Presence of 200 ll fully abrogated it. Therefore, we conclude

that total energy input and amount of liquid are key parameters in determining overall

DBD plasma toxicity in 2D cell cultures in vitro.

Importance of H2O2 in CT26 Toxicity

The role of H2O2 in DBD plasma toxicity was further investigated by comparing plasma-

IC50 and its respective H2O2 concentration to that of exogenously added H2O2. With DBD

plasma, about 50 lM were found to correlate to the IC50 (Fig. 2c) whereas a dilution

series of H2O2 alone in 500 ll final volume identified an IC50 of 2062 lM (Fig. 5a). In

contrast, for the jet plasma IC50, corresponding peroxide concentrations were 115 lM
whereas a dilution series of H2O2 alone in 1000 ll final volume revealed an IC50 of

125 lM (Fig. 5b). These data suggested that H2O2 was central in cellular effects from jet

plasma and only partially in DBD plasma toxicity, with a contribution of additional

effectors in the latter system. This was expected because direct DBD operation is asso-

ciated with a significant amount of charged and short-lived chemically active species. To

underline this finding for the jet plasma, CT26 cells were treated for 150 s with argon gas

alone, plasma, or plasma in presence of the H2O2-scavenging enzyme catalase. Plasma

treatment alone markedly reduced cell viability compared to argon gas control, whereas

presence of catalase abolished plasma toxicity (Fig. 5c).

Discussion

With regard to in vitro cell culture experiments, jet plasmas and most DBDs differ in one

important parameter: the use of external feed gas. Once in direct contact with cells, feed

gas—even in the plasma-off mode—immediately necrotizes cells due to drying effects

Fig. 4 Toxicity in dependence on cell density and amount of liquid present. a Varying concentrations of
CT26 cells in 24-well plates were exposed to the IC50 dose of DBD plasma. b 1 9 105 cells per well in
24-well plates with varying amounts of PBS were exposed to the IC50 dose of DBD plasma. In all
experiments, metabolic activity was assessed after 24 h and normalized to that of untreated control cells.
Data are presented as mean with SD; statistical analysis was performed using one-ways analysis of variances
comparing all group means with Tukey post-testing
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(unpublished observation). Therefore, plasma jet experiments with large gas fluxes require

sufficient amounts of liquid that—even if parts of liquid are blown aside—shields cells

from dehydration. Excess presence of liquids, however, offers competing non-cellular

targets to react with short-lived species, leading to dominant effects of long-lived oxidants

on cells. In contrast, DBD plasmas streamers come in direct contact with cells. Compared

to jet plasmas, this increases the contribution of (low range) UV-radiation, electrical fields,

and short-lived species to any biological effect observed. The importance of excess liquid

as ‘‘scavenger’’ was exemplified by our results showing full abrogation of DBD plasma

effects with addition of 200 ll or more.

Reactive molecules are known to be crucial regulators of cellular activity in health and

disease [68–70]. Undoubtedly, reactive species are central mediators of biological plasma

effects [71]. Many types have been identified in plasma-treated liquids in the past years

[72]. For the kINPen plasma jet, this includes for example nitrite, nitrate, hydrogen per-

oxide, superoxide, hydroxyl radical, peroxynitrite, and singlet oxygen [72–74]. Plasma gas

phase analysis suggests the presence of many others [75–77]. Yet, if organic target

molecules and/or cells are not present at the site of species creation or deposition, short-

Fig. 5 Experimentally added H2O2 on CT26 viability. a Varying concentrations of H2O2 were prepared in
50 ll PBS and added to CT26 cells at Drexel lab. Immediately after that, solutions were diluted with 450 ll
of cell culture medium, which was a similar procedure to DBD plasma treatment. b Varying concentrations
of H2O2 were prepared in 1000 ll PBS and added to CT26 cells at INP Greifswald. c CT26 cells were
treated with 150 s of argon gas alone, 150 s of plasma, or 150 s of plasma in presence of catalase. In all
experiments, metabolic activity was assessed after 24 h and normalized to that of untreated control cells.
Data are presented as mean with SD
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lived species yield more stable products such as hydrogen peroxide or hypochlorous acid

[73].

Our results indicated a dominant and a partial role of peroxide for the jet and DBD

toxicity, respectively. The latter was especially illustrated by a lower IC50 H2O2 deposition

by the DBD compared to the jet, and the non-linear correlation between cell number and

DBD cytotoxicity. For the DBD, this suggested additional cytotoxic effectors at work. As

200 ll of liquid on top of cells fully abrogated DBD plasma toxicity, these effectors may

be for instance poration, UV-radiation, charged particles or short-lived species being

decomposed in absence of target cells. For example, the DBD plasma may create nano-

pores [78] allowing the entry of species into cells by a process similar to aquaporins [79], a

route potentially counteracted by excess liquid. Also, short wavelength UV radiation is

efficiently scavenged by a few hundred nanometers of liquid layer [80]. A combination of

different plasma properties is also possible as seen with bacteria [81–83]. Corroborating

results of the jet plasma in the present work, presence and concentration of H2O2 strongly

correlated with cytotoxic effects of the kINPen [84–86] and other jet and DBD plasma

sources [87–90], especially plasma-treated liquids [91–93]. Yet, in a helium/oxygen

plasma jet, we previously demonstrated cytotoxicity correlating with short-lived species

supporting the generation of hypochlorous acid in aqueous media [94].

H2O2 itself is a relatively non-reactive molecule with low reaction-constants with

biomolecules [95]. Its effects mainly depend on two factors: the presence of catalysts and/

or other oxidants, and the enzymatic profile of the target cells handling oxidants. It is well

known the reaction of H2O2 and iron generates highly toxic hydroxyl radicals, by a process

known as the Fenton reaction [96]. Hence, iron close to cell membranes, intracellular iron,

and/or shuttling of H2O2 through membranes would be important denominators for plasma

effects. Moreover, synergistic effects of plasma-generated H2O2 with nitrite have been

proposed [97] that may act in concert with membrane-based oxidases to form peroxynitrite

and other toxic species [98]. Extracellular trap formation following kINPen plasma

treatment was not replicated by addition of hydrogen peroxide alone either [99]. In

addition, redox enzymes and antioxidant defenses guide diverse cell fates when two dif-

ferent cell types are subjected to the same plasma treatment [100].

Nonetheless, in vitro cell cultures are only model systems that may guide in vivo

studies. It is important to considered that the biomolecule to liquid ratio in tissues is much

lower than in vitro systems. There are several challenges before the translation of in vitro

plasma effects to in vivo effects becomes intuitive. The species variety is unique to cold

plasmas with their concentration depending on the plasma source. Methods to directly

detect short-lived species in tissues are currently unavailable. Modeling studies suggest

that plasma in direct contact with a target alters species deposition and cell membrane

oxidation [101–103]. Experimentally, plasma-derived oxidants have been shown to be

deposited on cells and liquids through plasma-treated agarose membranes [104] and

micropores [105], which may facilitate the deciphering effects of jet plasma short-lived

species in cells.

While this study was not comprehensive and has limitations, it is the first attempt to find

common and divergent themes between different plasma sources intended for future

medical applications. Only one type of DBD and jet plasma source was investigated. A

straightforward biological read-out of metabolic/growth inhibition was chosen for com-

parison because its no-wash-one-step approach minimizes lab-to-lab variation. We offer

protocols for testing other plasma sources to ‘‘standardize’’ their biological effects by

relatively easy means.
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In conclusion, we provide a biological response model (IC50 of CT26 colorectal cancer

cells) that allows for easy comparison between very different plasma discharges.
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