toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bogaerts, A.; Yusupov, M.; Van der Paal, J.; Verlackt, C.C.W.; Neyts, E.C. pdf  doi
openurl 
  Title Reactive molecular dynamics simulations for a better insight in plasma medicine Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 11 Issue 12 Pages 1156-1168  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this review paper, we present several examples of reactive molecular dynamics simulations, which contribute to a better understanding of the underlying mechanisms in plasma medicine on the atomic scale. This includes the interaction of important reactive oxygen plasma species with the outer cell wall of both gram-positive and gram-negative bacteria, and with lipids present in human skin. Moreover, as most biomolecules are surrounded by a liquid biofilm, the behavior of these plasma species in a liquid (water) layer is presented as well. Finally, a perspective for future atomic scale modeling studies is given, in the field of plasma medicine in general, and for cancer treatment in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000346034700007 Publication Date 2014-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 22 Open Access  
  Notes Approved (up) Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:121269 Serial 2822  
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 755-763  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000359672400007 Publication Date 2015-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 63 Open Access  
  Notes Approved (up) Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:126822 Serial 799  
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 162-171  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000350275400005 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 18 Open Access  
  Notes Approved (up) Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:123540 Serial 1589  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations Type A1 Journal article
  Year 2017 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res  
  Volume 50 Issue 50 Pages 796-804  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The continuous miniaturization of nanodevices, such as transistors, solar cells, and optical fibers, requires the controlled synthesis of (ultra)thin gate oxides (<10 nm), including Si gate-oxide (SiO2) with high quality at the atomic scale. Traditional thermal growth of SiO2 on planar Si surfaces, however, does not allow one to obtain such ultrathin oxide due to either the high oxygen diffusivity at high temperature or the very low sticking ability of incident oxygen at low temperature. Two recent techniques, both operative at low (room) temperature, have been put forward to overcome these obstacles: (i) hyperthermal oxidation of planar Si surfaces and (ii) thermal or plasma-assisted oxidation of nonplanar Si surfaces, including Si nanowires (SiNWs). These nanooxidation processes are, however, often difficult to study experimentally, due to the key intermediate processes taking place on the nanosecond time scale.

In this Account, these Si nano-oxidation techniques are discussed from a computational point of view and compared to both hyperthermal and thermal oxidation experiments, as well as to well-known models of thermal oxidation, including the Deal−Grove, Cabrera−Mott, and Kao models and several alternative mechanisms. In our studies, we use reactive molecular dynamics (MD) and hybrid MD/Monte Carlo simulation techniques, applying the Reax force field. The incident energy of oxygen species is chosen in the range of 1−5 eV in hyperthermal oxidation of planar Si surfaces in order to prevent energy-induced damage. It turns out that hyperthermal growth allows for two growth modes, where the ultrathin oxide thickness depends on either (1) only the kinetic energy of the incident oxygen species at a growth temperature below Ttrans = 600 K, or (2) both the incident energy and the growth temperature at a growth temperature above Ttrans. These modes are specific to such ultrathin oxides, and are not observed in traditional thermal oxidation, nor theoretically considered by already existing models. In the case of thermal or plasma-assisted oxidation of small Si nanowires, on the other hand, the thickness of the ultrathin oxide is a function of the growth temperature and the nanowire diameter. Below Ttrans, which varies with the nanowire diameter, partially oxidized SiNW are formed, whereas complete oxidation to a SiO2 nanowire occurs only above Ttrans. In both nano-oxidation processes at lower temperature (T < Ttrans), final sandwich c-Si|SiOx|a-SiO2 structures are obtained due to a competition between overcoming the energy barrier to penetrate into Si subsurface layers and the compressive stress (∼2−3 GPa) at the Si crystal/oxide interface. The overall atomic-simulation results strongly indicate that the thickness of the intermediate SiOx (x < 2) region is very limited (∼0.5 nm) and constant irrespective of oxidation parameters. Thus, control over the ultrathin SiO2 thickness with good quality is indeed possible by accurately tuning the oxidant energy, oxidation temperature and surface curvature.

In general, we discuss and put in perspective these two oxidation mechanisms for obtaining controllable ultrathin gate-oxide films, offering a new route toward the fabrication of nanodevices via selective nano-oxidation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399859800016 Publication Date 2017-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 5 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12M1315N ; Approved (up) Most recent IF: 20.268  
  Call Number PLASMANT @ plasmant @ c:irua:142638 Serial 4561  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved (up) Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved (up) Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798  
Permanent link to this record
 

 
Author Kelly, S.; Verheyen, C.; Cowley, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma Type A1 Journal article
  Year 2022 Publication Chem Abbreviated Journal Chem  
  Volume 8 Issue 10 Pages 2797-2816  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explorethepotentialofmicrowave(MW)-plasma-based in situ

utilizationoftheMartianatmospherewithafocusonthenovelpos-

sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant

plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-

ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource

UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-

verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation

facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.

PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and

1.25g/h,respectively,arerecordedwithcorrespondingenergy

costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2

productionratesare 30 timeshigherthanthosedemonstrated

by MOXIE,whiletheNOx production raterepresentsan 7% fixa-

tionoftheN2 fraction presentintheMartian atmosphere.MW-

plasma-basedconversionthereforeshowsgreatpotentialasan in

situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-

neouslyfixesN2 and producesO2.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000875346600005 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 23.5 Times cited Open Access OpenAccess  
  Notes the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. Approved (up) Most recent IF: 23.5  
  Call Number PLASMANT @ plasmant @c:irua:192174 Serial 7243  
Permanent link to this record
 

 
Author Lin, A.; Sahun, M.; Biscop, E.; Verswyvel, H.; De Waele, J.; De Backer, J.; Theys, C.; Cuypers, B.; Laukens, K.; Berghe, W.V.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma Type A1 Journal article
  Year 2023 Publication Drug resistance updates Abbreviated Journal  
  Volume 67 Issue Pages 100914  
  Keywords A1 Journal article; Pharmacology. Therapy; ADReM Data Lab (ADReM); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the firstever

NTP-resistant cell line derived from sensitive melanoma cells (A375).

Methods: Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation

against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially

expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification,

and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were

used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via

Annexin V, Caspase 3/7, and lipid peroxidation analysis.

Results: Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell

line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic

analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis

revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and

ferroptosis.

Conclusions: A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in

NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000925156500001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1368-7646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 24.3 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Dr. Christophe Deben and Ms. Hannah Zaryouh (Center for Oncological Research, University of Antwerp) for the use and their help with the D300e Digital Dispenser and Spark® Cyto, as well as Ms. Rapha¨elle Corremans (Laboratory Pathophysiology, University of Antwerp) for the use of their lactate meter. The authors would also like to acknowledge the help from Ms. Tias Verhezen and Mr. Cyrus Akbari, who was involved at the start of the project but could not continue due to the COVID-19 pandemic. The authors also acknowledge the resources and services provided by the VSC (Flemish Supercomputer Center). This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr. Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on Therapeutical applications of Cold Plasmas (CA20114; PlasTHER). Approved (up) Most recent IF: 24.3; 2023 IF: 10.906  
  Call Number PLASMANT @ plasmant @c:irua:193167 Serial 7240  
Permanent link to this record
 

 
Author Snoeckx, R.; Heijkers, S.; Van Wesenbeeck, K.; Lenaerts, S.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2conversion in a dielectric barrier discharge plasma: N2in the mix as a helping hand or problematic impurity? Type A1 Journal article
  Year 2016 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci  
  Volume 9 Issue 9 Pages 999-1011  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Carbon dioxide conversion and utilization has gained significant interest over the years. A novel gas conversion technique with great potential in this area is plasma technology. A lot of research has already been performed, but mostly on pure gases. In reality, N2 will always be an important impurity in effluent

gases. Therefore, we performed an extensive combined experimental and computational study on the effect of N2 in the range of 1–98% on CO2 splitting in dielectric barrier discharge (DBD) plasma. The presence of up to 50% N2 in the mixture barely influences the effective (or overall) CO2 conversion and energy efficiency, because the N2 metastable molecules enhance the absolute CO2 conversion, and this compensates for the lower CO2 fraction in the mixture. Higher N2 fractions, however, cause a drop in the CO2 conversion and energy efficiency. Moreover, in the entire CO2/N2 mixing ratio, several harmful compounds, i.e., N2O and NOx compounds, are produced in the range of several 100 ppm. The reaction pathways for the formation of these compounds are explained based on a kinetic analysis, which allows proposing solutions on how to prevent the formation of these harmful compounds.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372243600030 Publication Date 2015-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 68 Open Access  
  Notes The authors acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved (up) Most recent IF: 29.518  
  Call Number c:irua:133169 Serial 4020  
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. url  doi
openurl 
  Title From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal article
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume 14 Issue 5 Pages 2520-2534  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based NO<sub>X</sub>synthesis<italic>via</italic>the Birkeland–Eyde process was one of the first industrial nitrogen fixation methods. However, this technology never played a dominant role for nitrogen fixation, due to the invention of the Haber–Bosch process. Recently, nitrogen fixation by plasma technology has gained significant interest again, due to the emergence of low cost, renewable electricity. We first present a short historical background of plasma-based NO<sub>X</sub>synthesis. Thereafter, we discuss the reported performance for plasma-based NO<sub>X</sub>synthesis in various types of plasma reactors, along with the current understanding regarding the reaction mechanisms in the plasma phase, as well as on a catalytic surface. Finally, we benchmark the plasma-based NO<sub>X</sub>synthesis process with the electrolysis-based Haber–Bosch process combined with the Ostwald process, in terms of the investment cost and energy consumption. This analysis shows that the energy consumption for NO<sub>X</sub>synthesis with plasma technology is almost competitive with the commercial process with its current best value of 2.4 MJ mol N<sup>−1</sup>, which is required to decrease further to about 0.7 MJ mol N<sup>−1</sup>in order to become fully competitive. This may be accomplished through further plasma reactor optimization and effective plasma–catalyst coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000639255800001 Publication Date 2021-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; This research was supported by the TKI-Energie from Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Ministry of Economic Affairs and Climate Policy, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). Approved (up) Most recent IF: 29.518  
  Call Number PLASMANT @ plasmant @c:irua:178173 Serial 6763  
Permanent link to this record
 

 
Author Gao, M.; Zhang, Y.; Wang, H.; Guo, B.; Zhang, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges Type A1 Journal article
  Year 2018 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 8 Issue 6 Pages 248  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N2 and O2 compositions. Our results reveal that both a change of the driving voltage and gas mixture can induce mode transition. Upon increasing voltage, a mode transition from hybrid (volume+surface) discharge to pure surface discharge occurs, because the charged species can escape much more easily to the beads and charge the bead surface due to the strong electric field at high driving voltage. This significant surface charging will further enhance the tangential component of the electric field along the dielectric bead surface, yielding surface ionization waves (SIWs). The SIWs will give rise to a high concentration of reactive species on the surface, and thus possibly enhance the surface activity of the beads, which might be of interest for plasma catalysis. Indeed, electron impact excitation and ionization mainly take place near the bead surface. In addition, the propagation speed of SIWs becomes faster with increasing N2 content in the gas mixture, and slower with increasing O2 content, due to the loss of electrons by attachment to O2

molecules. Indeed, the negative O-2 ion density produced by electron impact attachment is much higher than the electron and positive O+2 ion density. The different ionization rates between N2 and O2 gases will create different amounts of electrons and ions on the dielectric bead surface, which might also have effects in plasma catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436128600027 Publication Date 2018-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 7 Open Access OpenAccess  
  Notes The authors are very grateful to Wei Jiang for the useful discussions on the particle-incell/ Monte-Carlo collision model. Approved (up) Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:152171 Serial 4991  
Permanent link to this record
 

 
Author Bogaerts, A. pdf  url
doi  openurl
  Title Editorial Catalysts: Special Issue on Plasma Catalysis Type Editorial
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 2 Pages 196  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, and CH4 conversion into higher hydrocarbons or oxygenates [...]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460702200090 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 1 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159153 Serial 5166  
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V. url  doi
openurl 
  Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 1 Pages 51  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459732000051 Publication Date 2019-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 4 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.082  
  Call Number UA @ admin @ c:irua:158666 Serial 5268  
Permanent link to this record
 

 
Author Li, S.; Ahmed, R.; Yi, Y.; Bogaerts, A. url  doi
openurl 
  Title Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
  Year 2021 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 11 Issue 5 Pages 590  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Direct oxidation of methane to methanol (DOMTM) is attractive for the increasing industrial demand of feedstock. In this review, the latest advances in heterogeneous catalysis and plasma catalysis for DOMTM are summarized, with the aim to pinpoint the differences between both, and to provide some insights into their reaction mechanisms, as well as the implications for future development of highly selective catalysts for DOMTM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000653609900001 Publication Date 2021-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited Open Access OpenAccess  
  Notes Fundamental Research Funds for the Central Universities of China, DUT18JC42 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; TOP-BOF research project of the Research Council of the University of Antwerp, 32249 ; This research was funded by the Fundamental Research Funds for the Central Universities of China (DUT18JC42), the National Natural Science Foundation of China (21503032) PetroChina Innovation Foundation (2018D-5007-0501) and the TOP-BOF research project of the Research Council of the University of Antwerp (grant ID 32249). This research was supported by the China Scholarship Council (CSC). The authors warmly acknowledge CSC for their support. Approved (up) Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:177851 Serial 6753  
Permanent link to this record
 

 
Author Gorbanev, Y.; Engelmann, Y.; van’t Veer, K.; Vlasov, E.; Ndayirinde, C.; Yi, Y.; Bals, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms Type A1 Journal article
  Year 2021 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 11 Issue 10 Pages 1230  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract N2 fixation into NH3 is one of the main processes in the chemical industry. Plasma catalysis is among the environmentally friendly alternatives to the industrial energy-intensive Haber-Bosch process. However, many questions remain open, such as the applicability of the conventional catalytic knowledge to plasma. In this work, we studied the performance of Al2O3-supported Fe, Ru, Co and Cu catalysts in plasma-catalytic NH3 synthesis in a DBD reactor. We investigated the effects of different active metals, and different ratios of the feed gas components, on the concentration and production rate of NH3, and the energy consumption of the plasma system. The results show that the trend of the metal activity (common for thermal catalysis) does not appear in the case of plasma catalysis: here, all metals exhibited similar performance. These findings are in good agreement with our recently published microkinetic model. This highlights the virtual independence of NH3 production on the metal catalyst material, thus validating the model and indicating the potential contribution of radical adsorption and Eley-Rideal reactions to the plasma-catalytic mechanism of NH3 synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000715656300001 Publication Date 2021-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 19 Open Access OpenAccess  
  Notes Catalisti, Moonshot P2C ; Research Foundation – Flanders, GoF9618n ; European Research Council, 810182 SCOPE 815128 REALNANO ; sygmaSB Approved (up) Most recent IF: 3.082  
  Call Number EMAT @ emat @c:irua:183279 Serial 6815  
Permanent link to this record
 

 
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.) url  doi
openurl 
  Title Grand challenges in low temperature plasmas Type A1 Journal article
  Year 2022 Publication Frontiers in physics Abbreviated Journal  
  Volume 10 Issue Pages 1040658-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000878212000001 Publication Date 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:192173 Serial 7267  
Permanent link to this record
 

 
Author Kumar, N.; Shaw, P.; Razzokov, J.; Yusupov, M.; Attri, P.; Uhm, H.S.; Choi, E.H.; Bogaerts, A. url  doi
openurl 
  Title Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 8 Issue 18 Pages 9887-9894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract It is generally known that antidiabetic activity is associated with an increased level of glucose uptake in adipocytes and skeletal muscle cells. However, the role of exogenous reactive oxygen and nitrogen species (RONS) in muscle development and more importantly in glucose uptake is largely unknown. We investigate the effect of RONS generated by cold atmospheric plasma (CAP) in glucose uptake. We show that the glucose uptake is significantly enhanced in differentiated L6 skeletal muscle cells after CAP treatment. We also observe a significant increase of the intracellular Ca++ and ROS level, without causing toxicity. One of the possible reasons for an elevated level of glucose uptake as well as intracellular ROS and Ca++ ions is probably the increased oxidative stress leading to glucose transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430451800036 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 1 Open Access OpenAccess  
  Notes We gratefully acknowledge nancial support from the Research Foundation – Flanders (FWO), grant numbers 12J5617N, 1200216N and from the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). We are also thankful to the Plasma Bioscience Research Center at Kwangwoon University for providing the core facilities for the experimental work as well as nancial support by the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Founda Approved (up) Most recent IF: 3.108  
  Call Number PLASMANT @ plasmant @c:irua:149564 Serial 4909  
Permanent link to this record
 

 
Author Snoeckx, R.; Zeng, Y.X.; Tu, X.; Bogaerts, A. url  doi
openurl 
  Title Plasma-based dry reforming : improving the conversion and energy efficiency in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 5 Issue 5 Pages 29799-29808  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dry reforming of methane has gained significant interest over the years. A novel reforming technique with great potential is plasma technology. One of its drawbacks, however, is energy consumption. Therefore, we performed an extensive computational study, supported by experiments, aiming to identify the influence of the operating parameters (gas mixture, power, residence time and frequency) of a dielectric barrier discharge plasma on the conversion and energy efficiency, and to investigate which of these parameters lead to the most promising results and whether these are eventually sufficient for industrial implementation. The best results, in terms of both energy efficiency and conversion, are obtained at a specific energy input (SEI) of 100 J cm−3, a 1090 CH4CO2 ratio, 10 Hz, a residence time of 1 ms, resulting in a total conversion of 84% and an energy efficiency of 8.5%. In general, increasing the CO2 content in the gas mixture leads to a higher conversion and energy efficiency. The SEI couples the effect of the power and residence time, and increasing the SEI always results in a higher conversion, but somewhat lower energy efficiencies. The effect of the frequency is more complicated: we observed that the product of frequency (f) and residence time (τ), being a measure for the total number of micro-discharge filaments which the gas molecules experience when passing through the reactor, was critical. For most cases, a higher number of filaments yields higher values for conversion and energy efficiency. To benchmark our model predictions, we also give an overview of measured conversions and energy efficiencies reported in the literature, to indicate the potential for improvement compared to the state-of-the art. Finally, we identify the limitations as well as the benefits and future possibilities of plasma technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352789500026 Publication Date 2015-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 67 Open Access  
  Notes Approved (up) Most recent IF: 3.108; 2015 IF: 3.840  
  Call Number c:irua:132577 Serial 2629  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport of cystine across xC-antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 664 Issue Pages 117-126  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461411200014 Publication Date 2019-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.165 Times cited 3 Open Access OpenAccess  
  Notes Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved (up) Most recent IF: 3.165  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 674 Issue Pages 108114  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525439700011 Publication Date 2019-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.165 Times cited Open Access  
  Notes Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved (up) Most recent IF: 3.165  
  Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372  
Permanent link to this record
 

 
Author Freund, E.; Spadola, C.; Schmidt, A.; Privat-Maldonado, A.; Bogaerts, A.; von Woedtke, T.; Weltmann, K.-D.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A.; Bekeschus, S. pdf  url
doi  openurl
  Title Risk Evaluation of EMT and Inflammation in Metastatic Pancreatic Cancer Cells Following Plasma Treatment Type A1 Journal article
  Year 2020 Publication Frontiers in physics Abbreviated Journal Front. Phys.  
  Volume 8 Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The requirements for new technologies to serve as anticancer agents go far beyond their toxicity potential. Novel applications also need to be safe on a molecular and patient level. In a broader sense, this also relates to cancer metastasis and inflammation. In a previous study, the toxicity of an atmospheric pressure argon plasma jet in four human pancreatic cancer cell lines was confirmed and plasma treatment did not promote metastasis in vitro and in ovo. Here, these results are extended by additional types of analysis and new models to validate and define on a molecular level the changes related to metastatic processes in pancreatic cancer cells following plasma treatment in vitro and in ovo. In solid tumors that were grown on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM), plasma treatment induced modest to profound apoptosis in the tissues. This, however, was not associated with a change in the expression levels of adhesion molecules, as shown using immunofluorescence of ultrathin tissue sections. Culturing of the cells detached from these solid tumors for 6d revealed a similar or smaller total growth area and expression of ZEB1, a transcription factor associated with cancer metastasis, in the plasma-treated pancreatic cancer tissues. Analysis of in vitro and in ovo supernatants of 13 different cytokines and chemokines revealed cell line-specific effects of the plasma treatment but a noticeable increase of, e.g., growth-promoting interleukin 10 was not observed. Moreover, markers of epithelial-to-mesenchymal transition (EMT), a metastasis-promoting cellular program, were investigated. Plasma-treated pancreatic cancer cells did not present an EMT-profile. Finally, a realistic 3D tumor spheroid co-culture model with pancreatic stellate cells was employed, and the invasive properties in a gel-like cellular matrix were investigated. Tumor outgrowth and spread was similar or decreased in the plasma conditions. Altogether, these results provide valuable insights into the effect of plasma treatment on metastasis-related properties of cancer cells and did not suggest EMT-promoting effects of this novel cancer therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000581086900001 Publication Date 2020-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access  
  Notes We thankfully acknowledge the technical support by Felix Niessner and Antje Janetzko. We also thank Jonas Van Audenaerde and Evelien Smits for generating the transduced cell lines used in this study. Approved (up) Most recent IF: 3.1; 2020 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:172448 Serial 6425  
Permanent link to this record
 

 
Author Bengtson, C.; Bogaerts, A. url  doi
openurl 
  Title The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling Type A1 Journal article
  Year 2021 Publication International Journal Of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 22 Issue 9 Pages 5033  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide () has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous . We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650366900001 Publication Date 2021-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.226 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.226  
  Call Number PLASMANT @ plasmant @c:irua:178123 Serial 6757  
Permanent link to this record
 

 
Author Vanraes, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Laser-induced excitation mechanisms and phase transitions in spectrochemical analysis – Review of the fundamentals Type A1 Journal article
  Year 2021 Publication Spectrochimica Acta Part B-Atomic Spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 179 Issue Pages 106091  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nowadays, lasers are commonly applied in spectrochemical analysis methods, for sampling, plasma formation or a combination of both. Despite the numerous investigations that have been performed on these applications, the underlying processes are still insufficiently understood. In order to fasten progress in the field and in honor of the lifework of professor Rick Russo, we here provide a brief overview of the fundamental mechanisms in lasermatter interaction as proposed in literature, and throw the spotlight on some aspects that have not received much attention yet. For an organized discussion, we choose laser ablation, laser desorption and the associated gaseous plasma formation as the central processes in this perspective article, based on a classification of the laserbased spectrochemical analysis techniques and the corresponding laser-matter interaction regimes. First, we put the looking glass over the excitation and thermalization mechanisms in the laser-irradiated condensed phase, for which we propose the so-called multi-plasma model. This novel model can be understood as an extension of the well-known two-temperature model, featuring multiple thermodynamic dimensions, each of which corresponds to a quasi-particle type. Next, the focus is placed on the mass transfer and ionization mechanisms, after which we shortly highlight the possible role of anisotropic and magnetic effects in the laser-excited material. We hope this perspective article motivates more fundamental research on laser-matter interaction, as a continuation of the lifework of Rick Russo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631868700005 Publication Date 2021-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited Open Access OpenAccess  
  Notes University of Antwerp; We acknowledge funding by a University of Antwerp BOF grant and by a University of Antwerp Methusalem grant. Approved (up) Most recent IF: 3.241  
  Call Number PLASMANT @ plasmant @c:irua:176876 Serial 6710  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. openurl 
  Title Calculation of crater profiles on a flat cathode in a direct current glow discharge, and comparison with experiment Type A1 Journal article
  Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 52 Issue 6 Pages 765-778  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1997XH34900009 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 42 Open Access  
  Notes Approved (up) Most recent IF: 3.241; 1997 IF: 2.448  
  Call Number UA @ lucian @ c:irua:19603 Serial 265  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. openurl 
  Title Comparison of argon and neon as discharge gases in a direct current glow discharge: a mathematical simulation Type A1 Journal article
  Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 52 Issue 5 Pages 553-566  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1997XG74100002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 13 Open Access  
  Notes Approved (up) Most recent IF: 3.241; 1997 IF: 2.448  
  Call Number UA @ lucian @ c:irua:19601 Serial 426  
Permanent link to this record
 

 
Author Bogaerts, A.; Wagner, E.; Smith, B.W.; Winefordner, J.D.; Pollmann, D.; Harrison, W.W.; Gijbels, R. openurl 
  Title Three-dimensional density profiles of sputtered atoms and ions in a direct current glow discharge: experimental study and comparison with calculations Type A1 Journal article
  Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 52 Issue 2 Pages 205-218  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1997WR97300006 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 46 Open Access  
  Notes Approved (up) Most recent IF: 3.241; 1997 IF: 2.448  
  Call Number UA @ lucian @ c:irua:19594 Serial 3648  
Permanent link to this record
 

 
Author Bogaerts, A.; Guenard, R.D.; Smith, B.W.; Winefordner, J.D.; Harrison, W.W.; Gijbels, R. openurl 
  Title Three-dimensional density profiles of the argon metastable atoms in a direct current glow discharge: experimental study and comparison with calculations Type A1 Journal article
  Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 52 Issue 2 Pages 219-229  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1997WR97300007 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 36 Open Access  
  Notes Approved (up) Most recent IF: 3.241; 1997 IF: 2.448  
  Call Number UA @ lucian @ c:irua:19598 Serial 3649  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Carman, R.J. doi  openurl
  Title Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge Type A1 Journal article
  Year 1998 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 53 Issue Pages 1679-1703  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000078046700005 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 71 Open Access  
  Notes Approved (up) Most recent IF: 3.241; 1998 IF: 2.758  
  Call Number UA @ lucian @ c:irua:24126 Serial 388  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: a mathematical simulation Type A1 Journal article
  Year 1998 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 53 Issue Pages 437-462  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000074408300006 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 46 Open Access  
  Notes Approved (up) Most recent IF: 3.241; 1998 IF: 2.758  
  Call Number UA @ lucian @ c:irua:19613 Serial 449  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Fundamental aspects and applications of glow discharge spectrometric techniques Type A1 Journal article
  Year 1998 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 53 Issue 1 Pages 1-42  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000074078200001 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 49 Open Access  
  Notes Approved (up) Most recent IF: 3.241; 1998 IF: 2.758  
  Call Number UA @ lucian @ c:irua:19612 Serial 1308  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: