toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aierken, Y.; Çakır, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 081408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Different allotropes of phosphorene are possible of which black and blue phosphorus are the most stable. While blue phosphorus has isotropic properties, black phosphorus is strongly anisotropic in its electronic and optical properties due to its anisotropic crystal structure. In this work, we systematically investigated the lattice thermal properties of black and blue phosphorene by using first-principles calculations based on the quasiharmonic approximation approach. Similar to the optoelectronic and electronic properties, we predict that black phosphorene has highly anisotropic thermal properties, in contrast to the blue phase. The linear thermal expansion coefficients along the zigzag and armchair direction differ up to 20% in black phosphorene. The armchair direction of black phosphorene is more expandable as compared to the zigzag direction and the biaxial expansion of blue phosphorene under finite temperature. Our comparative analysis reveals that the inclusion of finite-temperature effects makes the blue phase thermodynamically more stable over the black phase above 135 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359860700005 Publication Date 2015-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 124 Open Access  
  Notes This work was supported by the Flemish Science Founda- tion (FWO-Vl) and the Methusalem foundation of the Flem- ish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Comput- ing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges the support from Anadolu University (BAP-1407F335), and Turkish Academy of Sciences (TUBA-GEBIP). Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127754 Serial 4034  
Permanent link to this record
 

 
Author Zhang, L.; Turner, S.; Brosens, F.; Verbeeck, J. url  doi
openurl 
  Title Model-based determination of dielectric function by STEM low-loss EELS Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 3 Pages 035102  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Theory of quantum systems and complex systems  
  Abstract (down) Dielectric properties of materials are crucial in describing the electromagnetic response of materials. As devices are becoming considerably smaller than the optical wavelength, the conventional measuring methods based on optical response are limited by their spatial resolution. Electron energy loss spectroscopy performed in a scanning transmission electron microscope is a good alternative to obtain the dielectric properties with excellent spatial resolution. Due to the overlap of diffraction discs in scanning transmission electron microscopy, it is difficult to apply conventional experimental settings to suppress retardation losses. In this contribution, a relativistic dielectric model for the loss function is presented which is used in a model based optimization scheme to estimate the complex dielectric function of a material. The method is applied to experiments on bulk diamond and SrTiO3 and shows a good agreement with optical reference data when retardation effects are included. Application of this technique to nanoparticles is possible but several theoretical assumptions made in the model of the loss function are violated and interpretation becomes problematic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000274002300027 Publication Date 2010-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes Esteem – 026019; Fwo Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81258UA @ admin @ c:irua:81258 Serial 2098  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Melting of graphene clusters Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134103-134109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nanoclusters C-N with N = 2-55. The minimum-energy configurations for different clusters are used as starting configurations for the study of the temperature effects on the bond breaking and rotation in carbon lines (N < 6), carbon rings (5 < N < 19), and graphene nanoflakes. The larger the rings (graphene nanoflakes) the higher the transition temperature (melting point) with ring-to-line (perfect-to-defective) transition structures. The melting point was obtained by using the bond energy, the Lindemann criteria, and the specific heat. We found that hydrogen-passivated graphene nanoflakes (CNHM) have a larger melting temperature with a much smaller dependence on size. The edges in the graphene nanoflakes exhibit several different metastable configurations (isomers) during heating before melting occurs. DOI: 10.1103/PhysRevB.87.134103  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317390700001 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF Postdoctoral Fellowship No. 299855 (for M.N.-A.), the ESF-EuroGRAPHENE Project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108467 Serial 1987  
Permanent link to this record
 

 
Author Rodewald, M.; Rodewald, K.; De Meulenaere, P.; Van Tendeloo, G. url  doi
openurl 
  Title Real-space characterization of short-range order in Cu-Pd alloys Type A1 Journal article
  Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 55 Issue 21 Pages 14173-14181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Cu-Pd alloys containing 10, 20, 30, 40, and 50 at. % Pd and quenched from a temperature just above the ordering temperature T-c are investigated by electron diffraction and high-resolution electron microscopy (HREM). The results show diffuse electron diffraction intensities at {100} and {110} positions for the alloy with 10 at. % Pd, but with a characteristic twofold and fourfold splitting for the alloys with more than 10 at. % Pd. High-resolution images show the formation of microdomains best developed between 20 and 30 at. % Pd. A real-space characterization has been performed by applying videographic real-structure simulations revealing that the splitting of the diffuse maxima depends on the average distance between microdomains of Cu3Au type in antiphase with each other. By applying image processing routines on the HREM images, correlation vectors are identified which correspond to correlations between microdomains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1997XE37100036 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.836; 1997 IF: NA  
  Call Number UA @ lucian @ c:irua:21439 Serial 2828  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Furukawa, Y.; Johnston, D.C.; Hemmida, M.; Krug von Nidda, H.-A.; Loidl, A.; Geibel, C.; Rosner, H. url  doi
openurl 
  Title Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5 Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 1 Pages 014429-014429,16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Crystal structure, electronic structure, and magnetic behavior of the spin-1/2 quantum magnet Na1.5VOPO4F0.5 are reported. The disorder of Na atoms leads to a sequence of structural phase transitions revealed by synchrotron x-ray powder diffraction and electron diffraction. The high-temperature second-order α↔β transition at 500 K is of the order-disorder type, whereas the low-temperature β↔γ+γ′ transition around 250 K is of the first order and leads to a phase separation toward the polymorphs with long-range (γ) and short-range (γ′) order of Na. Despite the complex structural changes, the magnetic behavior of Na1.5VOPO4F0.5 probed by magnetic susceptibility, heat capacity, and electron spin resonance measurements is well described by the regular frustrated square lattice model of the high-temperature α-polymorph. The averaged nearest-neighbor and next-nearest-neighbor couplings are J̅ 1≃−3.7 K and J̅ 2≃6.6 K, respectively. Nuclear magnetic resonance further reveals the long-range ordering at TN=2.6 K in low magnetic fields. Although the experimental data are consistent with the simplified square-lattice description, band structure calculations suggest that the ordering of Na atoms introduces a large number of inequivalent exchange couplings that split the square lattice into plaquettes. Additionally, the direct connection between the vanadium polyhedra induces an unusually strong interlayer coupling having effect on the transition entropy and the transition anomaly in the specific heat. Peculiar features of the low-temperature crystal structure and the relation to isostructural materials suggest Na1.5VOPO4F0.5 as a parent compound for the experimental study of tetramerized square lattices as well as frustrated square lattices with different values of spin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293247400008 Publication Date 2011-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:91770 Serial 2588  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Shpanchenko, R.V.; Geibel, C.; Rosner, H. url  doi
openurl 
  Title Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2 Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 17 Pages 174424,1-174424,13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Crystal structure and magnetic properties of the layered vanadium phosphate PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and specific-heat measurements, as well as band-structure calculations. The compound resembles AA′VO(PO4)2 vanadium phosphates and fits to the extended frustrated square-lattice model with the couplings J1, J1′ between nearest neighbors and J2, J2′ between next-nearest neighbors. The temperature dependence of the magnetization yields estimates of averaged nearest-neighbor and next-nearest-neighbor couplings, J̅ 1≃−5.2 K and J̅ 2≃10.0 K, respectively. The effective frustration ratio α=J̅ 2/J̅ 1 amounts to −1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2. Specific-heat data support the estimates of J̅ 1 and J̅ 2 and indicate a likely magnetic ordering transition at 3.9 K. However, the averaged couplings underestimate the saturation field, thus pointing to the spatial anisotropy of the nearest-neighbor interactions. Band-structure calculations confirm the identification of ferromagnetic J1, J1′ and antiferromagnetic J2, J2′ in PbZnVO(PO4)2 and yield (J1′−J1)≃1.1 K in excellent agreement with the experimental value of 1.1 K, deduced from the difference between the expected and experimentally measured saturation fields. Based on the comparison of layered vanadium phosphates with different metal cations, we show that a moderate spatial anisotropy of the frustrated square lattice has minor influence on the thermodynamic properties of the model. We discuss relevant geometrical parameters, controlling the exchange interactions in these compounds and propose a strategy for further design of strongly frustrated square-lattice materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278141600082 Publication Date 2010-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83384 Serial 1294  
Permanent link to this record
 

 
Author Backes, W.H.; Peeters, F.M.; Brosens, F.; Devreese, J.T. url  doi
openurl 
  Title Dispersion of longitudinal plasmons for a quasi-two-dimensional electron gas Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 45 Issue 15 Pages 8437-8442  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract (down) Confinement of electrons in ultrathin metallic films leads to subbands. By increasing the thickness of the electron layer, the subbands will dissolve into a quasicontinuum, with the number of electrons per unit volume kept constant. Within the random-phase approximation, the two-dimensional plasmon, which originally follows Stern's dispersion relation, becomes a longitudinal surface plasmon. The plasmon excitations of a model metallic film are investigated by including all subbands. Single-particle excitations, which exhibit the depolarization shift, converge into the plasma excitation spectrum. With further increases in the film thickness, the bulk plasmon arises and the surface plasmon remains. Our analysis shows how quantum size effects evolve into hydrodynamical classical size effects with increasing thickness of the film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1992HR33600028 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 37 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:2738 Serial 737  
Permanent link to this record
 

 
Author Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Shapoval, O.; Belenchuk, A.; Moshnyaga, V.; Damaschke, B.; Samwer, K. doi  openurl
  Title Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1.x:(MgO)x composite films Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 66 Issue 10 Pages 104421,1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Composite (La0.67Ca0.33MnO3)(1-x):(MgO)(x) films were prepared by metalorganic aerosol deposition on a (100)MgO substrate for different concentrations of the (MgO) phase (0less than or equal toxless than or equal to0.8). At xapproximate to0.3 a percolation threshold in conductivity is reached, at which an infinite insulating MgO cluster forms around the La0.67Ca0.33MnO3 grains. This yields a drastic increase of the electrical resistance for films with x>0.3. The film structure is characterized by x-ray diffraction and transmission electron microscopy. The local structure of the La0.67Ca0.33MnO3 within the film depends on the MgO concentration which grows epitaxially along the domain boundaries. A different structural phase transition from the orthorhombic Pnma structure to an unusual rhombohedral R (3) over barc structure at the percolation threshold xapproximate to0.3 is found for La0.67Ca0.33MnO3. A three-dimensional stress accommodation in thick films through a phase transition is suggested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000178460900060 Publication Date 2002-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 48 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:54740 Serial 3250  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Vortex anomaly in low-dimensional fermionic condensates : quantum confinement breaks chirality Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 5 Pages 054513-54515  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Chiral fermions are responsible for low-temperature properties of vortices in fermionic condensates, both superconducting (charged) and superfluid (neutral). One of the most striking consequences of this fact is that the core of a single-quantum vortex collapses at low temperatures, T -> 0 (i.e., the Kramer-Pesch effect for superconductors), due to the presence of chiral quasiparticles in the vortex-core region. We show that the situation changes drastically for fermionic condensates confined in quasi-one-dimensional and quasi-two-dimensional geometries. Here quantum confinement breaks the chirality of in-core fermions. As a result, instead of the ultimate shrinking, the core of a single-quantum vortex extends at low temperatures, and the condensate profile surprisingly mimics the multiquantum vortex behavior. Our findings are relevant for nanoscale superconductors, such as recent metallic nanoislands on silicon, and also for ultracold superfluid Fermi gases in cigar-shaped and pancake-shaped atomic traps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332396800005 Publication Date 2014-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), the Methusalem Program, and the National Science Foundation of China under Grant No. NSFC-11304134. A. A. S. acknowledges the support of Brazilian agencies CNPq and FACEPE (Grant No. APQ-0589-1.05/08). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115822 Serial 3850  
Permanent link to this record
 

 
Author Stankovski, M.; Antonius, G.; Waroquiers, D.; Miglio, A.; Dixit, H.; Sankaran, K.; Giantomassi, M.; Gonze, X.; Côté, M.; Rignanese, G.-M. url  doi
openurl 
  Title G0W0 band gap of ZnO : effects of plasmon-pole models Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 24 Pages 241201-241201,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Carefully converged calculations are performed for the band gap of ZnO within many-body perturbation theory (G0W0 approximation). The results obtained using four different well-established plasmon-pole models are compared with those of explicit calculations without such models (the contour-deformation approach). This comparison shows that, surprisingly, plasmon-pole models depending on the f-sum rule gives less precise results. In particular, it confirms that the band gap of ZnO is underestimated in the G0W0 approach as compared to experiment, contrary to the recent claim of Shih et al. [ Phys. Rev. Lett. 105 146401 (2010)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297766600001 Publication Date 2011-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 81 Open Access  
  Notes ; The authors would like to thank P. Zhang, S. Louie, J. Deslippe, P. Rinke, H. Jiang, C. Friedrich, and F. Bruneval for many helpful discussions. We are also very grateful to Y. Pouillon, A. Jacques, and J.-M. Beuken for their technical aid and expertise. M.C. and G.A. would like to acknowledge the support of NSERC and FQRNT. This work was supported by the Interuniversity Attraction Poles program (P6/42)-Belgian State-Belgian Science Policy, the Flemish Science Foundation (FWO-Vl) ISIMADE project, the EU's 7th Framework programme through the ETSF I3 e-Infrastructure project (Grant Agreement No. 211956), the Communaute francaise de Belgique, through the Action de Recherche Concertee 07/ 12-003 “Nanosystemes hybrides metal-organiques”, and the FNRS through FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93963 Serial 3533  
Permanent link to this record
 

 
Author Çakir, D.; Otalvaro, D.M.; Brocks, G. url  doi
openurl 
  Title Magnetoresistance in multilayer fullerene spin valves: A first-principles study Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 24 Pages 245404  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Carbon-based molecular semiconductors are explored for application in spintronics because their small spinorbit coupling promises long spin lifetimes. We calculate the electronic transport from first principles through spin valves comprising bi-and tri-layers of the fullerene molecules C-60 and C-70, sandwiched between two Fe electrodes. The spin polarization of the current, and the magnetoresistance depend sensitively on the interactions at the interfaces between the molecules and the metal surfaces. They are much less affected by the thickness of the molecular layers. A high current polarization (CP > 90%) and magnetoresistance (MR > 100%) at small bias can be attained using C-70 layers. In contrast, the current polarization and the magnetoresistance at small bias are vanishingly small for C-60 layers. Exploiting a generalized Julliere model we can trace the differences in spin-dependent transport between C-60 and C-70 layers to differences between the molecule-metal interface states. These states also allow one to interpret the current polarization and the magnetoresistance as a function of the applied bias voltage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345875200005 Publication Date 2014-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122177 Serial 1928  
Permanent link to this record
 

 
Author Aierken, Y.; Sahin, H.; Iyikanat, F.; Horzum, S.; Suslu, A.; Chen, B.; Senger, R.T.; Tongay, S.; Peeters, F.M. url  doi
openurl 
  Title Portlandite crystal : bulk, bilayer, and monolayer structures Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 245413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Ca(OH)(2) crystals, well known as portlandite, are grown in layered form, and we found that they can be exfoliated on different substrates. We performed first principles calculations to investigate the structural, electronic, vibrational, and mechanical properties of bulk, bilayer, and monolayer structures of this material. Different from other lamellar structures such as graphite and transition-metal dichalcogenides, intralayer bonding in Ca(OH)(2) is mainly ionic, while the interlayer interaction remains a weak dispersion-type force. Unlike well-known transition-metal dichalcogenides that exhibit an indirect-to-direct band gap crossover when going from bulk to a single layer, Ca(OH)(2) is a direct band gap semiconductor independent of the number layers. The in-plane Young's modulus and the in-plane shear modulus of monolayer Ca(OH)(2) are predicted to be quite low while the in-plane Poisson ratio is larger in comparison to those in the monolayer of ionic crystal BN. We measured the Raman spectrum of bulk Ca(OH)(2) and identified the high-frequency OH stretching mode A(1g) at 3620 cm(-1). In this study, bilayer and monolayer portlandite [Ca(OH)(2)] are predicted to be stable and their characteristics are analyzed in detail. Our results can guide further research on ultrathin hydroxites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356135600007 Publication Date 2015-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126983 Serial 2675  
Permanent link to this record
 

 
Author Bousige, C.; Rols, S.; Paineau, E.; Rouziere, S.; Mocuta, C.; Verberck, B.; Wright, J.P.; Kataura, H.; Launois, P. url  doi
openurl 
  Title Progressive melting in confined one-dimensional C60 chains Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 4 Pages 045446  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) C-60 fullerenes confined inside single-walled carbon nanotubes form an archetypal one-dimensional system. X-ray diffraction experiments, from room temperature to 1073 K, reveal an increasing melting phenomenon. Detailed analysis of the sawtooth peak characteristic of the fullerene organization allows the quantitative determination of fluctuations in intermolecular distances. The present results validate the predictions of one-dimensional statistical models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306925300007 Publication Date 2012-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100835 Serial 2726  
Permanent link to this record
 

 
Author Prodi, A.; Daoud-Aladine, A.; Gozzo, F.; Schmitt, B.; Lebedev, O.; Van Tendeloo, G.; Gilioli, E.; Bolzoni, F.; Aruga-Katori, H.; Takagi, H.; Marezio, M.; Gauzzi, A.; url  doi
openurl 
  Title Commensurate structural modulation in the charge- and orbitally ordered phase of the quadruple perovskite (NaMn3)Mn4O12 Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 18 Pages 180101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition T-CO = 176 K in the mixed-valence quadruple perovskite (NaMn3)Mn4O12. Below T-CO we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q = ( 1/2,0,-1/2) of the CE magnetic structure that orders at low temperatures, similarly to the case of simple perovskites such as La0.5Ca0.5MnO3. In the present case, the modulated structure, together with the observation of a large entropy change at T-CO, gives evidence of a rare case of full Mn3+/Mn4+ charge and orbital order, consistent with the Goodenough-Kanamori model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344915100001 Publication Date 2014-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122097 Serial 406  
Permanent link to this record
 

 
Author Li, B.; Peeters, F.M. url  doi
openurl 
  Title Tunable optical Aharonov-Bohm effect in a semiconductor quantum ring Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages 115448-115448,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) By applying an electric field perpendicular to a semiconductor quantum ring we show that it is possible to modify the single particle wave function between quantum dot (QD)-like and ring-like. The constraints on the geometrical parameters of the quantum ring to realize such a transition are derived. With such a perpendicular electric field we are able to tune the Aharanov-Bohm (AB) effect for both the single particle and for excitons. The tunability is in both the strength of the AB effect as well as in its periodicity. We also investigate the strain induce potential inside the self-assembled quantum ring and the effect of the strain on the AB effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288855200012 Publication Date 2011-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; This work was supported by the EU-NoE: SANDiE, the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC, vzw collaborative project. We are grateful to Prof. M. Tadic and Dr. Fei Ding for stimulating discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89376 Serial 3744  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 14 Pages 144501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000325498300004 Publication Date 2013-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:111145 Serial 3891  
Permanent link to this record
 

 
Author Rønnow, T.F.; Pedersen, T.G.; Partoens, B. url  doi
openurl 
  Title Biexciton binding energy in fractional dimensional semiconductors Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 4 Pages 045412-045412,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Biexcitons in fractional dimensional spaces are studied using variational quantum Monte Carlo. We investigate the biexciton binding energy as a function of the electron-hole mass fraction sigma as well as study the dimensional dependence of biexcitons for sigma = 0 and sigma = 1. As our first application of this model we treat the H(2) molecule in two and three dimensions. Next we investigate biexcitons in carbon nanotubes within the fractional dimensional model. To this end we find a relation between the nanotube radius and the effective dimension. The results of both applications are compared with results obtained using different models and we find a reasonable agreement. Within the fractional dimensional model we find that the biexciton binding energy in carbon nanotubes accurately scales as E(B)(r,epsilon) = 1280 meV angstrom/(r epsilon), as a function of radius r and the dielectric screening epsilon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298922200008 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:96234 Serial 231  
Permanent link to this record
 

 
Author Callaert, C.; Bercx, M.; Lamoen, D.; Hadermann, J. pdf  url
doi  openurl
  Title Interstitial defects in the van der Waals gap of Bi2Se3 Type A1 Journal article
  Year 2019 Publication Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online) Abbreviated Journal Acta Crystallogr B  
  Volume 75 Issue 4 Pages 717-732  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Bi<sub>2</sub>Se<sub>3</sub>is a thermoelectric material and a topological insulator. It is slightly conducting in its bulk due to the presence of defects and by controlling the defects different physical properties can be fine tuned. However, studies of the defects in this material are often contradicting or inconclusive. Here, the defect structure of Bi<sub>2</sub>Se<sub>3</sub>is studied with a combination of techniques: high-resolution scanning transmission electron microscopy (HR-STEM), high-resolution energy-dispersive X-ray (HR-EDX) spectroscopy, precession electron diffraction tomography (PEDT), X-ray diffraction (XRD) and first-principles calculations using density functional theory (DFT). Based on these results, not only the observed defects are discussed, but also the discrepancies in results or possibilities across the techniques. STEM and EDX revealed interstitial defects with mainly Bi character in an octahedral coordination in the van der Waals gap, independent of the applied sample preparation method (focused ion beam milling or cryo-crushing). The inherent character of these defects is supported by their observation in the structure refinement of the EDT data. Moreover, the occupancy probability of the defects determined by EDT is inversely proportional to their corresponding DFT calculated formation energies. STEM also showed the migration of some atoms across and along the van der Waals gap. The kinetic barriers calculated using DFT suggest that some paths are possible at room temperature, while others are most probably beam induced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480512600024 Publication Date 2019-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.032 Times cited Open Access  
  Notes University of Antwerp, 31445 ; Acknowledgements We thank Artem M. Abakumov for providing the original Bi2Se3 sample and are also very grateful to Christophe Vandevelde for trying repeatedly to get good single crystal X-ray diffraction data out of each of our failed attempts at making an undeformed single crystal. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 2.032  
  Call Number EMAT @ emat @c:irua:161847 Serial 5295  
Permanent link to this record
 

 
Author Govaerts, K.; Park, K.; De Beule, C.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of Bi bilayers on the topological states of Bi2Se3 : a first-principles study Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 15 Pages 155124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (down) Bi2Se3 is a three-dimensional topological insulator which has been extensively studied because it has a single Dirac cone on the surface, inside a relatively large bulk band gap. However, the effect of two-dimensional topological insulator Bi bilayers on the properties of Bi2Se3 and vice versa, has not been explored much. Bi bilayers are often present between the quintuple layers of Bi2Se3, since (Bi2)n(Bi2Se3)m form stable ground-state structures. Moreover, Bi2Se3 is a good substrate for growing ultrathin Bi bilayers. By first-principles techniques, we first show that there is no preferable surface termination by either Bi or Se. Next, we investigate the electronic structure of Bi bilayers on top of, or inside a Bi2Se3 slab. If the Bi bilayers are on top, we observe a charge transfer to the quintuple layers that increases the binding energy of the surface Dirac cones. The extra states, originating from the Bi bilayers, were declared to form a topological Dirac cone, but here we show that these are ordinary Rashba-split states. This result, together with the appearance of a new Dirac cone that is localized slightly deeper, might necessitate the reinterpretation of several experimental results. When the Bi bilayers are located inside the Bi2Se3 slab, they tend to split the slab into two topological insulators with clear surface states. Interface states can also be observed, but an energy gap persists because of strong coupling between the neighboring quintuple layers and the Bi bilayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343773200001 Publication Date 2014-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 30 Open Access  
  Notes ; We gratefully acknowledge financial support from the Research Foundation – Flanders (FWO-Vlaanderen). K.G. thanks the University of Antwerp for a Ph.D. fellowship. C.D.B. is an aspirant of the Flemish Science Foundation. This work was carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules Foundation and the Flemish Government (EWI Department). K.P. was supported by U.S. National Science Foundation Grant No. DMR-1206354. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:119527 Serial 800  
Permanent link to this record
 

 
Author Vagov, A.V.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Extended Ginzburg-Landau formalism : systematic expansion in small deviation from the critical temperature Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 1 Pages 014502-014502,17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Based on the Gor'kov formalism for a clean s-wave superconductor, we develop an extended version of the single-band Ginzburg-Landau (GL) theory by means of a systematic expansion in the deviation from the critical temperature T(c), i.e., tau = 1 – T/T(c). We calculate different contributions to the order parameter and the magnetic field: the leading contributions (proportional to tau(1/2) in the order parameter and. t in the magnetic field) are controlled by the standard GL theory, while the next-to-leading terms (proportional to tau(3/2) in the gap and proportional to tau(2) in the magnetic field) constitute the extended GL (EGL) approach. We derive the free-energy functional for the extended formalism and the corresponding expression for the current density. To illustrate the usefulness of our formalism, we calculate, in a semianalytical form, the temperature-dependent correction to the GL parameter at which the surface energy becomes zero, and analytically, the temperature dependence of the thermodynamic critical field. We demonstrate that the EGL formalism is not just a mathematical extension to the theory: variations of both the gap and the thermodynamic critical field with temperature calculated within the EGL theory are found in very good agreement with the full BCS results down to low temperatures, which dramatically improves the applicability of the formalism compared to its standard predecessor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298985100002 Publication Date 2012-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 36 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). A. V. V. is grateful to V. Zalipaev for important comments. A. A. S. thanks W. Pogosov for helpful notes. Discussions with E. H. Brandt and A. Perali are appreciated. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:96232 Serial 1155  
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 16 Pages 165217  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly-square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000175325000061 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 112 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:95128 Serial 3082  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Graphene nanoribbons subjected to axial stress Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 8 Pages 085432-085432,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Atomistic simulations are used to study the bending of rectangular graphene nanoribbons subjected to axial stress both for free boundary and supported boundary conditions. The shapes of the deformations of the buckled graphene nanoribbons, for small values of the stress, are sine waves where the number of nodal lines depend on the longitudinal size of the system and the applied boundary condition. The buckling strain for the supported boundary condition is found to be independent of the longitudinal size and estimated to be 0.86%. From a calculation of the free energy at finite temperature we find that the equilibrium projected two-dimensional area of the graphene nanoribbon is less than the area of a flat sheet. At the optimum length the boundary strain for the supported boundary condition is 0.48%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281065100007 Publication Date 2010-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 92 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84583 Serial 1373  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Chiral states in bilayer graphene : magnetic field dependence and gap opening Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 12 Pages 125451-125451,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) At the interface of electrostatic potential kink profiles, one-dimensional chiral states are found in bilayer graphene (BLG). Such structures can be created by applying an asymmetric potential to the upper and the lower layers of BLG. We found the following: (i) due to the strong confinement by the single kink profile, the unidirectional states are only weakly affected by a magnetic field; (ii) increasing the smoothness of the kink potential results in additional bound states, which are topologically different from those chiral states; and (iii) in the presence of a kink-antikink potential, the overlap between the oppositely moving chiral states results in the appearance of crossing and anticrossing points in the energy spectrum. This leads to the opening of tunable minigaps in the spectrum of the unidirectional topological states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295484300016 Publication Date 2011-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92915 Serial 358  
Permanent link to this record
 

 
Author Vodolazov, D.I.; Peeters, F.M. url  doi
openurl 
  Title Dynamic transitions between metastable states in a superconducting ring Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 66 Issue 5 Pages 054537-054537,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Applying the time-dependent Ginzburg-Landau equations, transitions between metastable states of a superconducting ring are investigated in the presence of an external magnetic field. It is shown that if the ring exhibits several metastable states at a particular magnetic field, the transition from one metastable state to another one is governed by both the relaxation time of the absolute value of the order parameter tau(\psi\) and the relaxation time of the phase of the order parameter tau(phi). We found that the larger the ratio tau(\psi\)/tau(phi), the closer the final state will be to the absolute minimum of the free energy, i.e., the thermodynamic equilibrium. The transition to the final state occurs through a subsequent set of single phase slips at a particular point along the ring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000177873000143 Publication Date 2002-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:94917 Serial 768  
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M. url  doi
openurl 
  Title Theory of anharmonic phonons in two-dimensional crystals Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 134302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Anharmonic effects in an atomic monolayer thin crystal with honeycomb lattice structure are investigated by analytical and numerical lattice dynamical methods. Starting from a semiempirical model for anharmonic couplings of third and fourth orders, we study the in-plane and out-of-plane (flexural) mode components of the generalized wave vector dependent Gruneisen parameters, the thermal tension and the thermal expansion coefficients as a function of temperature and crystal size. From the resonances of the displacement-displacement correlation functions, we obtain the renormalization and decay rate of in-plane and flexural phonons as a function of temperature, wave vector, and crystal size in the classical and in the quantum regime. Quantitative results are presented for graphene. There, we find that the transition temperature T-alpha from negative to positive thermal expansion is lowered with smaller system size. Renormalization of the flexural mode has the opposite effect and leads to values of T-alpha approximate to 300 K for systems of macroscopic size. Extensive numerical analysis throughout the Brillouin zone explores various decay and scattering channels. The relative importance of normal and umklapp processes is investigated. The work is complementary to crystalline membrane theory and computational studies of anharmonic effects in two-dimensional crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000353031000001 Publication Date 2015-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132512 Serial 4263  
Permanent link to this record
 

 
Author Gehrke, K.; Moshnyaga, V.; Samwer, K.; Lebedev, O.I.; Verbeeck, J.; Kirilenko, D.; Van Tendeloo, G. url  doi
openurl 
  Title Interface controlled electronic variations in correlated heterostructures Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages 113101,1-113101,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) An interface modification of (LaCa)MnO3-BaTiO3 superlattices was found to massively influence magnetic and magnetotransport properties. Moreover it determines the crystal structure of the manganite layers, changing it from orthorhombic (Pnma) for the conventional superlattice (cSL), to rhombohedral (R3̅ c) for the modified one (mSL). While the cSL shows extremely nonlinear ac transport, the mSL is an electrically homogeneous material. The observations go beyond an oversimplified picture of dead interface layers and evidence the importance of electronic correlations at perovskite interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281643200001 Publication Date 2010-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes This work was supported by DFG via SFB 602, TPA2. Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84249UA @ admin @ c:irua:84249 Serial 1691  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.; Dubonos, S.V.; Geim, A.K. url  doi
openurl 
  Title Multiple flux jumps and irreversible behavior of thin Al superconducting rings Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 67 Issue 5 Pages 054506-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) An experimental and theoretical investigation was made of flux jumps and irreversible magnetization curves of mesoscopic Al superconducting rings. In the small magnetic-field region the change of vorticity with magnetic field can be larger than unity. This behavior is connected with the existence of several metastable states of different vorticities. The intentional introduction of a defect in the ring has a large effect on the size of the flux jumps. Calculations based on the time-dependent Ginzburg-Landau model allows us to explain the experimental results semiquantitatively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000181360300061 Publication Date 2003-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 49 Open Access  
  Notes Approved Most recent IF: 3.836; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:102812 Serial 2227  
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Chaves, A.; Tadić, M.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Electronic and optical properties of a circular graphene quantum dot in a magnetic field : influence of the boundary conditions Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 20 Pages 205441-205441,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) An analytical approach, using the Dirac-Weyl equation, is implemented to obtain the energy spectrum and optical absorption of a circular graphene quantum dot in the presence of an external magnetic field. Results are obtained for the infinite-massand zigzag boundary conditions. We found that the energy spectrum of a dot with the zigzag boundary condition exhibits a zero-energy band regardless of the value of the magnetic field, while for the infinite-mass boundary condition, the zero-energy states appear only for high magnetic fields. The analytical results are compared to those obtained from the tight-binding model: (i) we show the validity range of the continuum model and (ii) we find that the continuum model with the infinite-mass boundary condition describes rather well its tight-binding analog, which can be partially attributed to the blurring of the mixed edges by the staggered potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297295400011 Publication Date 2011-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 78 Open Access  
  Notes ; This work was supported by the EuroGraphene programme of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP), the bilateral projects between Flanders and Brazil, the Flemish Science Foundation (FWO-Vl), and the Brazilian Research Council (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:94025 Serial 997  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Jansen, J.; Zandbergen, H.W. url  doi
openurl 
  Title Role of carbon and nitrogen in Fe2C and Fe2N from first-principles calculations Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 9 Pages 094102-094102,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Although Fe2C and Fe2N are technologically important materials, the exact nature of the chemical bonding of C and N atoms and the related impact on the electronic properties are at present unclear. Here, results of first-principles electronic structure calculations for Fe2X (X = C, N) phases are presented. The electronic structure calculations show that the roles of N and C in iron nitrides and carbides are comparable, and that the X-X interactions have significant impact on electronic properties. Accurate analysis of the spatially resolved differences in electron densities reveals a subtle distinction between the chemical bonding and charge transfer of N and C ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294772800003 Publication Date 2011-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92327 Serial 2912  
Permanent link to this record
 

 
Author Schattschneider, P.; Verbeeck, J.; Mauchamp, V.; Jaouen, M.; Hamon, A.-L. url  doi
openurl 
  Title Real-space simulations of spin-polarized electronic transitions in iron Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 14 Pages 144418-144418,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) After the advent of energy-loss magnetic chiral dichroism (EMCD) in 2006, rapid progress in theoretical understanding and in experimental performance was achieved, recently demonstrating a spatial resolution of better than 2 nm. Similar to the x-ray magnetic circular dichroism technique, EMCD is used to study atom specific magnetic moments. The latest generation of electron microscopes opens the road to the mapping of spin moments on the atomic scale with this method. Here the theoretical background to reach this challenging aim is elaborated. Numerical simulations of the L3 transition in an Fe specimen, based on a combination of the density-matrix approach for inelastic electron scattering with the propagation of the probe electron in the lattice potential indicate the feasibility of single spin mapping in the electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282678900006 Publication Date 2010-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes P.S. acknowledges the support of the Austrian Science Fund, Project No. I543-N20. Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85029UA @ admin @ c:irua:85029 Serial 2832  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: