|   | 
Details
   web
Records
Author Dong, H.M.; Tao, Z.H.; Duan, Y.F.; Li, L.L.; Huang, F.; Peeters, F.M.
Title Substrate dependent terahertz magneto-optical properties of monolayer WS2 Type A1 Journal article
Year 2021 Publication Optics Letters Abbreviated Journal Opt Lett
Volume 46 Issue 19 Pages 4892-4895
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Terahertz (THz) magneto-optical (MO) properties of monolayer (ML) tungsten disulfide (WS2), placed on different substrates and subjected to external magnetic fields, are studied using THz time-domain spectroscopy (TDS). We find that the THz MO conductivity exhibits a nearly linear response in a weak magnetic field, while a distinctly nonlinear/oscillating behavior is found in strong magnetic fields owing to strong substrate-induced random impurity scattering and interactions. The THz MO response of ML WS2 depends sensitively on the choice of the substrates, which we trace back to electronic localization and the impact of the substrates on the Landau level (LL) spectrum. Our results provide an in-depth understanding of the THz MO properties of ML WS2/substrate systems, especially the effect of substrates, which can be utilized to realize atomically thin THz MO nano-devices. (C) 2021 Optical Society of America
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000702746400048 Publication Date 2021-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.416 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 3.416
Call Number UA @ admin @ c:irua:182526 Serial 7023
Permanent link to this record
 

 
Author Xi, J.; Yang, S.; Silvioli, L.; Cao, S.; Liu, P.; Chen, Q.; Zhao, Y.; Sun, H.; Hansen, J.N.; Haraldsted, J.-P.B.; Kibsgaard, J.; Rossmeisl, J.; Bals, S.; Wang, S.; Chorkendorff, I.
Title Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H₂O₂ synthesis under acidic conditions Type A1 Journal article
Year 2021 Publication Journal Of Catalysis Abbreviated Journal J Catal
Volume 393 Issue Pages 313-323
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Single-atom catalysts (SACs) have recently attracted broad scientific interests due to their unique structural feature, the single-atom dispersion. Optimized electronic structure as well as high stability are required for single-atom catalysts to enable efficient electrochemical production of H2O2. Herein, we report a facile synthesis method that stabilizes atomic Pd species on the reduced graphene oxide/Ndoped carbon hollow carbon nanospheres (Pd1/N-C). Pd1/N-C exhibited remarkable electrochemical H2O2 production rate with high faradaic efficiency, reaching 80%. The single-atom structure and its high H2O2 production rate were maintained even after 10,000 cycle stability test. The existence of single-atom Pd as well as its coordination with N species is responsible for its high activity, selectivity, and stability. The N coordination number and substrate doping around Pd atoms are found to be critical for an optimized adsorption energy of intermediate *OOH, resulting in efficient electrochemical H2O2 production. (C) 2020 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000640923500003 Publication Date 2020-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.844 Times cited 40 Open Access Not_Open_Access
Notes This research was financially supported by the National Natural Science Foundation of China (No. 51772110), Natural Science Foundation of Hubei Province (No. 2019CFB539), Danmarks Innovationsfond within the ProActivE project (5160-00003B), Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals, the Carlsberg Foundation grant CF18-0435, the Institutional Research Program (2E30220) of the Korea Institute of Science and Technology (KIST), Shenzhen Science and Technology Plan under Grant (JCYJ20170818160751460) and the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCP20200205). The authors would like to acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology and the Wuhan National Laboratory for Optoelectronics for SEM, TEM, Raman and XPS measurements. Approved Most recent IF: 6.844
Call Number UA @ admin @ c:irua:178321 Serial 6796
Permanent link to this record
 

 
Author Yu, Y.; Chen, X.; Liu, X.; Li, J.; Sanyal, B.; Kong, X.; Peeters, F.M.; Li, L.
Title Ferromagnetism with in-plane magnetization, Dirac spin-gapless semiconducting properties, and tunable topological states in two-dimensional rare-earth metal dinitrides Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 2 Pages 024407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Since the successful synthesis of bulk single crystals MoN2 and ReN2, which have a layered structure, transition-metal dinitrides have attracted considerable attention in recent years. Here, we focus on rare-earth metal (Rem) elements, and propose seven stable Rem dinitride monolayers with a 1T structure, namely, 1T-RemN2. We use first-principles calculations, and find that these monolayers have a ferromagnetic ground state with in-plane magnetization. Without spin-orbit coupling (SOC), the band structures are spin-polarized with Dirac points at the Fermi level. Remarkably, the 1T-LuN2 monolayer exhibits an isotropic magnetocrystalline anisotropy energy in the xy plane with in-plane magnetization, indicating easy tunability of the magnetization direction. When rotating the magnetization vector in the xy plane, we propose a model that accurately describes the variation of the SOC band gap and the two possible topological states (Weyl-like semimetal and Chern insulator states) whose properties are tunable. The Weyl-like semimetal state is a critical point between the two Chern insulator states with opposite sign of the Chern numbers (+/- 1). The nontrivial band gap (up to 60.3 meV) and the Weyl-like semimetal state are promising for applications in spintronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000742384700001 Publication Date 2022-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 4 Open Access Not_Open_Access: Available from 06.07.2202
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:186514 Serial 6991
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M.
Title Topological Dirac semimetal phase in <tex> $GexSny alloys Type A1 Journal article
Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 112 Issue 25 Pages 251601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Recently, two stable allotropes (germancite and stancite) for the group IV elements (Ge and Sn) with a staggered layered dumbell structure were proposed to be three-dimensional (3D) topological Dirac semimetals [Phys. Rev. B 93, 241117 (2016)]. A pair of Dirac points is on the rotation axis away from the time-reversal invariant momentum, and the stability of the 3D bulk Dirac points is protected by the C-3 rotation symmetry. Here, we use the first principles calculations to investigate GexSny alloys which share the same rhombohedral crystal structure with the space group of D-3d(6). Six GexSny alloys are predicted to be energetically and dynamically stable, where (x, y) = (8, 6) and (6, 8) and the alpha and beta phases of (10, 4) and (4, 10). Our results demonstrate that all the six GexSny alloys are topological Dirac semimetals. The different nontrivial surface states and surface Fermi arcs are identified. Our work will substantially enrich the family of 3D Dirac semimetals which are within the reach of experimental realization. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000435987400013 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; This work was supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-VI), and the FLAG-ERA Project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:151970UA @ admin @ c:irua:151970 Serial 5045
Permanent link to this record
 

 
Author Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M.
Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
Year 2023 Publication Applied physics letters Abbreviated Journal
Volume 123 Issue 3 Pages 033102-33106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033604700003 Publication Date 2023-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4; 2023 IF: 3.411
Call Number UA @ admin @ c:irua:198382 Serial 8823
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
Title Electric-and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 8 Pages 085702
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to- edge transitions differently due to the different responses of bulk and edge states to these fields.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000403100700001 Publication Date 2017-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 32 Open Access
Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant Nos. 11304316 and 11574319), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:144325 Serial 4648
Permanent link to this record
 

 
Author Li, L.; Leenaerts, O.; Kong, X.; Chen, X.; Zhao, M.; Peeters, F.M.
Title Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators Type A1 Journal article
Year 2017 Publication Nano Research Abbreviated Journal Nano Res
Volume 10 Issue 10 Pages 2168-2180
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) Quantum spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III-V monolayers and their halides, which have a chair structure (regular hexagonal framework), have been widely studied. Using first-principles calculations, we formulate a new structure model for the functionalized group III-V monolayers, which consist of rectangular GaBi-X-2 (X = I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a far lower energy than the GaBi-X-2 monolayers with a chair structure. Remarkably, the DHF GaBi-X-2 monolayers are all QSH insulators, which exhibit sizeable nontrivial band gaps ranging from 0.17 to 0.39 eV. The band gaps can be widely tuned by applying different spin-orbit coupling strengths, resulting in a distorted Dirac cone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401320700029 Publication Date 2017-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.354 Times cited 15 Open Access
Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI. ; Approved Most recent IF: 7.354
Call Number UA @ lucian @ c:irua:143739 Serial 4598
Permanent link to this record
 

 
Author Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X.; Bogaerts, A.
Title Plasma-catalytic methanol synthesis from CO₂ hydrogenation over a supported Cu cluster catalyst : insights into the reaction mechanism Type A1 Journal article
Year 2022 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 12 Issue 2 Pages 1326-1337
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Plasma-catalytic CO, hydrogenation for methanol production is gaining increasing interest, but our understanding of its reaction mechanism remains primitive. We present a combined experimental/computational study on plasma-catalytic CO, hydrogenation to CH3OH over a size-selected Cu/gamma-Al2O3 catalyst. Our experiments demonstrate a synergistic effect between the Cu/gamma-Al2O3 catalyst and the CO2/H-2 plasma, achieving a CO2 conversion of 10% at 4 wt % Cu loading and a CH3OH selectivity near 50% further rising to 65% with H2O addition (for a H2O/CO2 ratio of 1). Furthermore, the energy consumption for CH3OH production was more than 20 times lower than with plasma only. We carried out density functional theory calculations over a Cu-13/gamma-Al2O3 model, which reveal that the interfacial sites of the Cu-13 cluster and gamma-Al2O3 support show a bifunctional effect: they not only activate the CO2 molecules but also strongly adsorb key intermediates to promote their hydrogenation further. Reactive plasma species can regulate the catalyst surface reactions via the Eley-Rideal (E-R) mechanism, which accelerates the hydrogenation process and promotes the generation of the key intermediates. H2O can promote the CH3OH desorption by competitive adsorption over the Cu-13/gamma-Al2O3 surface. This study provides new insights into CO2 hydrogenation through plasma catalysis, and it provides inspiration for the conversion of some other small molecules (CH4, N-2, CO, etc.) by plasma catalysis using supported-metal clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000742735600001 Publication Date 2022-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.9
Call Number UA @ admin @ c:irua:186416 Serial 7192
Permanent link to this record
 

 
Author Cui, Z.; Hao, Y.; Jafarzadeh, A.; Li, S.; Bogaerts, A.; Li, L.
Title The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study Type A1 Journal article
Year 2023 Publication Surfaces and interfaces Abbreviated Journal
Volume 36 Issue Pages 102602
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride

(SF6). To evaluate the potential of MgO as a catalyst in plasma degradation, we investigate the catalytic properties

of MgO on SF6 adsorption and activation by density functional theory (DFT) where the O-defective and

hydroxylated surfaces are considered as two typical plasma-generated surfaces. Our results show that perfect

MgO (001) and (111) surfaces cannot interact with SF6 and only physical adsorption happens. In case of Odefective

MgO surfaces, the O vacancy is the most stable adsorption site. SF6 undergoes a decomposition to SF5

and F over the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the Odefective

(111) surface. Besides, SF6 shows a physically adsorption at the stepsite of the MgO (001) surface,

accompanied by small changes in its bond angle and length. Furthermore, SF6 is found to be physically and

chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-terminated MgO (111) surfaces, respectively.

The SF6 molecule undergoes a self-decomposition on the 1.0 ML hydroxylated surface via a surface bonding

process. This study shows that defective and hydroxylated MgO surfaces have the surface capacities for SF6

activation, which shows that MgO has potential as packing material in SF6 waste treatment in packed-bed

plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000916285000001 Publication Date 2022-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes National Natural Science Foundation of China, 52207155 ; Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Vlaamse regering; Approved Most recent IF: 6.2; 2023 IF: NA
Call Number PLASMANT @ plasmant @c:irua:194364 Serial 7244
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title SF₆ degradation in γ-Al₂O₃ packed DBD system : effects of hydration, reactive gases and plasma-induced surface charges Type A1 Journal article
Year 2023 Publication Plasma chemistry and plasma processing Abbreviated Journal
Volume 43 Issue Pages 635-656
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a gamma-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O-2 can occupy the active sites (Al-III site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000966639200001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number UA @ admin @ c:irua:196033 Serial 8516
Permanent link to this record
 

 
Author González-Rubio, G.; de Oliveira, T.M.; Altantzis, T.; La Porta, A.; Guerrero-Martínez, A.; Bals, S.; Scarabelli, L.; Liz-Marzán, L.M.
Title Disentangling the effect of seed size and crystal habit on gold nanoparticle seeded growth Type A1 Journal article
Year 2017 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 53 Issue 53 Pages 11360-11363
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Oxidative etching was used to produce gold seeds of different sizes and crystal habits. Following detailed characterization, the seeds were grown under different conditions. Our results bring new insights toward understanding the effect of size and crystallinity on the growth of anisotropic particles, whilst identifying guidelines for the optimisation of new synthetic protocols of predesigned seeds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000412814900019 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 29 Open Access OpenAccess
Notes This work was funded by the Spanish MINECO (grant # MAT2013-46101-R, Ramon y Cajal fellowship to A. G.-M. and FPI fellowship to G. G.-R.). Financial support is acknowledged from the European Commission (EUSMI, 731019). S. B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). T. A. acknowledges a postdoctoral grant from Research Foundation Flanders (FWO, Belgium). ECAS_Sara (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319
Call Number EMAT @ emat @c:irua:146101UA @ admin @ c:irua:146101 Serial 4734
Permanent link to this record
 

 
Author Han, S.; Tang, C.S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M.V.; Guo, Y.; Tian, L.; Breese, M.B.H.; Cao, G.; Cai, C.; Wee, A.T.S.; Yin, X.
Title Orbital-hybridization-driven charge density wave transition in CsV₃Sb₅ kagome superconductor Type A1 Journal article
Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV(3)Sb(5) (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000903664200001 Publication Date 2022-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 29.4
Call Number UA @ admin @ c:irua:193500 Serial 7328
Permanent link to this record
 

 
Author Li, J.; Pereira, P.J.; Yuan, J.; Lv, Y.-Y.; Jiang, M.-P.; Lu, D.; Lin, Z.-Q.; Liu, Y.-J.; Wang, J.-F.; Li, L.; Ke, X.; Van Tendeloo, G.; Li, M.-Y.; Feng, H.-L.; Hatano, T.; Wang, H.-B.; Wu, P.-H.; Yamaura, K.; Takayama-Muromachi, E.; Vanacken, J.; Chibotaru, L.F.; Moshchalkov, V.V.
Title Nematic superconducting state in iron pnictide superconductors Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue 1 Pages 1880
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba 0.5 K 0.5 Fe 2 As 2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000416933400002 Publication Date 2017-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 8 Open Access OpenAccess
Notes The authors J.L., P.J.P., and J.Y. contributed equally to this work. J.L. and J.Y. designed the experiments. J.L., H.-L.F., K.Y., and E.T.-M. grew the single crystals. J.L., J.Y., Y.-Y.L., M.-P.J., D.L., M.-Y.L., T.H., H.-B.W., P.-H.W., K.Y., E.T.-M., J.V., and V.V.M. fabricated the devices and measured transport properties. J.L., Y.-Y.L., Z.-Q.L., Y.-J.L., J.-F.W., and L.L. studied on the pulsed high field measurements. X.K. and G.V.T. measured the low temperature TEM. All authors discussed the data. J.L., P.J.P., and L.F.C. proposed the model and simulated the results. J.L., P.J.P., K.Y., E.T.-M., and L.F.C. analyzed the data and prepared the manuscript. Approved Most recent IF: 12.124
Call Number EMAT @ emat @c:irua:147348 Serial 4772
Permanent link to this record
 

 
Author Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G.
Title Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis Type A1 Journal article
Year 2019 Publication Nano Research Abbreviated Journal Nano Res
Volume 12 Issue 1 Pages 33-39
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Natural organisms contain rich elements and naturally optimized smart structures, both of which have inspired various innovative concepts and designs in human society. In particular, several natural organisms have been used as element sources to synthesize low-cost and environmentally friendly electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries, which are clean energy devices. However, to date, no naturally optimized smart structures have been employed in the synthesis of ORR catalysts, including graphene-based materials. Here, we demonstrate a novel strategy to synthesize graphene-graphite films (GGFs) by heating butterfly wings coated with FeCl3 in N-2, in which the full power of natural organisms is utilized. The wings work not only as an element source for GGF generation but also as a porous supporting structure for effective nitrogen doping, two-dimensional spreading, and double-face exposure of the GGFs. These GGFs exhibit a half-wave potential of 0.942 V and a H2O2 yield of < 0.07% for ORR electrocatalysis; these values are comparable to those for the best commercial Pt/C and all previously reported ORR catalysts in alkaline media. This two-in-one strategy is also successful with cicada and dragonfly wings, indicating that it is a universal, green, and cost-effective method for developing high-performance graphene-based materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453629900004 Publication Date 2018-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.354 Times cited 7 Open Access Not_Open_Access
Notes ; The authors would like to thank Drs Qiang Wang and Wenjuan Yuan for useful discussions. This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21601136 and 11404016), the National Program for Thousand Young Talents of China, Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology. This work also made use of the resources of the National Center for Electron Microscopy in Beijing. ; Approved Most recent IF: 7.354
Call Number UA @ admin @ c:irua:156210 Serial 5265
Permanent link to this record
 

 
Author Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L.
Title Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition Type A1 Journal article
Year 2017 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 7 Issue 7 Pages 442
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419186800037 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 19 Open Access OpenAccess
Notes The authors thank Gabriele Ferrini for fruitful discussions on the spectroscopic ellipsometry model and Francesco Rossella from NEST for the optical profilometry data. The authors acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). Luca Gavioli, Emanuele Cavaliere and Giulio Benetti acknowledge support from Università Cattolica del Sacro Cuore through D.1.1 and D.3.1 grants. Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:147862UA @ admin @ c:irua:147862 Serial 4802
Permanent link to this record
 

 
Author Yue-Feng, Z.; Chao, W.; Wang, W.-Z.; Li, L.; Hao, S.; Tao, S.; Jie, P.
Title Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure Type A1 Journal article
Year 2018 Publication Wuli xuebao Abbreviated Journal Acta Phys Sin-Ch Ed
Volume 67 Issue 8 Pages 085202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Methane needle-plane discharge has practical application prospect and scientific research significance since methane conversion heavy oil hydrogenation is formed by coupling methane needle-plane discharge with heavy oil hydrogenation, which can achieve high-efficient heavy oil hydrogenation and increase the yields of high value-added light olefins. In this paper, a two-dimensional fluid model is built up for numerically simulating the methane needle-plane discharge plasma at atmospheric pressure. Spatial and axial distributions of electric intensity, electron temperature and particle densities are obtained. Reaction yields are summarized and crucial pathways to produce various kinds of charged and neutral particles are found out. Simulation results indicate that axial evolutions of CH3+ and CH4+ densities, electric intensity and electron temperature are similar and closely related. The CH5+ and C2H5+ densities first increase and then decrease along the axial direction. The CH3 and H densities have nearly identical spatial and axial distributions. Particle density distributions of CH2, C2H4 and C2H5 are obviously different in the area near the cathode but comparatively resemblant in the positive column region. The CH3+ and CH4+ are produced by electron impact ionizations between electrons and CH4. The CH5+ and C2H5+ are respectively generated by molecular impact dissociations between CH3+ and CH4 and between CH4+ and CH4. Electron impact decomposition between electrons and CH4 is a dominated reaction to produce CH3, CH2, CH and H. The reactions between CH2 and CH4 and between electrons and C2H4 are critical pathways to produce C2H4 and C2H2, respectively. In addition, the yields of electron impact decomposition reactions between electrons and CH4 and reactions between CH2 and CH4 account for 52.15% and 47.85% of total yields of H-2 respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000443194600017 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.624 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 0.624
Call Number UA @ lucian @ c:irua:153771 Serial 5120
Permanent link to this record
 

 
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L.
Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano
Volume 15 Issue 7 Pages 10775-10981
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000679406500006 Publication Date 2021-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 538 Open Access OpenAccess
Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942
Call Number UA @ admin @ c:irua:180553 Serial 6846
Permanent link to this record
 

 
Author Mayer, M.; Scarabelli, L.; March, K.; Altantzis, T.; Tebbe, M.; Kociak, M.; Bals, S.; Garcia de Abajo, F.J.; Fery, A.; Liz-Marzan, L.M.
Title Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 5427-5437
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Inspired by the concept of living polymerization reaction, we are able to produce silver-gold-silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with approximately 210 nm x 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of approximately 4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000359613700087 Publication Date 2015-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 117 Open Access OpenAccess
Notes L.M.L.-M. acknowledges funding from the European Research Council Advanced Grant PLASMAQUO (No. 267867) and from the Spanish MINECO (grant MAT2013-46101-R). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreements 312483 (ESTEEM2) and 262348 (ESMI). M.M., M.T., and A.F. acknowledge funding from the European Research Council starting grant METAMECH (No 306686). M.T. was supported by the Elite Network Bavaria in the frame of the Elite Study Program “Macromolecular Science” and funded via a grant for Ph.D. candidates according to Bavarian elite promotion law (BayEFG). F.J.G.deA. acknowledges funding from the Spanish MINECO (grant MAT2014-59096-P).; esteem2jra3; esteem2jra4; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:129687 c:irua:129687 Serial 3975
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M.
Title Graphene-based heterostructures with moire superlattice that preserve the Dirac cone: a first-principles study Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 25 Pages 255302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) In van der Waals heterostructures consisting of graphene and a substrate, lattice mismatch often leads to a moire pattern with a huge supercell, preventing its treatment within first- principles calculations. Previous theoretical works considered mostly simple stacking models such as AB, AA with straining the lattice of graphene to match that of the substrate. Here, we propose a moire superlattice build from graphene and porous graphene or graphyne like monolayers, having a lower interlayer binding energy, needing little strain in order to match the lattices. In contrast to the results from the simple stacking models, the present ab initio calculations for the moire superlattices show different properties in lattice structure, energy, and band structures. For example, the Dirac cone at the K point is preserved and a linear energy dispersion near the Fermi level is obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464184300001 Publication Date 2019-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes ; This work is supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:159314 Serial 5215
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G.
Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 115 Issue 38 Pages 9515-9520
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447224900057 Publication Date 2018-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 50 Open Access OpenAccess
Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661
Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059
Permanent link to this record
 

 
Author Cui, Z.; Jafarzadeh, A.; Hao, Y.; Liu, L.; Li, L.; Zheng, Y.
Title Prediction of the decomposition tendency of C5F10O on discharged metal surfaces Type A1 Journal article
Year 2023 Publication IEEE transactions on dielectrics and electrical insulation Abbreviated Journal
Volume 30 Issue 3 Pages 1365-1367
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) In this letter, a dipole sheet method is proposed to theoretically study the adsorption and decomposition of C5F10O over-discharged Cu (111) and Al (111) surfaces. A synergistic effect of external electric fields and surface excess charges shows up for jointly promoting the adsorption of C5F10O, accompanied by the enhancement of C-F bond elongation and charge transfer process. The decomposition of C5F10O is facilitated in the discharged region and the initial decomposition is found most likely to occur via the cleavage of the C-F single bond. The results indicate that the decomposition of C5F10O over the metal electrode surfaces is much accelerated when discharge faults occur and free F atoms could be generated from C5F10O before its carbon chain breakage. These findings help to elucidate the underlying decomposition tendency of C5F10O in discharged systems and provide a practical method for evaluating and designing new insulation gases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001000675800054 Publication Date 2023-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-9878 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access
Notes Approved Most recent IF: 3.1; 2023 IF: 2.115
Call Number UA @ admin @ c:irua:197319 Serial 9076
Permanent link to this record
 

 
Author Bugani, S.; Modugno, F.; Lucejko, J.J.; Giachi, G.; Cagno, S.; Cloetens, P.; Janssens, K.; Morselli, L.
Title Study on the impregnation of archaeological waterlogged wood with consolidation treatments using synchrotron radiation microtomography Type A1 Journal article
Year 2009 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
Volume 395 Issue 7 Pages 1977-1985
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) In favourable conditions of low temperature and low oxygen concentration, archaeological waterlogged wooden artefacts, such as shipwrecks, can survive with a good state of preservation. Nevertheless, anaerobic bacteria can considerably degrade waterlogged wooden objects with a significant loss in polysaccharidic components. Due to these decay processes, wood porosity and water content increase under ageing. In such conditions, the conservation treatments of archaeological wooden artefacts often involve the replacement of water with substances which fill the cavities and help to prevent collapse and stress during drying. The treatments are very often expensive and technically difficult, and their effectiveness very much depends on the chemical and physical characteristics of the substances used for impregnation. Also important are the degree of cavity-filling, penetration depth and distribution in the structure of the wood. In this study, the distribution in wood cavities of some mixtures based on polyethylene glycols and colophony, used for the conservation of waterlogged archaeological wood, was investigated using synchrotron radiation X-ray computed microtomography (SR-A mu CT). This non-destructive imaging technique was useful for the study of the degraded waterlogged wood and enabled us to visualise the morphology of the wood and the distribution of the materials used in the wood treatments. The study has shown how deposition is strictly related to the dimension of the wooden cavities. The work is currently proceeding with the comparison of synchrotron observations with the data of the solutions viscosity and with those of the properties imparted to the wood by the treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000272017000005 Publication Date 2009-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.431 Times cited 30 Open Access
Notes Approved Most recent IF: 3.431; 2009 IF: 3.480
Call Number UA @ admin @ c:irua:94493 Serial 5853
Permanent link to this record
 

 
Author Liao, Z; , Green, R.J; Gauquelin, N; Macke, S.; Li, L.; Gonnissen, J; Sutarto, R.; Houwman, E.P.; Zhong, Z.; Van Aert, S.; Verbeeck, J.; Sawatzky, G.A.; Huijben, M.; Koster, G.; Rijnders, G.
Title Long-Range Domain Structure and Symmetry Engineering by Interfacial Oxygen Octahedral Coupling at Heterostructure Interface Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages 6627-6634
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which is accompanyed by a change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of sixfold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, it is unraveled how the local oxygen octahedral coupling at perovskite heterostructural interfaces strongly influences the domain structure and symmetry of the epitaxial films resulting in design rules to induce various structures in thin films using carefully selected combinations of substrate/buffer/film. Very interestingly it is discovered that these combinations lead to structure changes throughout the full thickness of the film. The results provide a deep insight into understanding the origin of induced structures in a perovskite heterostructure and an intelligent route to achieve unique functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384809800010 Publication Date 2016-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access
Notes We thank B. Keimer for valuable discussions. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., J.G., S.V.A., J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan.; esteem2jra2; esteem2jra3; ECASJO_; Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:144663UA @ admin @ c:irua:144663 Serial 4106
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C.
Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 13 Issue 6 Pages 1035
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000960297000001 Publication Date 2023-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 3 Open Access OpenAccess
Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553
Call Number EMAT @ emat @c:irua:196115 Serial 7378
Permanent link to this record
 

 
Author Hamon, C.; Novikov, S.M.; Scarabelli, L.; Solís, D.M.; Altantzis, T.; Bals, S.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M.
Title Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals Type A1 Journal article
Year 2015 Publication ACS Photonics Abbreviated Journal Acs Photonics
Volume 2 Issue 2 Pages 1482-1488
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Gold nanorod supercrystals have been widely employed for the detection of relevant bioanalytes with detection limits ranging from nano- to picomolar levels,

confirming the promising nature of these structures for biosensing. Even though a relationship between the height of the supercrystal (i.e., the number of stacked nanorod layers)and the enhancement factor has been proposed, no systematic

study has been reported. In order to tackle this problem, we prepared gold nanorod supercrystals with varying numbers of stacked layers and analyzed them extensively by atomic force microscopy, electron microscopy and surface enhanced Raman scattering. The experimental results were compared to numerical

simulations performed on real-size supercrystals composed of thousands of nanorod building blocks. Analysis of the hot spot distribution in the simulated supercrystals showed the presence of standing waves that were distributed at different depths, depending on the number of layers in each supercrystal. On the basis of these theoretical results, we interpreted the experimental

data in terms of analyte penetration into the topmost layer only, which indicates that diffusion to the interior of the supercrystals would be crucial if the complete field enhancement produced by the stacked nanorods is to be exploited. We propose that our conclusions will be of high relevance in the design of next generation plasmonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363435600013 Publication Date 2015-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.756 Times cited 70 Open Access OpenAccess
Notes The authors are thankful to Dr. Luis Yate for assistance with sample preparation. This work was supported by the European Research Council (ERC Advanced Grant #267867 Plasmaquo and ERC Starting Grant #335078 Colouratom) and the Spanish Ministerio de Economía y Competitividad (MAT2013-46101-R). D.M.S., J.M.T., and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Economiá y Competitividad (MAT2014-58201-C2-1-R, MAT2014-58201- C2-2-R, Project TACTICA), from the ERDF and the Galician Regional Government under Projects CN2012/279 and CN2012/260 (AtlantTIC) and the Plan I2C (2011−2015), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura Project IB13185).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.756; 2015 IF: NA
Call Number c:irua:129458 Serial 3978
Permanent link to this record
 

 
Author Lueangchaichaweng, W.; Brooks, N.R.; Fiorilli, S.; Gobechiya, E.; Lin, K.; Li, L.; Parres-Esclapez, S.; Javon, E.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.; Jacobs, P.A.; Pescarmona, P.P.;
Title Gallium oxide nanorods : novel, template-free synthesis and high catalytic activity in epoxidation reactions Type A1 Journal article
Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 53 Issue 6 Pages 1585-1589
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000330558400021 Publication Date 2014-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 61 Open Access OpenAccess
Notes START 1; Methusalem; Prodex; IAP-PAI; and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
Call Number UA @ lucian @ c:irua:115726 Serial 1314
Permanent link to this record
 

 
Author Lugli, L.F.; Fuchslueger, L.; Vallicrosa, H.; Van Langenhove, L.; Ranits, C.; Garberi, P.R.F.; Verryckt, L.; Grau, O.; Brechet, L.; Peguero, G.; Llusia, J.; Ogaya, R.; Marquez, L.; Portillo-Estrada, M.; Ramirez-Rojas, I.; Courtois, E.; Stahl, C.; Sardans, J.; Penuelas, J.; Verbruggen, E.; Janssens, I.
Title Contrasting responses of fine root biomass and traits to large-scale nitrogen and phosphorus addition in tropical forests in the Guiana shield Type A1 Journal article
Year 2024 Publication Oikos: a journal of ecology Abbreviated Journal
Volume 2024 Issue 4 Pages e10412-14
Keywords A1 Journal article; Engineering sciences. Technology; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract (down) Fine roots mediate plant nutrient acquisition and growth. Depending on soil nutrient availability, plants can regulate fine root biomass and morphological traits to optimise nutrient acquisition. Little is known, however, about the importance of these parameters influencing forest functioning. In this study, we measured root responses to nutrient additions to gain a mechanistic understanding of plant adaptations to nutrient limitation in two tropical forests in French Guiana, differing twofold in their soil nutrient statuses. We analysed the responses of root biomass, mean root diameter (RD), specific root length (SRL), specific root area (SRA), root tissue density (RTD) and carbon (C), nitrogen (N) and phosphorus (P) concentrations in roots down to 15 cm soil depth after three years of N and P additions. At the lower-fertility site Paracou, no changes in root biomass or morphological traits were detected with either N or P addition, although P concentrations in roots increased with P addition. In the higher fertility site, Nouragues, root biomass and P concentrations in roots increased with P addition, with no changes in morphological traits. In contrast, N addition shifted root traits from acquisitive to more conservative by increasing RTD. A significant interaction between N and P in Nouragues pointed to stronger responses to P addition in the absence of N. Our results suggest that the magnitude and direction of root biomass and trait expression were regulated by soil fertility, corroborated by the response to N or P additions. At low fertility sites, we found lower plasticity in root trait expression compared to more fertile conditions, where N and P additions caused stronger and antagonistic responses. Identifying the exact role of mechanisms affecting root nutrient uptake in Amazon forests growing in different soils will be crucial to foresee if and how rapid global changes can affect their carbon allocation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142552200001 Publication Date 2024-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-1299 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:202834 Serial 9195
Permanent link to this record
 

 
Author Boschker, H.T.S.; Cook, P.L.M.; Polerecky, L.; Eachambadi, R.T.; Lozano, H.; Hidalgo-Martinez, S.; Khalenkow, D.; Spampinato, V.; Claes, N.; Kundu, P.; Wang, D.; Bals, S.; Sand, K.K.; Cavezza, F.; Hauffman, T.; Bjerg, J.T.; Skirtach, A.G.; Kochan, K.; McKee, M.; Wood, B.; Bedolla, D.; Gianoncelli, A.; Geerlings, N.M.J.; Van Gerven, N.; Remaut, H.; Geelhoed, J.S.; Millan-Solsona, R.; Fumagalli, L.; Nielsen, L.P.; Franquet, A.; Manca, J.V.; Gomila, G.; Meysman, F.J.R.
Title Efficient long-range conduction in cable bacteria through nickel protein wires Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 12 Issue 1 Pages 3996
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000669944900006 Publication Date 2021-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access OpenAccess
Notes The authors thank Marlies Neiemeisland for assistance with Raman microscopy, Michiel Kienhuis for assistance with NanoSIMS analysis, Peter Hildebrandt and Diego Millo for helping with the interpretation of the Raman spectra, IONTOF for the Orbitrap Hybrid- SIMS analysis, and Rene Fabregas for helping with finite-element numerical modeling for SDM. H.T.S.B. and F.J.R.M. were financially supported by the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). Research Foundation Flanders supported F.J.R.M., J.V.M., and R.T.E. through FWO grant G031416N, and F.J.R.M. and J.S.G. through FWO grant G038819N. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from NWO in the Netherlands (grant 023.005.049). The NanoSIMS facility at Utrecht University was financed through a large infrastructure grant by the Netherlands Organization for Scientific Research (NWO, grant no. 175.010.2009.011) and through a Research Infrastructure Fund by the Utrecht University Board. A.G.S. is supported by the Special Research Fund (BOF) of Ghent University (BOF14/IOP/003, BAS094-18, 01IO3618) and FWO (G043219). The ToF-SIMS was funded by FWO Hercules grant (ZW/13/07) to J.V.M. and A.F. H.L., R.M.S., and G.G. were funded by the European Union H2020 Framework Programme (MSCA-ITN-2016) under grant agreement n 721874.EU, the Spanish Agencia Estatal de Investigación and EU FEDER under grant agreements TEC2016-79156-P and TEC2015-72751-EXP, the Generalitat de Catalunya through 2017-SGR1079 grant and CERCA Program. G.G. was recipient of an ICREA Academia Award, and H.L. of a FPI fellowship (BES-2015-074799) from the Agencia Estatal de Investigación/Fondo Social Europeo. L.F. received funding from the European Research Council (grant agreement No. 819417) under the European Union’s Horizon 2020 research and innovation programme. Approved Most recent IF: 12.124
Call Number EMAT @ emat @c:irua:179813 Serial 6803
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Xu, W.; Peeters, F.M.
Title Electric-field modulation of linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
Year 2019 Publication 2D materials Abbreviated Journal 2D Mater
Volume 6 Issue 1 Pages 015032
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Electro-optical modulators, which use an electric voltage (or an electric field) to modulate a beam of light, are essential elements in present-day telecommunication devices. Using a self-consistent tight-binding approach combined with the standard Kubo formula, we show that the optical conductivity and the linear dichroism of few-layer phosphorene can be modulated by a perpendicular electric field. We find that the field-induced charge screening plays a significant role in modulating the optical conductivity and the linear dichroism. Distinct absorption peaks are induced in the conductivity spectrum due to the strong quantum confinement along the out-of-plane direction and to the field-induced forbidden-to-allowed transitions. The field modulation of the linear dichroism becomes more pronounced with increasing number of phosphorene layers. We also show that the Faraday rotation is present in few-layer phosphorene even in the absence of an external magnetic field. This optical Hall effect is induced by the reduced lattice symmetry of few-layer phosphorene. The Faraday rotation is greatly influenced by the field-induced charge screening and is strongly dependent on the strength of perpendicular electric field and on the number of phosphorene layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454321100002 Publication Date 2018-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 19 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:156776 Serial 5207
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Meng, S.; Yi, Y.; Wang, Y.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title SF₆ catalytic degradation in a γ-Al₂O₃ packed bed plasma system : a combined experimental and theoretical study Type A1 Journal article
Year 2022 Publication High voltage Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Effective abatement of the greenhouse gas sulphur hexafluoride (SF6) waste is of great importance for the environment protection. This work investigates the size effect and the surface properties of gamma-Al2O3 pellets on SF6 degradation in a packed bed dielectric barrier discharge (PB-DBD) system. Experimental results show that decreasing the packing size improves the filamentary discharges and promotes the ignition and the maintenance of plasma, enhancing the degradation performance at low input powers. However, too small packing pellets decrease the gas residence time and reduce the degradation efficiency, especially for the input power beyond 80 W. Besides, lowering the packing size promotes the generation of SO2, while reduces the yields of S-O-F products, corresponding to a better degradation. After the discharge, the pellet surface becomes smoother with the appearance of S and F elements. Density functional theory calculations show that SF6 is likely to be adsorbed at the Al-III site over the gamma-Al2O3(110) surface, and it is much more easily to decompose than in the gas phase. The fluorine gaseous products can decompose and stably adsorb on the pellet surface to change the surface element composition. This work provides a better understanding of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000827312700001 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7264 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.4
Call Number UA @ admin @ c:irua:189603 Serial 7208
Permanent link to this record