|
Record |
Links |
|
Author |
Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C. |
|
|
Title |
Effects of silicon doping on strengthening adhesion at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Computational materials science |
Abbreviated Journal |
Comp Mater Sci |
|
|
Volume |
159 |
Issue |
159 |
Pages |
228-234 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
In this paper we employ first-principles calculations to investigate the effect of substitutional Si doping in the amorphous calcium-phosphate (a-HAP) structure on the work of adhesion, integral charge transfer, charge density difference and theoretical tensile strengths between an a-HAP coating and amorphous titanium dioxide (a-TiO2) substrate systemically. Our calculations demonstrate that substitution of a P atom by a Si atom in a-HAP (a-Si-HAP) with the creation of OH-vacancies as charge compensation results in a significant increase of the bonding strength of the coating to the substrate. The work of adhesion of the optimized Si-doped interfaces reaches a value of up to -2.52 J m(-2), which is significantly higher than for the stoichiometric a-HAP/a-TiO2. Charge density difference analysis indicates that the dominant interactions at the interface have significant covalent character, and in particular two Ti-O and three Ca-O bonds are formed for a-Si-HAP/a-TiO2 and one Ti-O and three Ca-O bonds for a-HAP/a-TiO2. From the stress-strain curve, the Young's modulus of a-Si-HAP/a-TiO2 is calculated to be about 25% higher than that of the a-HAP/a-TiO2, and the yielding stress is about 2 times greater than that of the undoped model. Our calculations therefore demonstrate that the presence of Si in the a-HAP structure strongly alters not only the bioactivity and resorption rates, but also the mechanical properties of the a-HAP/a-TiO2 interface. The results presented here provide an important theoretical insight into the nature of the chemical bonding at the a-HAP/a-TiO2 interface, and are particularly significant for the practical medical applications of HAP-based biomaterials. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000457856900023 |
Publication Date |
2018-12-18 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0927-0256 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.292 |
Times cited |
1 |
Open Access |
Not_Open_Access |
|
|
Notes |
|
Approved |
Most recent IF: 2.292 |
|
|
Call Number |
UA @ admin @ c:irua:157480 |
Serial |
5272 |
|
Permanent link to this record |