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In this work, we show a simple method to measure the indirect 
band gap of diamond with EELS in TEM. We discuss the 
momentum space resolution achievable with EELS and the 
possibility of deliberately selecting specific transitions of interest. 
Based on a simple 2 parabolic band model of the band structure, 

we extend our predictions from the direct band gap case discussed 
in previous work, to the case of an indirect band gap. Finally, we 
point out the emerging possibility to partly reconstruct the band 
structure with EELS exploiting our simplified model of inelastic 
scattering and support it with experiments on diamond.  
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1 Introduction Electron energy loss spectroscopy 

(EELS) in transmission electron microscopy (TEM) is 

widely used to determine the composition and chemical 

state of materials down to their atomic scale. Moreover, 
EELS is a well-established tool to study the dielectric re-

sponse of materials, for instance revealing plasmons in me-

tallic structures or band gaps in semiconductors [1–3]. The 

chief advantage of EELS is its high spatial resolution which 

surpasses most of the existing techniques especially those 

based on light optics. However, its use to study dielectric 

properties is hampered by existing ambiguities in the data 

interpretation. There are two major challenges in low-loss 

EELS, the first one being the deciphering of the spectra and 

linking each peak to its related transition in the 3D band 

structure. The difficulty lays in the nature of the process - an 
electron of the primary beam inelastically interacts with a 

specimen promoting electrons in the material to higher un-

occupied levels. Therefore, in a first approximation, EELS 

spectra represent only the joint density of states between oc-

cupied and unoccupied levels. This is both valid for the 

core-loss (excitation of inner shell electrons) and low loss 

(e.g. interband transitions) spectral ranges and means that it 

is impossible to directly reconstruct the band structure just 

from the EELS spectra alone. Moreover, the inelastic inter-

action between beam and sample can transfer energy and 

momentum, and hence the transition between valence and 

conduction bands can have momentum transfer which is not 
the case for optical methods. This further complicates the 

interpretation of the spectra considerably. The only easily 

interpretable feature is the onset of a direct band gap – as it 

forms the shortest transition from the highest point of the 

valence band to the lowest point of the conduction band.     

The second challenge is caused by unwanted inter-

actions of the accelerated electron beam with the sample 

such as the emission of Cherenkov radiation and the excita-

tion of surface guided modes which constitute ‘parasitic’ 
losses, often superimposed with the band gap signal and 

which complicate the retrieval of the band gap value. How-

ever, this second issue has been thoroughly discussed in  lit-

erature [4,5] and due to the very narrow angular distribution 

of the unwanted losses, the best technique to overcome this 

problem in samples thicker than 5-10 nm is to acquire spec-

tra in an off-axis condition [6]. 

In this work, we concentrate on exploring the limi-

tations of EELS in terms of band structure investigation. As 

EELS spectra represent only the joint density of states, a ref-

erence to any absolute energy level is lacking and it is im-

possible to simultaneously recreate valence and conduction 
energy levels without some prior knowledge, for example, 

the energy of the highest point of the valence band. Despite 

this limitation, we aim to demonstrate here that EELS can 

still be used to measure the indirect band gaps in diamond 

as well as other specific transitions in the band structure.  

2 Experiment  Spatially resolved EELS measurements 

are commonly performed by operating a transmission elec-

tron microscope in scanning mode (STEM). In this mode, a 

focused electron beam scans over the sample while the 

amount of electrons scattered in a chosen angular range is 

recorded point by point, allowing to obtain local information 

on structure and composition. Nowadays, atomic resolution 
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can be routinely achieved in STEM imaging but the high 
spatial resolution comes at the expense of a reduced resolu-

tion in the transferred momentum, related to the uncertainty 

principle. Poor momentum resolution means that we acquire 

information about many possible interband transitions at 

once, in each single spectrum. As the momentum change q 

of an inelastically scattered beam electron is transferred to a 

momentum change in the sample, via e.g. an interband tran-

sition of the crystal electrons, and as the probability for ine-

lastic scattering events decreases rapidly for increasing q (as 

discussed further, see eq.15), indirect transitions requiring 

high momentum transfer q are often not detectable in the 
presence of other signals. Therefore, specific momentum 

transfer selection and good momentum resolution are re-

quired in order to pick up only certain specific transitions, 

for example, the indirect band gap in diamond. 

The question is then: how can this be achieved in 

the experiment? Let’s illustrate the idea starting with the de-

scription of our experimental set-up. When a focused elec-

tron beam scans over the crystalline sample, it is diffracted 

by the crystal and forms a so-called convergent beam elec-

tron diffraction (CBED) pattern in the detection plane. The 

EELS spectrometer entrance is positioned in this plane and 

the momentum resolution is determined by the combination 
of the relative size of this entrance aperture expressed by the 

semi-collection angle β and the convolution with the semi-

convergence angle of the probe α. There are a few conse-

quences following from this set-up that should be pointed 

out: 

(1) The CBED pattern can be approximated as a convo-

lution of a conventional electron diffraction pattern of the 

sample with the incoming momentum distribution. Elas-

tically scattered electrons are confined to the resulting dif-

fracted CBED disks. Parasitic losses are, as has been shown 

before [7], present only in a narrow angular range from any 
elastically scattered electron direction, and hence are pre-

sent only in a region of a few tens of µrad larger than the 

elastic CBED discs. Inelastically scattered electrons can 

scatter further outside the elastic regions, but the probability 

decreases rapidly with scattering angle as described by 

equation (16). Due to the high probability for multiple elas-

tic scattering, and the low probability of multiple inelastic 

scattering we assume single inelastic scattering. This allows 

us to model the angular distribution as a convolution of the 

multiple elastic scattering CBED discs with the angular dis-

tribution of a single inelastic event. 

(2) Momentum transfer 𝒒 has a parallel and perpendic-

ular component (figure 1b). 𝒒⊥ lays in the diffraction plane 

and can be determined through inelastic scattering angle as 

𝒒⊥ = 𝒌𝟎𝜃 and 𝒒∥ relates to the energy loss and can be ex-

pressed as 𝒒∥ = 𝒌𝟎𝜃𝐸 , where 𝜃𝐸 is the so-called character-

istic scattering angle [8]. Considering that losses of interest 

in this manuscript are in the few eV range, 𝒒∥ is very small 

with respect to any features in the first BZ. For instance, for 

 
Figure 1 a. Scheme of the experiment in STEM mode. A con-

vergent electron beam is directed on the sample, where it under-
goes elastic (Bragg) and inelastic scattering. A spectrometer with 

a small acceptance angle collects scattered electron close to a cho-
sen scattering angle. α and β indicate the convergence and ac-
ceptance semi-angle respectively. b. Vectorial relations between 
initial momentum k of the electron of the primary beam, final mo-
mentum k’ and momentum transfer q. c. Scheme of the boundaries 
of the slice of the first BZ in case of parallel beam illumination 
marking the main symmetry points Γ, Χ, K and L of interest and 
the symmetry line Δ between Γ-Χ. d. The simulated [9] CBED pat-

tern of diamond in [110] crystallographic orientation at 80 keV 
with the thickness of 35 nm and convergence angle α=1 mrad used 
in the experiment. The white circles with radius β=1.2 mrad show 
the different positions of the spectrometer entrance aperture used 
in the experiment. Inset shows the experimental CBED pattern. 
Letters a-f correspond to the spectra at figure 3 b and c. 
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10 eV loss and 80 keV acceleration voltage 𝜃𝐸 =
𝐸

2𝐸0
=

10 𝑒𝑉

160000 𝑒𝑉
 ≈ 0.0625 mrad and Bragg angles, which deter-

mine important points of the BZ are of the order of several 
mrad, e.g. 20.3 mrad between the (000) and (111) reflections 

in a diamond sample oriented in the [110] zone axis at 80 

keV. Having a fixed 𝒒∥ and a free value of 𝒒⊥ means the 

transitions, in reciprocal space form a horizontal plane (ig-

noring the curvature of the Ewald sphere), shifted slightly 

from the Γ point along the beam direction by exactly 𝒌𝟎𝜃𝐸. 

Since this shift is so small with respect to the main features 

of the BZ, we choose to neglect it. Furthermore, the parallel 

component is dominant only in case of 𝜃 < 2𝜃𝐸  [10] which 

means that for most interband transitions of our interest, 

where the scattering angles are of the same order as the 

Bragg angles 𝑞⊥ ≫ 𝑞∥. Therefore, exploring indirect band 

gap transitions we can concentrate on the perpendicular 

component of q which lays in plane with the CBED disks 

and spectrometer entrance.   

(3) The combination of statements (1) and (2) means 

that in CBED each point in the first BZ is convoluted with a 

momentum uncertainty disk with a diameter of 2α. 

(4) Our resolution over the transferred momentum 

𝒒⊥ = 𝒌⊥
′ − 𝒌0⊥is determined by the uncertainties over the 

orthogonal components of the initial and final momentum. 

Since the incident beam possesses a convergence semi-an-

gle 𝛼, we will have an uncertainty over the initial transverse 

momentum 𝜹𝒌0⊥ = 𝛼𝑘0. On the other hand, the finite an-

gular size 𝛽 of our detector entrance collects electrons with 

a variety of final transverse momenta 𝛿𝒌⊥
′ = 𝛿𝑘0. The re-

sulting 𝒒⊥ resolution can therefore be estimated as a quad-

ratic sum 𝛿𝒒⊥ = √𝛿𝒌⊥
2 + 𝛿𝒌⊥

′2 = √𝛼2 + 𝛽2𝑘0. As a meas-

ure of quality of this momentum resolution, it is useful to 

express this quantity as relative to the momentum transfer 

of Bragg scattering.  

(5) Since, as discussed above, a 2D plane from the 3D 

JDOS is selected including the center and perpendicular to 

the beam direction, we can select one point from this plane 

to identify a specific value of 𝒒⊥in both length and direc-

tion. Our spectrometer acquires all transitions that meet the 

selected 𝒒⊥, regardless of the exact initial and final states of 

the sample. While this hampers a straightforward recon-

struction of the band structure, there is an exception where 

the initial and final states are well known: the band gap. 

There is indeed only one combination of initial and final 

states yielding the minimum energy: the highest point of the 

valence band, at the Γ-point, and the lowest point of the con-

duction band. This transition becomes clearly identifiable 
once we select the proper momentum transfer. 

(6) As following from the statement (5), indirect and 

direct band gap transitions can be probed deliberately with 

EELS if the momentum resolution and selection is chosen 

adequately. We can further suggest that, for example, in the 

case of diamond there is only one single clear and isolated 

maximum in the band structure [11], leading to a high den-

sity of occupied states in that point. This means that the ma-
jority of scattering will originate from this Γ point. This fur-

ther simplifies the interpretation and opens an interesting 

possibility to deliberately measure the energy difference be-

tween the highest point of the valence band (which is dom-

inant as discussed above) and arbitrarily chosen points in the 

conduction band (not necessarily the bottom of the conduc-

tion band). 

 

3 Model  In previous work [12] we used as an illustrative 

tool the simple band structure model consisting of two par-

abolic bands showing how momentum selection through 

off-axis EELS acquisition can influence the signal of the di-

rect band gap. We concluded that the best strategy to obtain 

a good estimate of the value of the direct band gap is to keep 

the off-axis shift as small as possible while still avoiding the 

angular range where the retardation losses (Cherenkov and 

surface guided modes) are relevant. However, for the indi-

rect band gap, the situation is different as we need to delib-

erately select the appropriate momentum transfer 𝑞⊥ corre-

sponding to the indirect transition with lowest energy loss. 
The momentum transfer is in any case large enough that we 

do not have to worry about parasitic losses. The downside, 

however, is that the probability of scattering, and therefore 

the signal to noise ratio, decreases significantly with 𝒒⊥ and 

the shape of the band gap onset will change substantially as 

well.  
To demonstrate how this combination of factors in-

fluences the indirect band gap signal, we extend the simple 

2 parabolic band model with a shift of the conduction band  

by a vector s from k=0 in momentum space (fig.2). We want 
to point out that in the real band structure of diamond there 

are six such symmetrical band minima related to the indirect 

band gap but in our experiment we select only one of those 

by deliberate momentum selection. Therefore, the choice of 

only one conduction band shifted by the vector s would al-

ready contain the essential ingredients to understand the ex-

periment. In a first approximation (see equations 15 and 16), 

EELS spectra are proportional to the joint density of states 

(JDOS) due to the fact that electron motion is affected by 

the lattice and, therefore, the band structure.  

we attempt to calculate it for the system described 

above with momentum transfer 𝒒⊥ ≠ 0. We base our calcu-

lations on the well-known example of JDOS for parabolic 

dispersion relations in 3D system where [13]: 

 𝐽𝐷𝑂𝑆 =
∂𝜌

∂𝐸
=

𝜕(
𝑘3

3π2)

𝜕𝐸
=

1

2𝜋2
(

2𝜇

ℏ2
)

3/2

√𝐸 − 𝐸𝑏𝑔 ,                 (1) 

where ρ – volume density of states, µ - reduced mass and 

𝐸𝑏𝑔 – band gap value. 

Thus, to obtain JDOS with 𝒒⊥ ≠ 0 we only need to find the 

expression for wave vector k shown by the steps below.  

Using the same formalism as for the case of direct band gap 

[12] we can write that an indirect transition from valence to 

conduction band will have the energy:  
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𝐸 = 𝐸𝑐𝑏 −   𝐸𝑣𝑏 = 𝐸𝑏𝑔 +
ℏ2

2
(

𝑘𝑖
2

𝑚ℎ

+
(𝒌𝑓 − 𝒔)2

𝑚𝑒

),            (2) 

where 𝐸𝑐𝑏 is the minimum energy level of the conduction 

band, 𝐸𝑣𝑏  – maximum energy level of the valence band, 

𝐸𝑏𝑔- energy of the band gap, ki - initial wave vector, kf - final 

wave vector, mh and me - hole and electron effective masses. 

Taking into account the momentum conservation: 

ℏ𝒌𝑖 + ℏ𝒒⊥ = ℏ(𝒌𝑓 − 𝒔) ,                                                      (3) 

or: 
𝒌𝑓 = 𝒌𝑖 + 𝒒⊥ + 𝒔,                                                                   (4) 

we can rewrite equation (1) as: 

ℏ2

2
(

𝑘𝑖
2

𝑚ℎ

+
(𝒌𝑖 + 𝒔 + 𝒒⊥)2

𝑚𝑒

) + 𝐸𝑏𝑔 − 𝐸 = 0.                     (5) 

Representing expression (5) as a quadratic polynomial in ki  

gives: 

ℏ2(𝑚𝑒 + 𝑚ℎ)𝑘𝑖
2

2𝑚ℎ𝑚𝑒

 +
ℏ2(𝒌𝑖 ⋅ 𝒔 + 𝒌𝑖 ⋅ 𝒒⊥ + 𝒔 ⋅ 𝒒⊥)

𝑚𝑒

+  
ℏ2(𝑠2 + 𝑞⊥

2)

2𝑚𝑒

+ 𝐸𝑏𝑔 − 𝐸 = 0.        (6) 

Considering that φ is an angle between vectors ki and 𝒒⊥, ξ 

is an angle between ki  and s and τ is an angle between s and 

𝒒⊥ equation (6) becomes:  

ℏ2(𝑚𝑒 + 𝑚ℎ)𝑘𝑖
2

2𝑚ℎ𝑚𝑒

+
ℏ2(𝑘𝑖𝑠𝑐𝑜𝑠(𝜉) + 𝑘𝑖𝑞⊥𝑐𝑜𝑠(𝜑) + 𝑠𝑞⊥𝑐𝑜𝑠(𝜏))

𝑚𝑒

+  
ℏ2(𝑠2 + 𝑞⊥

2)

2𝑚𝑒

+ 𝐸𝑏𝑔 − 𝐸 = 0.                                         (7) 

For simplicity the following substitutions can be made: 

𝑎 =
ℏ2(𝑚𝑒 + 𝑚ℎ)

2𝑚ℎ𝑚𝑒

 ;                                                                (8) 

𝑏 =
ℏ2(𝑠𝑐𝑜𝑠(𝜉) + 𝑞𝑐𝑜𝑠(𝜑))

𝑚𝑒

 ,                                             (9) 

𝑐 =
ℏ2(𝑠2 + 2𝑠𝑞⊥𝑐𝑜𝑠(𝜏) + 𝑞⊥ 2)

2𝑚𝑒

+ 𝐸𝑏𝑔  .                       (10) 

Now, (7) simplifies to a quadratic polynomial referring to ki 

as just k further on: 

 𝑎𝑘2 + 𝑏𝑘 + 𝑐 − 𝐸 = 0.                                                      (11) 

Solving equation (11) we get two solutions for k: 

𝑘 =
−𝑏 ± √𝑏2 − 4𝑎(𝑐 − 𝐸)

2𝑎
 .                                           (12) 

The volume density of states for the 3D k-space for this par-

abolic dispersion will be equal to: 

𝜌 =
𝑘3

3π2
=

(−𝑏 ± √𝑏2 − 4𝑎(𝑐 − 𝐸))
3

16𝜋2𝑎3
,                         (13) 

 

and JDOS: 

𝐽𝐷𝑂𝑆 =
𝜕𝜌

𝜕𝐸
=

(−𝑏 ± √𝑏2 − 4𝑎(𝑐 − 𝐸))
2

4𝑎2𝜋2√𝑏2 − 4𝑎(𝑐 − 𝐸)
.                   (14) 

 
Figure 2 a. A two-band model for excitations in a material 

assuming two parabolic bands. An indirect band gap model is 
obtained by shifting the conduction band by a vector s. b. inelastic 
scattering factor dependence on the perpendicular component of 

the momentum transfer 𝒒⊥  (shown through the scattering angle 

θ =
q⊥

k0
 ) calculated for the model for either s=0 (left side, 

representing a direct band gap material) or for s=8.8•109 1/m and 

 𝒒⊥ ∥ 𝒔 (right side, representing an indirect band gap material). c. 
Simulation of the double differential EELS cross-section for 

different   𝒒⊥ ∥ 𝒔.  The Lorentzian distribution of the inelastic 
scattering is clearly visible and prefers transitions close to q=0. 
Selecting a specific scattering angle, however allows us to select 
only the weakly scattering part which still contains the signature of 
the indirect gap (d). d. Simulated EELS spectra extracted from (c) 

for different choices of 𝒒⊥. Note that in case of direct band gap the 
onsets shift towards higher values when increasing the selected 

𝒒⊥while the shape of the onset changes. In case of an indirect band  

gap (left) we successfully probe it by selecting 𝒒⊥ transfers close 
to s, but attention needs to be paid to obtain enough momentum 

space resolution to avoid bias towards lower 𝒒⊥ values through the 
Lorentzian. 
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From this, the inelastic scattering factor can be computed 
numerically by taking into account all possible orientations 

of the initial momentum ki with respect to 𝒒⊥ and s. For this 

computation we choose to keep τ=0 as 𝒒⊥and s are chosen 

parallel in our experiment. The result of a numerical com-

putation is presented in figure 2. 

𝑑𝑓

𝑑𝐸
(𝒒⫠ , 𝐸) = ∬ 𝐽𝐷𝑂𝑆(𝒌, 𝒒⊥, 𝐸)

𝜑,𝜉

.                                    (15) 

From this we can write the EELS double differential scat-

tering cross section in dipole approximation as [14,15]: 

∂2𝜎

∂𝛺 ∂𝐸
 ∝  

1

𝑞⊥
2 + 𝑞𝐸

2
 
𝑑𝑓

𝑑𝐸
(𝑞⫠, 𝐸) =

=
1

𝑘0(𝜃2 + 𝜃𝐸
2)

 
𝑑𝑓

𝑑𝐸
(𝒒⫠, 𝐸),             (16) 

with scattering angle  𝜃 =
𝑞⫠

𝑘0
, linear momentum 𝑘0 =

2π

𝜆
  and characteristic scattering angle   𝜃𝐸 =

E

2𝐸0
  neglecting 

relativistic corrections [16]. 

In order to get the full EELS spectrum, we need to integrate 

over the allowed 𝒒⊥ vectors as: 

∂𝜎

∂𝐸
 =  ∬

∂2𝜎

∂𝛺 ∂𝐸

𝑞⊥

𝑘0
2 𝑑𝒒⊥

𝐴

,                                                  (17) 

Where A is the area of the entrance aperture of the spec-

trometer centred around the chosen scattering vector 𝒒⊥0 =
〈𝒌⊥

′ 〉 − 〈𝒌0⊥〉 , comprising vectors 𝒒⊥  such that |𝒒⊥ −

𝒒⊥0| < √𝛼2 + 𝛽2𝑘0. 

For on-axis setups, the EELS spectrum is domi-

nated by q-transfers in the range of 𝒒∥ due to the Lorentzian 

envelope as shown in (fig. 2c). For off-axis acquisition 

(𝒒⊥0 ≫  𝒒∥), a range of off-axis 𝒒⊥ vectors is selected lead-

ing to a strong reduction of the signal due to the Lorentzian 

factor, but now 𝒒⊥ vectors that are excluded in the on-axis 

case could be selectively detected as shown in fig. 2d. Ac-
cording to the theoretical work of Rafferty and Brown [17] 

and noting that Tauc plots [18] are sometimes applied to 

EELS data [19], the JDOS  for a direct transition should be 

described by the function 𝑎(𝐸 − 𝐸𝑔)𝑛  with n =0.5 and for 

indirect transition n =1.5. Clearly visible even in this simple 

model is that the correct value of the indirect band gap is 

obtained when 𝒒⊥ = 𝒔. The simulation also proves that a 

good momentum resolution is crucial to accurately measure 

the indirect band gap. Shifting 𝒒⊥  towards lower values 
changes the band gap onset substantially towards higher val-

ues and the spectrum obtains a more direct band gap-like 

shape. Choosing 𝒒⊥ in between direct and indirect transi-

tions also lifts the gap onset and results in a flatter shape of 

the onset region. It is also important to highlight that accord-

ing to our simulations the value of n varies depending on 𝒒⊥ 

selection which can be understood as ranging from more di-

rect-like (n ̴ 0.5) to more indirect-like behavior (n ̴ 1.5).  

 

3 Results and discussion  We attempt to experimen-

tally demonstrate statement (6) on a single crystal diamond 

film in [110] crystallographic orientation by taking spectra 

with the EELS spectrometer entrance shifted at different 

points of the first BZ. The spectra were acquired at 80 keV 

acceleration voltage, with α=1 mrad, β=1.2 mrad and energy 

resolution 120 meV. This leads to a fractional momentum 

resolution of 0.13 or the range of momentum transfer 𝒒⊥of 

2.35•109 1/m with the boundaries of the 1st BZ being at 
17.6•109 1/m from Γ to X point. 

Four spectra are obtained along the Δ line of the 

first BZ and show the expected behavior (figure 3b). The 

spectrum taken on-axis in (000) or in the Γ point shows an 

onset below 5 eV which relates to retardation losses and can-

not be used to estimate the true band gap value [5]. Four 

spectra are obtained along the Δ line of the first BZ and 

show the expected behavior (figure 3b). The spectrum taken 

on-axis in (000) or in the Γ point shows an onset below 5 eV 

which relates to retardation losses and cannot be used to es-

timate the true band gap value [5]. Due to the dependence 

of intensity on 𝒒⊥, all the spectra with subtracted ZLP were 

aligned by the integral intensity and then plotted together at 

the figure 3a. Spectrum acquired on-axis, has the highest on-

set due to the stronger intensities of the recorded direct tran-

sitions. However, at 80 keV retardation losses are not very 

pronounced for diamond and contribute only to the small 

slope arising before the energy of the direct band gap. The 

rest of the spectrum on-axis with a small dip at about 14 eV 

does well in accordance to the imaginary part of the dielec-

tric function of diamond and doesn’t show significant signs 

of retardation losses like in case of 300 keV [12].   
All spectra obtained off-axis are free from retarda-

tion losses. To quantitatively estimate the band gap onsets 

from these spectra, we fitted the loss region with the func-

tion 𝐼(𝐸) = 𝑎(𝐸 − 𝐸𝑔)𝑛 convoluted with the zero loss peak 

(ZLP) of each spectrum making use of the procedures sug-

gested in the literature [20]. Convolution procedure help to 

take into account all the parameters which influence the 

shape of the spectra such as energy resolution, asymmetry 

of the zero loss peak etc. and allows to estimate the band gap 

onset more precisely. As mentioned in the previous part, 

EELS cross-section for a direct transition should be de-

scribed by the function 𝑎(𝐸 − 𝐸𝑔)𝑛  with n =0.5 for direct 

and 1.5 for indirect band gaps according to the simple two 

band model. Experimental spectra will deviate from these 

values of n due to, for example, the Lorentzian dependence 

of double differential cross-section of EELS on inelastic 

scattering angle which causes bias in the inelastic scattering 

factor (see equation (16)) and figure 2c) and a finite momen-

tum resolution which makes selection of a pure direct or in-

direct band gap transition impossible. As our simulations 

show, selection of different ranges of 𝒒⊥ also influences the 

band gap onset (figure 2d).  Therefore, the most reasonable 

approach to estimate the band gap onset in case of experi-

mental datasets is to leave n as a free parameter for fitting 
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and then qualitatively label the measured transition as more 
‘direct’ or ‘indirect’.  

The resulting fit values of spectral onset 𝐸𝑔  and n 

for each experimental spectra acquired at a set of points in 

the first BZ (figure 1c) are given in the table 1. The first 

spectrum was obtained with the spectrometer entrance 

placed on the Δ line between Γ and X points with the length 

 𝒒⊥ smaller than required for the indirect band gap transition 

(see figure 1). The fitted value of band gap onset which has 

clearly indirect character is 5.9 which corresponds to the 

band gap values in between the direct and indirect transi-
tions on the Δ line. 

The second spectrum was taken at the point of the 

BZ corresponding to the lowest position of the conduction 

band and, therefore, selecting the indirect band gap transi-

tion. The fitted band gap value is 5.6 eV which agrees well 

with the accepted value for the indirect band gap of diamond 

[21] and n is estimated as 1.1. Remarkably, the indirect band 

gap of Si was estimated [22] in a similar way by shifting the 

spectrometer entrance along  Γ-X direction proving the reli-

ability of this technique. 

 
Table 1 Parameters of fitting experimental data with the function 

I(E) = a(E − Eg)n convoluted with the ZLP where Eg is the onset 

of the spectra. The spectra are demonstrated at the picture 3. 

Point 
in BZ 

Before 
band 
gap 

Band 
gap 

X K L 

Eg, eV 
5.9 

±0.12 
5.6 

±0.12 
6.1 

±0.08 
6.6 

±0.25 
6.4 

±0.17 

n 2.0 1.1 0.66 1.2 1.1 

 

When further shifting the spectrometer entrance 

away from (000) along the Δ direction to the Χ point of the 

BZ we observe an unusual shape of the band gap onset 

which corresponds to the signature of a direct rather than 

indirect transition and the best fit is obtained at n  ̴0.66. The 

fitted value of this band gap onset is 6.1 eV. This shape 

might be explained by the constructive interference of the 
four inelastic paths due to the position of the X point sym-

metrical to the four CBED reflexes (figure 1d) which serve 

as sources for inelastic scattering. 

The behavior of spectra taken at the other main 

points of the analyzed slice of the BZ agrees with the state-

ment (6) in the experiment section. Even with approxi-

mately the same length of momentum transfer  𝑞⊥ the spec-

tra obtained at L and K points are different from the ones 

acquired at Χ or the indirect band gap points. The onsets for 

L and K are close to the typical indirect behavior and esti-
mated to be approximately 6.4 eV and 6.6 eV respectively, 

being far above the onsets for Χ or indirect band gap points 

placed at the Δ direction of the BZ. This proves the possi-

bility to probe the band structure at different points and even 

partly reconstruct the lower surface of the conduction band 

if we assume that the shortest transitions always originate 

from the Γ point. This is possible in diamond due to the pres-
ence of an isolated global maximum of the valence band 

around the Γ point, causing transitions from different states 

to have a significantly higher energy. 

Applying to the other materials this proposition 

should be taken with care as the bands can be flatter and 

transition from, for example, Γ to K point might have the 

same length as some intermediate transition and different 

initial states will complicate the reconstruction of the con-

duction band as the shape of both valence and conduction 

band will contribute to shape the JDOS. Nevertheless, the 

experimental measurement of the indirect band gap should 
always be possible as the shortest global transition always 

originates from Γ point.  

 

 
Figure 3 a. Experimental spectra obtained at certain points in the 

first BZ of diamond marked in figure 1.  b. Experimental spectra 

obtained on the Δ direction in the first BZ of diamond fitted with 

I(E) = a(E − Ebg)n. c. Experimental spectra acquired at the main 

points of the first BZ of diamond and fitted the same way as (b). 
Letters a-f correspond to the positions marked at figure 1d where 
the spectra were acquired. 
 

Signal to noise ratio remains an open issue when 

acquiring spectra far outside the CBED disks. The current 
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manuscript shows, that acceptable signal levels can be ob-
tained and progress in single electron detectors, is providing 

an attractive route to further improve the signal to noise ratio 

and open a new era of band structure studies with EELS in 

TEM [23].  

 

4 Conclusions  In this work we have shown a simple 

way to deliberately measure the indirect band gap of dia-

mond and also probe the energy of other transitions in the 

diamond band structure with EELS. It opens an interesting 
possibility to partly reconstruct the band structure of mate-

rials using EELS. If the band structure is unknown the sug-

gested method can be used to estimate the position and en-

ergy of the indirect or direct band gap transitions by analyz-

ing only a part of the first Brillouin zone which should in-

clude the points sufficient for further extrapolation. EELS 

can allow to analyze the band structure not only at the sur-

face, as most other techniques, but also at a chosen place in 

the bulk material by preparing a targeted specimen or e.g. 

from an individual nanoparticle. EELS has already proven 

to be able to map the direct band gaps with nanometer reso-
lution [12,20,24]. This can be extended to indirect band gaps 

and can help to link the structure of, for instance, indirect 

semiconductors with defects, strain or impurities to the 

properties of their band structure.  
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