toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vishwakarma, M.; Kumar, M.; Hendrickx, M.; Hadermann, J.; Singh, A.P.; Batra, Y.; Mehta, B.R. pdf  url
doi  openurl
  Title Enhancing the hydrogen evolution properties of kesterite absorber by Si-doping in the surface of CZTS thin film Type A1 Journal article
  Year 2021 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue Pages 2002124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work, the effects of Si-doping in Cu2ZnSnS4 are examined computationally and experimentally. The density functional theory calculations show that an increasing concentration of Si (from x = 0 to x = 1) yields a band gap rise due to shifting of the conduction band minimum towards higher energy states in the Cu2Zn(Sn1-xSix)S-4. CZTSiS thin film prepared by co-sputtering process shows Cu2Zn(Sn1-xSix)S-4 (Si-rich) and Cu2ZnSnS4 (S-rich) kesterite phases on the surface and in the bulk of the sample, respectively. A significant change in surface electronic properties is observed in CZTSiS thin film. Si-doping in CZTS inverts the band bending at grain-boundaries from downward to upward and the Fermi level of CZTSiS shifts upward. Further, the coating of the CdS and ZnO layer improves the photocurrent to approximate to 5.57 mA cm(-2) at -0.41 V-RHE in the CZTSiS/CdS/ZnO sample, which is 2.39 times higher than that of pure CZTS. The flat band potential increases from CZTS approximate to 0.43 V-RHE to CZTSiS/CdS/ZnO approximate to 1.31 V-RHE indicating the faster carrier separation process at the electrode-electrolyte interface in the latter sample. CdS/ZnO layers over CZTSiS significantly reduce the charge transfer resistance at the semiconductor-electrolyte interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000635804900001 Publication Date 2021-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.279  
  Call Number UA @ admin @ c:irua:177688 Serial 6780  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Direct oxidation of methane to methanol on Co embedded N-doped graphene: Comparing the role of N₂O and O₂ as oxidants Type A1 Journal article
  Year 2020 Publication Applied Catalysis A-General Abbreviated Journal Appl Catal A-Gen  
  Volume 602 Issue Pages 117716-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) In this work, the effects of N-doping into the Co-doped single vacancy (Co-SV-G) and di-vacancy graphene flake (Co-dV-G) are investigated and compared toward direct oxidation of methane to methanol (DOMM) employing two different oxidants (N2O and O-2) using density functional theory (DFT) calculation. We found that DOMM on CoN3-G utilizing the N2O molecule as oxygen-donor proceeds via a two-step reaction with low activation energies. In addition, we found that although CoN3-G might be a good catalyst for methane conversion, it can also catalyze the oxidation of methanol to CO2 and H2O due to the required low activation barriers. Moreover, the adsorption behaviors of CHx (x = 0-4) species and dehydrogenation of CHx (x = 1-4) species on CoN3-G are investigated. We concluded that CoN3-G can be used as an efficient catalyst for DOMM and N-2O reduction at ambient conditions which may serve as a guide for fabricating effective C/N catalysts in energy-related devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000554006800046 Publication Date 2020-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access  
  Notes ; This work was performed with the financial support from the Doctoral Fund of the Antwerp University (NO. BOFLP33099). All the simulations are performed on resources provided by the high-performance computing center of Antwerp University. ; Approved Most recent IF: 5.5; 2020 IF: 4.339  
  Call Number UA @ admin @ c:irua:171219 Serial 6485  
Permanent link to this record
 

 
Author Borah, R.; Gupta, S.; Mishra, L.; Chhabra, R.P. pdf  doi
openurl 
  Title Heating of liquid foods in cans: Effects of can geometry, orientation, and food rheology Type A1 Journal article
  Year 2020 Publication Journal Of Food Process Engineering Abbreviated Journal J Food Process Eng  
  Volume Issue Pages e13420-24  
  Keywords A1 Journal article; Pharmacology. Therapy; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) In this work, the effect of geometry and orientation of food cans on the heating characteristics of processed liquid foods and the resulting lethality target values as a function of the processing times have been investigated. For this purpose, the governing differential equations have been solved numerically for elliptical and cylindrical cans of varying aspect ratios in different orientations in order to delineate their effect on the heating rate (especially of the slowest heating zone [SHZ]) and lethality values over wide ranges of rheological features including shear thinning (n < 1), Newtonian (n = 1), and shear thickening (n > 1) behaviors. The flow and heat transfer characteristics were analyzed with the help of velocity vectors, isotherm contours, average Nusselt number, SHZ temperature and heat penetration parameters, and lethality target values. Also, comparisons were made in terms of the sterilization time and heat penetration parameters to identify the preferable geometries and orientations of food cans for effective heating of non-Newtonian foodstuffs. Finally, favorable conditions in terms of the shape and orientation of the can and the rheological properties have been delineated which lead to superior heating characteristics. Practical Applications Processed foodstuffs are produced in various forms ranging from that in solid, liquid, or as heterogeneous mixtures. Often such liquid and heterogeneous suspensions products are viscous non-Newtonian in character and their thermal processing (including pasteurization, sterilization, etc.) tends to be much more challenging than that of their Newtonian counterparts like air and water. This work explores heating of non-Newtonian liquid foodstuffs in cans of various shapes, geometries and in different orientations in the free convection regime. The results show that depending upon the rheological properties of the products, some orientations and/or geometries offer potential advantages in terms of shorter processing times and lethality values. This information can be of great potential in customizing the design of containers for different food products as well as of different rheological properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526147100001 Publication Date 2020-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0145-8876 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited 2 Open Access  
  Notes ; Science and Engineering Research Board, Department of Science and Technology, Government of India, New Delhi, Grant/Award Number: SB/S2/JCB-06/2014 ; Approved Most recent IF: 3; 2020 IF: 1.37  
  Call Number UA @ admin @ c:irua:168539 Serial 6532  
Permanent link to this record
 

 
Author Pollefeyt, G.; Meledin, A.; Pop, C.; Ricart, S.; Hühne, R.; Van Tendeloo, G.; Van Driessche, I. pdf  url
doi  openurl
  Title Chemical stability of YBiO3 buffer layers for implementation in YBa2Cu3O7-δ coated conductors Type A1 Journal article
  Year 2015 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 100 Issue 100 Pages 224-231  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work, the chemical and microstructural stability of YBiO3 buffer layers during the growth of YBa2Cu3O7-δ (YBCO) was studied. The superconducting YBCO films were deposited via both Pulsed Laser Deposition as well as Chemical Solution Deposition. Although excellent superconducting properties are obtained in both cases, self-field critical current densities of 3.6 and 1.2 MA/cm2 respectively, chemical instability of the YBiO3 buffer layer is observed. An elaborate transmission electron microscopy study showed that in the case of vacuum deposited YBCO, the YBiO3 becomes unstable and Bi2O3 sublimates out of the architecture. Due to this structural instability, an intermediate Y2O3 layer is obtained which maintains it microstructural orientation relation with the substrate and acts as growth template for YBCO. For chemical solution deposited YBCO, reaction of YBCO with the YBiO3 buffer layer is observed, leading to large grains of YBa2BiO6 which are pushed towards the surface of the films and strongly reduce the superconducting properties. Upon using high growth temperatures for the superconducting layer, these secondary phases decompose, which subsequently leads to Bi2O3 sublimation and a textured YBCO film which directly nucleated onto the LaAlO3 single crystal substrate. Hence, this electron microscopy study indicates that bismuth-based buffer layers systems are not suitable for implementation in coated conductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362616400023 Publication Date 2015-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.301 Times cited Open Access  
  Notes One of the authors (G.P.) would like to thank the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT) for funding. Part of this work was performed within the framework of the EuroTapes project (FP7-NMP.2011.2.2-1 Grant No. 280438), funded by the European Union. Approved Most recent IF: 5.301; 2015 IF: 4.465  
  Call Number c:irua:128757 Serial 3953  
Permanent link to this record
 

 
Author Hoat, D.M.; Duy Khanh Nguyen; Bafekry, A.; Vo Van On; Ul Haq, B.; Hoang, D.-Q.; Cocoletzi, G.H.; Rivas-Silva, J.F. pdf  doi
openurl 
  Title Developing feature-rich electronic and magnetic properties in the beta-As monolayer for spintronic and optoelectronic applications by C and Si doping : a first-principles study Type A1 Journal article
  Year 2021 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 27 Issue Pages 101534  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) In this work, the carbon (C) and silicon (Si) doping and codoping effects on beta-arsenene (As) monolayer structural, electronic, and magnetic properties have been comprehensively investigated using first-principles calculations. The studied two-dimensional (2D) materials exhibit good stability. Pristine beta-As single layer is an indirect gap semiconductor with a band gap of 1.867(2.441) eV as determined by PBE(HSE06) functional. Due to the difference in atomic size and electronic interactions, C and Si substitution induces a significant local structural distortion. Depending upon dopant concentration and doping sites, feature-rich electronic properties including non-magnetic semiconductor, magnetic semiconductor and half-metallicity may be obtained, which result from p-p interactions. High spin-polarization at the Fermi level vicinity and significant magnetism suggest As:1C, As:2C, As:1Si, As:2Si, and As:CSi systems as prospective spintronic 2D materials. While, the C-C, Si-Si, and C-Si dimer doping decreases electronic band gap, making the layer more suitable for applications in optoelectronic devices. Results presented herein may suggest an efficient approach to create novel multi-functional 2D materials from beta-As monolayer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711791100002 Publication Date 2021-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184138 Serial 6979  
Permanent link to this record
 

 
Author Wagaarachchige, J.D.; Idris, Z.; Arstad, B.; Kummamuru, N.B.; Sætre, K.A.S.; Halstensen, M.; Jens, K.-J. url  doi
openurl 
  Title Low-viscosity nonaqueous sulfolane–amine–methanol solvent blend for reversible CO2 capture Type A1 Journal article
  Year 2022 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume 61 Issue 17 Pages 5942-5951  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) In this work, the absorption–desorption performance of CO2 in six new solvent blends of amine (diisopropylamine (DPA), 2-amino-2-methyl-1-propanol (AMP), methyldiethanolamine (MDEA), diethanolamine (DEA), diisopropanolamine (DIPA), and ethanolamine (MEA)), sulfolane, and methanol has been monitored using ATR-FTIR spectroscopy. Additionally, NMR-based species confirmation and solvent viscosity analysis were done for DPA solvent samples. The identified CO2 capture products are monomethyl carbonate (MMC), carbamate, carbonate, and bicarbonate anions in different ratios. The DPA solvent formed MMC entirely with 0.88 molCO2/molamine capture capacity, 0.48 molCO2/molamine cyclic capacity, and 3.28 mPa·s CO2-loaded solvent viscosity. MEA, DEA, DIPA, and MDEA were shown to produce a low or a negligible amount of MMC while AMP occupied an intermediate position.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:199111 Serial 8895  
Permanent link to this record
 

 
Author Muret, P.; Nguyen, T.T.A.; Frangis, N.; Van Tendeloo, G.; van Landuyt, J. pdf  doi
openurl 
  Title Photoelectric and electrical responses of several erbium silicide/silicon interfaces Type A1 Journal article
  Year 1996 Publication Applied surface science T2 – International Symposium on Si Heterostructures – From Physics to Devices, SEP 11-14, 1995, IRAKLION, GREECE Abbreviated Journal Appl Surf Sci  
  Volume 102 Issue Pages 173-177  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work, photoelectric yield and electrical properties of several types of epitaxial erbium silicide on silicon Schottky diodes are studied, Different preparation conditions are used simultaneously on n- and p-Si(111) substrates for the 200 Angstrom thick silicide films. A last type of sample consists in 1.3 monolayer of epitaxial silicide with root 3 X root 3 superstructure on the Si substrate and covered by silver on the top. Photocurrent measurements are done as a function of photon energy at several temperatures. All these samples show barrier heights near 1 eV on p-type Si, even for the interface comprising only 1.3 monolayer of silicide whereas barrier heights on n-rype Si span the range from 0.28 to 0.67 eV for this last kind of sample, the sum of the barriers always exceeding the silicon band gap, These photoelectric results are confirmed by electrical characterisations, All these results show that the Fermi level is pinned 0.1 eV below the conduction band edge on p-type Si but shifts to various positions lower within the band gap on n-type Si. This fact leads to the hypothesis of a density of -7 interface states close to the charge change in the Si depletion zone from p- to n-type, namely 10(12) eV(-1) cm(-2). Although some inhomogeneities and defects at the interface are detected by electron microscopy for samples annealed at 750 degrees C, Fermi level position seems rather insensitive to the structural details of the interface while the silicide thickness plays a role on n-type Si.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996VJ86100039 Publication Date 2003-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.711 Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104392 Serial 2611  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Ghergherehchi, M.; Sarsari, I.A.; Ziabari, A.A. url  doi
openurl 
  Title Novel two-dimensional AlSb and InSb monolayers with a double-layer honeycomb structure : a first-principles study Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 34 Pages 18752-18759  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) In this work, motivated by the fabrication of an AlSb monolayer, we have focused on the electronic, mechanical and optical properties of AlSb and InSb monolayers with double-layer honeycomb structures, employing the density functional theory approach. The phonon band structure and cohesive energy confirm the stability of the XSb (X = Al and In) monolayers. The mechanical properties reveal that the XSb monolayers have a brittle nature. Using the GGA + SOC (HSE + SOC) functionals, the bandgap of the AlSb monolayer is predicted to be direct, while InSb has a metallic character using both functionals. We find that XSb (X = Al, In) two-dimensional bodies can absorb ultraviolet light. The present findings suggest several applications of AlSb and InSb monolayers in novel optical and electronic usages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000686236800001 Publication Date 2021-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:181712 Serial 7005  
Permanent link to this record
 

 
Author Cheng, K.; Degroote, S.; Leys, M.; van Daele, B.; Germain, M.; Van Tendeloo, G.; Borghs, G. doi  openurl
  Title Single crystalline GaN grown on porous Si(111) by MOVPE Type P1 Proceeding
  Year 2007 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal  
  Volume 4 Issue 6 Pages 1908-1912  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work, GaN growth on porous Si(111) will be reported. The porosity of the substrates was 30% or 50%. In the latter case, various thicknesses, from 0.6 mu m to 10 mu m, were investigated. The morphology of the GaN surfaces was analyzed by optical interference microscopy. The crystalline quality of the epitaxial layers was characterized by High Resolution X-Ray Diffraction (HR-XRD) and cross-sectional Transmission Electron Microscopy (TEM). A Full Width at Half Maximum (FWHM) of the X-ray symmetric rocking curve (0002) 2 theta – omega scan of 290 arc see was obtained for a 1 mu m thick GaN layer, which is comparable with that of GaN grown on bulk Si(111) substrates. (c) 2007 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000247421800020 Publication Date 2007-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1610-1634;1610-1642; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94664 Serial 3019  
Permanent link to this record
 

 
Author Guttmann, P.; Bittencourt, C.; Ke, X.; Van Tendeloo, G.; Umek, P.; Arcon, D.; Ewels, C.P.; Rehbein, S.; Heim, S.; Schneider, G. pdf  url
doi  openurl
  Title TXM-NEXAFS of TiO2-based nanostructures Type P1 Proceeding
  Year 2011 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1365 Issue Pages 437-440  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work, electronic properties of individual TiOx-pristine nanoribbons (NR) prepared by hydrothermal treatment of anatase TiO(2) micro-particles were studied using the HZB transmission x-ray microscope (TXM) at the BESSY II undulator beamline U41-FSGM. NEXAFS is ideally suited to study TiO(2)-based materials because both the O K-edge and Ti L-edge features are very sensitive to the local bonding environment, providing diagnostic information about the crystal structures and oxidation states of various forms of titanium oxides and sub-oxides. TXM-NEXAFS combines full-field x-ray microscopy with spectroscopy, allowing the study of the electronic structure of individual nanostructures with spatial resolution better than 25 nm and a spectral resolution of up to E/Delta E = 10000. The typical image field in TXM-NEXAFS measurements is about 10 mu m. 10 mu m, which is large compared to the individual nanoparticle. Therefore, one image stack already contains statistically significant data. In addition, the directional electric field vector ((E) over bar) of the x-rays can be used as a “search tool” for the direction of chemical bonds of the atom selected by its absorption edge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000298672400103 Publication Date 2011-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113071 Serial 3789  
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C., V; Goudarzi, A.; Ghergherehchi, M.; Shafieirad, M. url  doi
openurl 
  Title Investigation of strain and doping on the electronic properties of single layers of C₆N₆ and C₆N₈: a first principles study Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 46 Pages 27743-27751  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) In this work, by performing first-principles calculations, we explore the effects of various atom impurities on the electronic and magnetic properties of single layers of C(6)N(6)and C6N8. Our results indicate that atom doping may significantly modify the electronic properties. Surprisingly, doping Cr into a holey site of C(6)N(6)monolayer was found to exhibit a narrow band gap of 125 meV upon compression strain, considering the spin-orbit coupling effect. Also, a C atom doped in C(6)N(8)monolayer shows semi-metal nature under compression strains larger than -2%. Our results propose that Mg or Ca doped into strained C(6)N(6)may exhibit small band gaps in the range of 10-30 meV. In addition, a magnetic-to-nonmagnetic phase transition can occur under large tensile strains in the Ca doped C(6)N(8)monolayer. Our results highlight the electronic properties and magnetism of C(6)N(6)and C(6)N(8)monolayers. Our results show that the electronic properties can be effectively modified by atom doping and mechanical strain, thereby offering new possibilities to tailor the electronic and magnetic properties of C(6)N(6)and C(6)N(8)carbon nitride monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000553911800053 Publication Date 2020-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 11 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172111 Serial 6553  
Permanent link to this record
 

 
Author Zhang, S.; Van Gaens, W.; van Gessel, B.; Hofmann, S.; van Veldhuizen, E.; Bogaerts, A.; Bruggeman, P. pdf  doi
openurl 
  Title Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet : an analysis of the production and destruction mechanisms Type A1 Journal article
  Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 46 Issue 20 Pages 205202-205212  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O2, operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O3 in the core of the plasma is mainly caused by an enhanced destruction of O3 due to a large atomic oxygen density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000318546100008 Publication Date 2013-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 74 Open Access  
  Notes Approved Most recent IF: 2.588; 2013 IF: 2.521  
  Call Number UA @ lucian @ c:irua:107840 Serial 3067  
Permanent link to this record
 

 
Author Korneychuk, S.; Guzzinati, G.; Verbeeck, J. pdf  url
doi  openurl
  Title Measurement of the Indirect Band Gap of Diamond with EELS in STEM Type A1 Journal article
  Year 2018 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 215 Issue 22 Pages 1800318  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work, a simple method to measure the indirect band gap of diamond with electron energy loss spectroscopy (EELS) in transmission electron microscopy (TEM) is showed. The authors discuss the momentum space resolution achievable with EELS and the possibility of deliberately selecting specific transitions of interest. Based on a simple 2 parabolic band model of the band structure, the authors extend our predictions from the direct band gap case discussed in previous work, to the case of an indirect band gap. Finally, the authors point out the emerging possibility to partly reconstruct the band structure with EELS exploiting our simplified model of inelastic scattering and support it with experiments on diamond.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450818100004 Publication Date 2018-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 6 Open Access Not_Open_Access  
  Notes S.K. and J.V. acknowledge funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. Financial support via the Methusalem “NANO” network is acknowledged. G.G. acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint”; Methusalem “NANO” network; Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO); Hercules fund from the Flemish Government; Approved Most recent IF: 1.775  
  Call Number EMAT @ emat @UA @ admin @ c:irua:155402 Serial 5138  
Permanent link to this record
 

 
Author Gonnissen, J.; De Backer, A.; den Dekker, A.J.; Sijbers, J.; Van Aert, S. url  doi
openurl 
  Title Atom-counting in High Resolution Electron Microscopy: TEM or STEM – that's the question Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 174 Issue 174 Pages 112-120  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (down) In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403342200013 Publication Date 2016-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 2 Open Access  
  Notes The authors gratefully acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, G.0374.13N, and WO.010.16N) and a postdoctoral grant to A. De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under Grant agreement no. 312483 (ESTEEM2). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:137102 Serial 4315  
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D. pdf  doi
openurl 
  Title Relevance of the cell membrane modelling for accurate analysis of the pulsed electric field-induced electroporation Type P1 Proceeding
  Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June 2019, Rome, Italy Abbreviated Journal  
  Volume Issue Pages 2985-2991  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) In this work, a nonlinear dispersive multiphysic model based on Maxwell and asymptotic Smoluchowsky equations has been developed to analyze the electroporation phenomenon induced by pulsed electric field on biological cells. The irregular plasma membrane geometry has been modeled by incorporating in the numerical algorithm the Gielis superformula as well as the dielectric dispersion of the plasma membrane has been modeled using the multi-relaxation Debye-based relationship. The study has been carried out with the aim to compare our model implementing a thin plasma membrane with the simplified model in which the plasma membrane is modeled as a distributed impedance boundary condition. The numerical analysis has been performed exposing the cell to external electric pulses having rectangular shapes. By an inspection of the obtained results, significant differences can be highlighted between the two models confirming the need to incorporate the effective thin membrane into the numerical algorithm to well predict the cell response to the pulsed electric fields in terms of transmembrane voltages and pore densities, especially when the cell is exposed to external nanosecond pulses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000550769302158 Publication Date 2020-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:169171 Serial 8469  
Permanent link to this record
 

 
Author Wang, D.; Liu, Y.; Ngo, H.H.; Zhang, C.; Yang, Q.; Peng, L.; He, D.; Zeng, G.; Li, X.; Ni, B.-J. pdf  url
doi  openurl
  Title Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation Type A1 Journal article
  Year 2017 Publication Bioresource technology Abbreviated Journal  
  Volume 238 Issue Pages 343-351  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%.However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402485500042 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144155 Serial 7489  
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A. pdf  doi
openurl 
  Title Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma Type A1 Journal article
  Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 22 Issue 1 Pages 015017-15018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) In this work, a hybrid model is used to investigate the effect of different gas ratios on the Si etching and polymer film deposition characteristics in an Ar/CF4 inductively coupled plasma. The influence of the surface processes on the bulk plasma properties is studied, and also the spatial characteristics of important gas phase and etched species. The densities of F and CF2 decrease when the surface module is included in the simulations, due to the species consumption caused by etching and polymer deposition. The influence of the surface processes on the bulk plasma depends on the Ar/CF4 gas ratio. The deposited polymer becomes thicker at high CF4 content because of more abundant CFx radicals. As a result of the competition between the polymer thickness and the F flux, the etch rate first increases and then decreases upon increasing the CF4 content. The electron properties, more specifically the electron density profile, affect the Si etch characteristics substantially by determining the radical density and flux profiles. In fact, the radial profile of the etch rate is more uniform at low CF4 content since the electron density has a smooth distribution. At high CF4 content, the etch rate is less uniform with a minimum halfway along the wafer radius, because the electron density distribution is more localized. Therefore, our calculations predict that it is better to work at relatively high Ar/CF4 gas ratios, in order to obtain high etch rate and good profile uniformity for etch applications. This, in fact, corresponds to the typical experimental etch conditions in Ar/CF4 gas mixtures as found in the literature, where Ar is typically present at a much higher concentration than CF4.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000314966300022 Publication Date 2012-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2013 IF: 3.056  
  Call Number UA @ lucian @ c:irua:102583 Serial 1320  
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P. pdf  doi
openurl 
  Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
  Year 2012 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 9 Pages 1675-1682  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308942100009 Publication Date 2012-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 31 Open Access  
  Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364  
Permanent link to this record
 

 
Author Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X. pdf  url
doi  openurl
  Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 345 Issue 345 Pages 67-78  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Sequoia Place of Publication Lausanne Editor  
  Language Wos 000430696500008 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 25 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:151450 Serial 5036  
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Three-dimensional modeling of energy transport in a gliding arc discharge in argon Type A1 Journal Article
  Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 12 Pages 125011  
  Keywords A1 Journal Article; gliding arc discharge, sliding arc discharge, energy transport, fluid plasma model, atmospheric pressure plasmas; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (down) In this work we study energy transport in a gliding arc discharge with two diverging flat

electrodes in argon gas at atmospheric pressure. The discharge is ignited at the shortest electrode

gap and it is pushed downstream by a forced gas flow. The current values considered are

relatively low and therefore a non-equilibrium plasma is produced. We consider two cases, i.e.

with high and low discharge current (28 mA and 2.8mA), and a constant gas flow of 10 lmin −1 ,

with a significant turbulent component to the velocity. The study presents an analysis of the

various energy transport mechanisms responsible for the redistribution of Joule heating to the

plasma species and the moving background gas. The objective of this work is to provide a

general understanding of the role of the different energy transport mechanisms in arc formation

and sustainment, which can be used to improve existing or new discharge designs. The work is

based on a three-dimensional numerical model, combining a fluid plasma model, the shear stress

transport Reynolds averaged Navier–Stokes turbulent gas flow model, and a model for gas

thermal balance. The obtained results show that at higher current the discharge is constricted

within a thin plasma column several hundred kelvin above room temperature, while in the low-

current discharge the combination of intense convective cooling and low Joule heating prevents

discharge contraction and the plasma column evolves to a static non-moving diffusive plasma,

continuously cooled by the flowing gas. As a result, the energy transport in the two cases is

determined by different mechanisms. At higher current and a constricted plasma column, the

plasma column is cooled mainly by turbulent transport, while at low current and an unconstricted

plasma, the major cooling mechanism is energy transport due to non-turbulent gas convection. In

general, the study also demonstrates the importance of turbulent energy transport in

redistributing the Joule heating in the arc and its significant role in arc cooling and the formation

of the gas temperature profile. In general, the turbulent energy transport lowers the average gas

temperature in the arc, thus allowing additional control of thermal non-equilibrium in the

discharge.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454555600005 Publication Date 2018-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the European Regional Devel- opment Fund within the Operational Programme ’Science and Education for Smart Growth 2014 – 2020’ under the Project CoE ’National center of mechatronics and clean technologies’ BG05M2OP001-1.001-0008-C01, and by the Flemish Fund for Scientific Research (FWO); grant no G.0383.16N. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:155973 Serial 5140  
Permanent link to this record
 

 
Author Romano-Rodriguez, A.; Perez-Rodriguez, A.; Serre, C.; van Landuyt, J.; et al. openurl 
  Title Epitaxial growth of \beta-SiC on ion-beam synthesized \beta-SiC : structural characterization Type A1 Journal article
  Year 2000 Publication Materials science forum T2 – International Conference on Silicon Carbide and Related Materials, OCT 10-15, 1999, RES TRIANGLE PK, NORTH CAROLINA Abbreviated Journal Mater Sci Forum  
  Volume 338-3 Issue Pages 309-312  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work we present for the first time, to our knowledge, the CVD epitaxial growth of beta -SiC using an ion beam synthesized (IBS) beta -SiC layer as seed, which has been formed by multiple implantation into Si wafers at 500 degreesC. The ion beam synthesized continuous layer is constituted by beta -SiC nanocrystals that are well oriented relative to the silicon substrate. Comparison of the epitaxial growth on these samples with that on silicon test samples, both on and off-axis, is performed. The results show that the epitaxial growth can be achieved on the IBS samples without the need of the carbonization step and that the structural quality of the CVD layer is comparable to that obtained on a carbonized silicon sample. Improvement of the quality of the deposited layer is proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Trans tech publications ltd Place of Publication Zurich-uetikon Editor  
  Language Wos 000165996700075 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-5476 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:104262 Serial 1071  
Permanent link to this record
 

 
Author Dingenen, F.; Borah, R.; Ninakanti, R.; Verbruggen, S.W. url  doi
openurl 
  Title Probing oxygen activation on plasmonic photocatalysts Type A1 Journal article
  Year 2022 Publication Frontiers in Chemistry Abbreviated Journal Front Chem  
  Volume 10 Issue Pages 988542-10  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) In this work we present an assay to probe the oxygen activation rate on plasmonic nanoparticles under visible light. Using a superoxide-specific XTT molecular probe, the oxygen activation rate on bimetallic gold-silver “rainbow” nanoparticles with a broadband visible light (> 420 nm) response, is determined at different light intensities by measuring its conversion into the colored XTT-formazan derivate. A kinetic model is applied to enable a quantitative estimation of the rate constant, and is shown to match almost perfectly with the experimental data. Next, the broadband visible light driven oxygen activation capacity of this plasmonic rainbow system, supported on nano-sized SiO 2 , is demonstrated towards the oxidation of aniline to azobenzene in DMSO. To conclude, a brief theoretical discussion is devoted to the possible mechanisms behind such plasmon-driven reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000860818400001 Publication Date 2022-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.5  
  Call Number UA @ admin @ c:irua:190868 Serial 7197  
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J. url  doi
openurl 
  Title Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 134108  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work we present an alternative way to look at electron diffraction in a transmission electron microscope.

Instead of writing the scattering amplitude in Fourier space as a set of plane waves,we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362893100002 Publication Date 2015-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes The authors acknowledge support from the FWO (As- pirant Fonds Wetenschappelijk Onderzoek–Vlaanderen), the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2, and ERC Starting Grant No. 278510 VORTEX; esteem2jra1; ECASJO; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:129417 c:irua:129417UA @ admin @ c:irua:129417 Serial 4089  
Permanent link to this record
 

 
Author Sels, D.; Sorée, B.; Groeseneken, G. doi  openurl
  Title Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor Type A1 Journal article
  Year 2011 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 10 Issue 1 Pages 216-221  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (down) In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000300735800021 Publication Date 2011-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 12 Open Access  
  Notes ; ; Approved Most recent IF: 1.526; 2011 IF: 1.211  
  Call Number UA @ lucian @ c:irua:89501 Serial 2772  
Permanent link to this record
 

 
Author Govaerts, K.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title van der Waals bonding and the quasiparticle band structure of SnO from first principles Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 23 Pages 235210-235217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (down) In this work we have investigated the structural and electronic properties of SnO, which is built up from layers kept together by van der Waals (vdW) forces. The combination of a vdW functional within density functional theory (DFT) and quasiparticle band structure calculations within the GW approximation provides accurate values for the lattice parameters, atomic positions, and the electronic band structure including the fundamental (indirect) and the optical (direct) band gap without the need of experimental or empirical input. A systematic comparison is made between different levels of self-consistency within the GW approach {following the scheme of Shishkin et al. [Phys. Rev. B 75, 235102 (2007)]} and the results are compared with DFT and hybrid functional results. Furthermore, the effect of the vdW-corrected functional as a starting point for the GW calculation of the band gap has been investigated. Finally, we studied the effect of the vdW functional on the electron charge density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000321061000003 Publication Date 2013-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes IWT; FWO; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109596 Serial 3835  
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages 065023  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368117100028 Publication Date 2015-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 12 Open Access  
  Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:129214 Serial 3952  
Permanent link to this record
 

 
Author Slaets, J.; Loenders, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion Type A1 Journal article
  Year 2024 Publication Fuel Abbreviated Journal Fuel  
  Volume 360 Issue Pages 130650  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) In this work we evaluate the chemical kinetics of dry reforming of methane in warm plasmas (1000–4000 K) using modelling with a newly developed chemistry set, for a broad range of parameters (temperature, power density and CO2/CH4 ratio). We compare the model against thermodynamic equilibrium concentrations, serving as validation of the thermal chemical kinetics. Our model reveals that plasma-specific reactions (i.e., electron impact collisions) accelerate the kinetics compared to thermal conversion, rather than altering the overall kinetics pathways and intermediate products, for gas temperatures below 2000 K. For higher temperatures, the kinetics are dominated by heavy species collisions and are strictly thermal, with negligible influence of the electrons and ions on the overall kinetics. When studying the effects of different gas mixtures on the kinetics, we identify important intermediate species, side reactions and side products. The use of excess CO2 leads to H2O formation, at the expense of H2 formation, and the CO2 conversion itself is limited, only approaching full conversion near 4000 K. In contrast, full conversion of both reactants is only kinetically limited for mixtures with excess CH4, which also gives rise to the formation of C2H2, alongside syngas. Within the given parameter space, our model predicts the 30/70 ratio of CO2/CH4 to be the most optimal for syngas formation with a H2/CO ratio of 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138077700001 Publication Date 2023-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project), the Catalisti-ICON project BluePlasma (Project No. HBC.2022.0445), the FWO-SBO project PlasMaCatDESIGN (FWO Grant ID S001619N), the Independent Research Fund Denmark (Project No. 0217-00231B) and through long-term structural funding (Methusalem). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. We also thank Bart Wanten, Roel Michiels, Pepijn Heirman, Claudia Verheyen, dr. Senne Van Alphen, dr. Elise Vervloessem, dr. Kevin van ’t Veer, dr. Joshua Boothroyd, dr. Omar Biondo and dr. Eduardo Morais for their expertise and feedback regarding the kinetics scheme. Approved Most recent IF: 7.4; 2024 IF: 4.601  
  Call Number PLASMANT @ plasmant @c:irua:201669 Serial 8973  
Permanent link to this record
 

 
Author Paolella, A.; Bertoni, G.; Hovington, P.; Feng, Z.; Flacau, R.; Prato, M.; Colombo, M.; Marras, S.; Manna, L.; Turner, S.; Van Tendeloo, G.; Guerfi, A.; Demopoulos, G.P.; Zaghib, K.; pdf  url
doi  openurl
  Title Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4 Type A1 Journal article
  Year 2015 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 16 Issue 16 Pages 256-267  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work we elucidate the elimination of mechanism Fe-antisite defects in lithium iron phosphate (LiFePO4) during the hydrothermal synthesis. Compelling evidence of this effect is provided by combining Neutron Powder Diffraction (NPD), High Resolution (Scanning) Transmission Electron Microscopy (HR-(S)TEM), Electron Energy Loss Spectroscopy (EELS), X-Ray Photoelectron Spectroscopy (XPS) and calculations. We found: i) the first intermediate vivianite inevitably creates Fe-antisite defects in LiFePO4; ii) the removal of these antisite defects by cation exchange is assisted by a nanometer-thick amorphous layer, rich in Li, that enwraps the LiFePO4 crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000364579300027 Publication Date 2015-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 27 Open Access  
  Notes The authorswanttoacknowledgeVincentGariepy,Cathe- rine Gagnon,JulieTrottier,DanielClement,Dr.CyrilFaure of IREQ,Dr.GaiaTomaselloofInstitutfürTheoretische PhysikFreieUniversitätBerlinandProf.MichelArmandof CICenergigune forhelpfuldiscussionsandtechnical supports. Approved Most recent IF: 12.343; 2015 IF: 10.325  
  Call Number c:irua:127688 Serial 296  
Permanent link to this record
 

 
Author El-Gogary, R.I.; Rubio, N.; Wang, J.T.W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T.; doi  openurl
  Title Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 2 Pages 1384-1401  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and H-1 NMR studies. The PEG and folk acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by He La cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in He La or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs in vivo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332059200032 Publication Date 2014-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 144 Open Access Not_Open_Access  
  Notes 290023 Raddel; 262348 Esmi; Iap-Pai Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:115862 Serial 2670  
Permanent link to this record
 

 
Author Osca, J.; Sorée, B. doi  openurl
  Title Skyrmion spin transfer torque due to current confined in a nanowire Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 12 Pages 125436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) In this work we compute the torque field present in a ferromagnet in contact with a metallic nanowire when a skyrmion is present. If the nanowire is narrow enough, then the current is carried by a single conduction band. In this regime the classical torque model breaks down and we show that a skyrmion driven by spin transfer torque moves in a different direction than predicted by the classical model. However, the amount of charge current required to move a skyrmion with a certain velocity in the single-band regime is similar to a classical model of torque where it is implicitly assumed current transport by many conduction bands. The single-band regime is more efficient creating spin current from charge current because of the perfect polarization of the single band but is less efficient creating torque from spin current. Nevertheless, it is possible to take profit of the single-band regime to move skyrmions even with no net charge or spin current flowing between the device contacts. We have also been able to recover the classical limit considering an ensemble of only a few electronic states. In this limit we have discovered that electron diffusion needs to be considered even in ballistic nanowires due the effect of the skyrmion structure on the electron current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000573775300004 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes ; The authors thanks Llorenc Serra for useful discussion on the conduction electron quantum model. We also want to show gratitude to Dimitrios Andrikopoulos for sharing his knowledge about the available bibliography and to F. J. P. van Duijn for his comments on earlier versions of this manuscript. We acknowledge the Horizon 2020 project SKYTOP “Skyrmion-Topological Insulator and Weyl Semimetal Technology” (FETPROACT-2018-01, No. 824123). Finally, J.O. also acknowledges the postdoctoral fellowship provided by KU Leuven. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:172727 Serial 6604  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: