|   | 
Details
   web
Records
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A.
Title Nitrogen fixation by gliding arc plasma : better insight by chemical kinetics modelling Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume 10 Issue 10 Pages 2145-2157
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale HaberBosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000402122100006 Publication Date 2017-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 42 Open Access OpenAccess
Notes Approved Most recent IF: 7.226
Call Number UA @ lucian @ c:irua:143261 Serial 4672
Permanent link to this record
 

 
Author Cleiren, E.; Heijkers, S.; Ramakers, M.; Bogaerts, A.
Title Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume 10 Issue 20 Pages 4025-4036
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dry reforming of methane (DRM) in a gliding arc plasmatron is studied for different CH4 fractions in the mixture. The CO2 and CH4 conversions reach their highest values of approximately 18 and 10%, respectively, at 25% CH4 in the gas mixture, corresponding to an overall energy cost of 10 kJ L@1 (or 2.5 eV per molecule) and an energy efficiency of 66%. CO and H2 are the major products, with the formation of smaller fractions of C2Hx (x=2, 4, or 6) compounds and H2O. A chemical kinetics model is used to investigate the underlying chemical processes. The calculated CO2 and CH4 conversion and the energy efficiency are in good agreement with the experimental data. The model calculations reveal that the reaction of CO2 (mainly at vibrationally excited levels) with H radicals is mainly responsible for

the CO2 conversion, especially at higher CH4 fractions in the mixture, which explains why the CO2 conversion increases with increasing CH4 fraction. The main process responsible for CH4 conversion is the reaction with OH radicals. The excellent energy efficiency can be explained by the non-equilibrium character of the plasma, in which the electrons mainly activate the gas molecules, and by the important role of the vibrational kinetics of CO2. The results demonstrate that a gliding arc plasmatron is very promising for DRM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413565100012 Publication Date 2017-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 23 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Federaal Wetenschapsbeleid; Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @c:irua:146665 Serial 4759
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C.
Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
Year 2020 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume 13 Issue 15 Pages 3789-3804
Keywords A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000541499100001 Publication Date 2020-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access
Notes Approved Most recent IF: 8.4; 2020 IF: 7.226
Call Number UA @ admin @ c:irua:168851 Serial 6770
Permanent link to this record
 

 
Author Hollevoet, L.; Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A.; Martens, J.A.
Title Energy‐Efficient Small‐Scale Ammonia Synthesis Process with Plasma‐enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NOx Type A1 Journal article
Year 2022 Publication Chemsuschem Abbreviated Journal (up) Chemsuschem
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Industrial ammonia production without CO2 emission and with low energy consumption is one of the technological grand challenges of this age. Current Haber-Bosch ammonia mass production processes work with a thermally activated iron catalyst needing high pressure. The need for large volumes of hydrogen gas and the continuous operation mode render electrification of Haber-Bosch plants difficult to achieve. Electrochemical solutions at low pressure and temperature are faced with the problematic inertness of the nitrogen molecule on electrodes. Direct reduction of N2 to ammonia is only possible with very reactive chemicals such as lithium metal, the regeneration of which is energy intensive. Here, the attractiveness of an oxidative route for N2 activation was presented. N2 conversion to NOx in a plasma reactor followed by reduction with H2 on a heterogeneous catalyst at low pressure could be an energy-efficient option for small-scale distributed ammonia production with renewable electricity and without intrinsic CO2 footprint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000772893400001 Publication Date 2022-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Vlaamse regering, HBC.2019.0108 ; Vlaamse regering; KU Leuven, C3/20/067 ; We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). J.A.M. © 2022 Wiley-VCH GmbH Approved Most recent IF: 8.4
Call Number PLASMANT @ plasmant @c:irua:187251 Serial 7054
Permanent link to this record
 

 
Author Xu, W.; Van Alphen, S.; Galvita, V.V.; Meynen, V.; Bogaerts, A.
Title Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation Type A1 Journal Article
Year 2024 Publication ChemSusChem Abbreviated Journal (up) ChemSusChem
Volume Issue Pages
Keywords A1 Journal Article; CO2 conversion · Plasma · Gliding arc plasmatron · Temperature profiles · Computational modelling; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma‐based CO<sub>2</sub>conversion has attracted increasing interest. However, to understand the impact of plasma operation on post‐plasma processes, we studied the effect of adding N<sub>2</sub>, N<sub>2</sub>/CH<sub>4</sub>and N<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O to a CO<sub>2</sub>gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post‐plasma catalysis (PPC). Adding N<sub>2</sub>improves the CO<sub>2</sub>conversion from 4 % to 13 %, and CH<sub>4</sub>addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H<sub>2</sub>O, however, reduces the CO<sub>2</sub>conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post‐plasma, N<sub>2</sub>addition increases the temperature, while the CO<sub>2</sub>/CH<sub>4</sub>ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001200297300001 Publication Date 2024-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access
Notes We acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692) for financial support. We acknowledge Gilles Van Loon for his help to make the quartz and steel devices for the reactor. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 8.4; 2024 IF: 7.226
Call Number PLASMANT @ plasmant @c:irua:205101 Serial 9128
Permanent link to this record
 

 
Author Fei, G.; Xue-Chun, L.; Zhao, S.-X.; You-Nian, W.
Title Spatial variation behaviors of argon inductively coupled plasma during discharge mode transition Type A1 Journal article
Year 2012 Publication Chinese physics B Abbreviated Journal (up) Chinese Phys B
Volume 21 Issue 7 Pages 075203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A Langmuir probe and an ICCD are employed to study the discharge mode transition in Ar inductively coupled plasma. Electron density and plasma emission intensity are measured during the E (capacitive discharge) to H (inductive discharge) mode transitions at different pressures. It is found that plasma exists with a low electron density and a weak emission intensity in the E mode, while it has a high electron density and a strong emission intensity in the H mode. Meanwhile, the plasma emission intensity spatial (2D image) profile is symmetrical in the H mode, but the 2D image is an asymmetric profile in the E mode. Moreover, the electron density and emission intensity jump up discontinuously at high pressure, but increase almost continuously at the E to H mode transition under low pressure.
Address
Corporate Author Thesis
Publisher IOP publishing Place of Publication Bristol Editor
Language Wos 000306558300058 Publication Date 2012-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1056; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.223 Times cited 11 Open Access
Notes Approved Most recent IF: 1.223; 2012 IF: 1.148
Call Number UA @ lucian @ c:irua:100843 Serial 3065
Permanent link to this record
 

 
Author Ivanova, N.; Löfgren, A.; Tournev, I.; Rousev, R.; Andreeva, A.; Jordanova, A.; Georgieva, V.; Deconinck, T.; Timmerman, V.; Kremensky, I.; De Jonghe, P.; Mitev, V.
Title Spastin gene mutations in Bulgarian patients with hereditary spastic paraplegia Type A1 Journal article
Year 2006 Publication Clinical genetics Abbreviated Journal (up) Clin Genet
Volume 70 Issue 6 Pages 490-495
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Neurogenetics Group; Peripheral Neuropathies Group
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000242407200007 Publication Date 2006-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-9163; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.326 Times cited 6 Open Access
Notes Approved Most recent IF: 3.326; 2006 IF: 3.140
Call Number UA @ lucian @ c:irua:61393 Serial 3060
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide Type A1 Journal article
Year 2014 Publication Computational materials science Abbreviated Journal (up) Comp Mater Sci
Volume 95 Issue Pages 579-591
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A reactive ReaxFF force field is developed for studying the influence of intrinsic point defects on the chemistry with TiO2 condensed phases. The force field parameters are optimized to ab initio data for the equations of state, relative phase stabilities for titanium and titanium dioxide, potential energy differences for (TiO2)n-clusters (n = 116). Also data for intrinsic point defects in anatase were added. These data contain formation energies for interstitial titanium and oxygen vacancies, diffusion barriers of the oxygen vacancies and molecular oxygen adsorption on a reduced anatase (101) surface. Employing the resulting force field, we study the influence of concentration of oxygen vacancies and expansion or compression of an anatase surface on the diffusion of the oxygen vacancies. Also the barrier for oxygen diffusion in the subsurface region is evaluated using this force field. This diffusion barrier of 27.7 kcal/mol indicates that the lateral redistribution of oxygen vacancies on the surface and in the subsurface will be dominated by their diffusion in the subsurface, since both this barrier as well as the barriers for diffusion from the surface to the subsurface and vice versa (17.07 kcal/mol and 21.91 kcal/mol, respectively, as calculated with DFT), are significantly lower than for diffusion on the surface (61.12 kcal/mol as calculated with DFT).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343781700077 Publication Date 2014-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.292 Times cited 15 Open Access
Notes Approved Most recent IF: 2.292; 2014 IF: 2.131
Call Number UA @ lucian @ c:irua:119409 Serial 682
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C.
Title Effects of silicon doping on strengthening adhesion at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
Year 2019 Publication Computational materials science Abbreviated Journal (up) Comp Mater Sci
Volume 159 Issue 159 Pages 228-234
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper we employ first-principles calculations to investigate the effect of substitutional Si doping in the amorphous calcium-phosphate (a-HAP) structure on the work of adhesion, integral charge transfer, charge density difference and theoretical tensile strengths between an a-HAP coating and amorphous titanium dioxide (a-TiO2) substrate systemically. Our calculations demonstrate that substitution of a P atom by a Si atom in a-HAP (a-Si-HAP) with the creation of OH-vacancies as charge compensation results in a significant increase of the bonding strength of the coating to the substrate. The work of adhesion of the optimized Si-doped interfaces reaches a value of up to -2.52 J m(-2), which is significantly higher than for the stoichiometric a-HAP/a-TiO2. Charge density difference analysis indicates that the dominant interactions at the interface have significant covalent character, and in particular two Ti-O and three Ca-O bonds are formed for a-Si-HAP/a-TiO2 and one Ti-O and three Ca-O bonds for a-HAP/a-TiO2. From the stress-strain curve, the Young's modulus of a-Si-HAP/a-TiO2 is calculated to be about 25% higher than that of the a-HAP/a-TiO2, and the yielding stress is about 2 times greater than that of the undoped model. Our calculations therefore demonstrate that the presence of Si in the a-HAP structure strongly alters not only the bioactivity and resorption rates, but also the mechanical properties of the a-HAP/a-TiO2 interface. The results presented here provide an important theoretical insight into the nature of the chemical bonding at the a-HAP/a-TiO2 interface, and are particularly significant for the practical medical applications of HAP-based biomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457856900023 Publication Date 2018-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.292 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.292
Call Number UA @ admin @ c:irua:157480 Serial 5272
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y.
Title Accelerated molecular dynamics simulation of large systems with parallel collective variable-driven hyperdynamics Type A1 Journal article
Year 2020 Publication Computational Materials Science Abbreviated Journal (up) Comp Mater Sci
Volume 177 Issue Pages 109581
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The limitation in time and length scale is a major issue of molecular dynamics (MD) simulation. Although several methods have been developed to extend the MD time scale, their performance usually deteriorates with increasing system size. Therefore, an acceleration method which is applicable to large systems is required to bridge the gap between the MD simulations and target phenomena. In this study, an accelerated MD method for large system is developed based on the collective variable-driven hyperdynamics (CVHD) method [K.M. Bal and E.C. Neyts, 2015]. The key idea is to run CVHD in parallel with rate control and accelerate multiple possible events simultaneously. Using this novel method, carbon diffusion in bcc-iron bicrystal with grain boundary is examined as an application for practical materials. Carbon atoms reaching at the grain boundary are trapped whereas carbon atoms in the bulk region diffuse randomly, and both dynamic regimes can be simultaneously accelerated with the parallel CVHD technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519576300001 Publication Date 2020-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access
Notes JSPS, J22727 ; Japan Society for the Promotion of Science; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). Data availability The data required to reproduce these findings are available from the corresponding authors upon reasonable request. Approved Most recent IF: 3.3; 2020 IF: 2.292
Call Number PLASMANT @ plasmant @c:irua:166773 Serial 6333
Permanent link to this record
 

 
Author Ranjbar, S.; Shahmansouri, M.; Attri, P.; Bogaerts, A.
Title Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli Type A1 Journal article
Year 2020 Publication Computers In Biology And Medicine Abbreviated Journal (up) Comput Biol Med
Volume 127 Issue Pages 104064
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Antibiotic resistance is one of the world’s most urgent public health problems. Due to its antibacterial properties, cold atmospheric plasma (CAP) may serve as an alternative method to antibiotics. It is claimed that oxidative stress caused by CAP is the main reason of bacteria inactivation. In this work, we computationally investigated the effect of plasma-induced oxidation on various glycolysis metabolites, by monitoring the production of the biomass. We observed that in addition to the significant reduction in biomass production, the rate of some re­actions has increased. These reactions produce anti-oxidant products, showing the bacterial defense mechanism to escape the oxidative damage. Nevertheless, the simulations show that the plasma-induced oxidation effect is much stronger than the defense mechanism, causing killing of the bacteria.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000603362700001 Publication Date 2020-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited Open Access
Notes Ministry of Science and Technology of Iran; Hercules Foundation; Flemish Government; EWI; S. R. acknowledges funding from the Ministry of Science and Tech­nology of Iran. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the universitteit Antwerpen. We also would like to thank Dr. Charlotta Bengtson for her suggestions in writing this paper. Approved Most recent IF: 7.7; 2020 IF: 1.836
Call Number PLASMANT @ plasmant @c:irua:173860 Serial 6437
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A.
Title Unraveling the permeation of reactive species across nitrated membranes by computer simulations Type A1 Journal Article;Reactive oxygen and nitrogen species
Year 2021 Publication Computers In Biology And Medicine Abbreviated Journal (up) Comput Biol Med
Volume 136 Issue Pages 104768
Keywords A1 Journal Article;Reactive oxygen and nitrogen species; Nitro-oxidative stress; Molecular dynamics simulations; Nitrated membranes; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitrooxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the perme­ation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hy­drophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hy­drophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignif­icant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000696938800003 Publication Date 2021-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.836 Times cited Open Access OpenAccess
Notes We thank University of Antwerp and Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted and for providing the computational resources needed for completion of this work. M. Yusupov acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 1.836
Call Number PLASMANT @ plasmant @c:irua:181082 Serial 6807
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A.
Title Numerical models of the planar magnetron glow discharges Type A1 Journal article
Year 2004 Publication Contributions to plasma physics Abbreviated Journal (up) Contrib Plasm Phys
Volume 44 Issue 7/8 Pages 582-588
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000225541000003 Publication Date 2004-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042;1521-3986; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.44 Times cited 22 Open Access
Notes Approved Most recent IF: 1.44; 2004 IF: 0.701
Call Number UA @ lucian @ c:irua:49069 Serial 2402
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title Differences between ultrananocrystalline and nanocrystalline diamond growth: theoretical investigation of CxHy species at diamond step edges Type A1 Journal article
Year 2010 Publication Crystal growth & design Abbreviated Journal (up) Cryst Growth Des
Volume 10 Issue 9 Pages 4123-4134
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The behavior of hydrocarbon species at step edges of diamond terraces is investigated by means of combined molecular dynamics−Metropolis Monte Carlo simulations. The results show that the formation of ballas-like diamond films (like UNCD) and well-faceted diamond films (like NCD) can be related to the gas phase concentrations of CxHy in a new manner: Species that have high concentrations above the growing UNCD films suppress the extension of step edges through defect formation. The species that are present above the growing NCD film, however, enhance the extension of diamond terraces, which is believed to result in well-faceted diamond films. Furthermore, it is shown that, during UNCD growth, CxHy species with x ≥ 2 play an important role, in contrast to the currently adopted CVD diamond growth mechanism. Finally, the probabilities for the extension of the diamond (100) terrace are much higher than those for the diamond (111) terrace, which is in full agreement with the experimental observation that diamond (100) facets are more favored than diamond (111) facets during CVD diamond growth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281353900042 Publication Date 2010-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 11 Open Access
Notes Approved Most recent IF: 4.055; 2010 IF: 4.390
Call Number UA @ lucian @ c:irua:83696 Serial 694
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title Insights into the growth of (ultra)nanocrystalline diamond by combined molecular dynamics and Monte Carlo simulations Type A1 Journal article
Year 2010 Publication Crystal growth & design Abbreviated Journal (up) Cryst Growth Des
Volume 10 Issue 7 Pages 3005-3021
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we present the results of combined molecular dynamics−Metropolis Monte Carlo (MD-MMC) simulations of hydrocarbon species at flat diamond (100)2 × 1 and (111)1 × 1 surfaces. The investigated species are considered to be the most important growth species for (ultra)nanocrystalline diamond ((U)NCD) growth. When applying the MMC algorithm to stuck species at monoradical sites, bonding changes are only seen for CH2. The sequence of the bond breaking and formation as put forward by the MMC simulations mimics the insertion of CH2 into a surface dimer as proposed in the standard growth model of diamond. For hydrocarbon species attached to two adjacent radical (biradical) sites, the MMC simulations give rise to significant changes in the bonding structure. For UNCD, the combinations of C3 and C3H2, and C3 and C4H2 (at diamond (100)2 × 1) and C and C2H2 (at diamond (111)1 × 1) are the most successful in nucleating new crystal layers. For NCD, the following combinations pursue the diamond structure the best: C2H2 and C3H2 (at diamond (100)2 × 1) and CH2 and C2H2 (at diamond (111)1 × 1). The different behaviors of the hydrocarbon species at the two diamond surfaces are related to the different sterical hindrances at the diamond surfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279422700032 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 13 Open Access
Notes Approved Most recent IF: 4.055; 2010 IF: 4.390
Call Number UA @ lucian @ c:irua:83065 Serial 1675
Permanent link to this record
 

 
Author Georgieva, V.; Voter, A.F.; Bogaerts, A.
Title Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg-Al-O thin films Type A1 Journal article
Year 2011 Publication Crystal growth & design Abbreviated Journal (up) Cryst Growth Des
Volume 11 Issue 6 Pages 2553-2558
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract It is known that film structure may change dramatically with the extent of surface diffusion during the film growth process. In the present work, surface diffusion, induced thermally or activated by energetic impacts, is investigated theoretically under conditions appropriate for magnetron sputter-deposition of MgAlO thin films with varying stoichiometry. The distribution of surface diffusion energy barriers available to the system was determined for each stoichiometry, which allowed assessing in a qualitative way how much surface diffusion will take place on the time scale available between deposition events. The activation energy barriers increase with the Al concentration in the film, and therefore, the surface diffusion rates in the time frame of typical deposition rates drop, which can explain the decrease in crystallinity in the film structure and the transition to amorphous structure. The deposition process and the immediate surface diffusion enhanced by the energetic adatoms are simulated by means of a molecular dynamics model. The longer-time thermal surface diffusion and the energy landscape are studied by the temperature accelerated dynamics method, applied in an approximate way. The surface diffusion enhanced by the energetic impacts appears to be very important for the film structure in the low-temperature deposition regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000291074600068 Publication Date 2011-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 14 Open Access
Notes Approved Most recent IF: 4.055; 2011 IF: 4.720
Call Number UA @ lucian @ c:irua:89566 Serial 3806
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title Modeling adatom surface processes during crystal growth: a new implementation of the Metropolis Monte Carlo algorithm Type A1 Journal article
Year 2009 Publication CrystEngComm Abbreviated Journal (up) Crystengcomm
Volume 11 Issue 8 Pages 1597-1608
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a new implementation of the Metropolis Monte Carlo (MMC) algorithm is presented. When combining the MMC model with a molecular dynamics (MD) code, crystal growth by plasma-enhanced chemical vapor deposition can be simulated. As the MD part simulates impacts of growth species onto the surface on a time scale of picoseconds, the MMC algorithm simulates the slower adatom surface processes. The implementation includes a criterion for the selection of atoms that are allowed to be displaced during the simulation, and a criterion of after how many MMC cycles the simulation is stopped. We performed combined MD-MMC simulations for hydrocarbon species that are important for the growth of ultrananocrystalline diamond (UNCD) films at partially hydrogenated diamond surfaces, since this implementation is part of a study of the growth mechanisms of (ultra)nanocrystalline diamond films. Exemplary for adatom arrangements during the growth of UNCD, the adatom surface behavior of C and C2H2 at diamond (111)1 × 1, C and C4H2 at diamond (111)1 × 1 and C3 at diamond (100)2 × 1 has been investigated. For all cases, the diamond crystal structure is pursued under the influence of MMC simulation. Additional longer time-scale MD simulations put forward very similar structures, verifying the MMC algorithm. Nevertheless, the MMC simulation time is typically one order of magnitude shorter than the MD simulation time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000268184300021 Publication Date 2009-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.474 Times cited 15 Open Access
Notes Approved Most recent IF: 3.474; 2009 IF: 4.183
Call Number UA @ lucian @ c:irua:77374 Serial 2106
Permanent link to this record
 

 
Author Khan, A.W.; Jan, F.; Saeed, A.; Zaka-ul-Islam, M.; Abrar, M.; Khattak, N.A.D.; Zakaullah, M.
Title Comparative study of electron temperature and excitation temperature in a magnetic pole enhanced-inductively coupled argon plasma Type A1 Journal article
Year 2013 Publication Current applied physics Abbreviated Journal (up) Curr Appl Phys
Volume 13 Issue 7 Pages 1241-1246
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Magnetic Pole Enhanced-Inductively Coupled Plasmas (MaPE-ICPs) in analogy to the conventional ICPs exhibit two modes of operation, depending on the power coupling mechanism, i.e., a low power mode with dominant capacitive coupling (E-mode) and a high power mode with dominant inductive coupling (H-mode). A comparative study of the electron temperature measured by a Langmuir probe (T-e(LP)) and the electron excitation temperature (T-exc(OES)) determined by Optical Emission Spectroscopy (OES) is reported in the two distinct modes of a MaPE-ICP operated in argon. The dependence of T-e(LP), T-exc(OES) and their ratio (T-e(LP)/T-exc(OES)) on applied power (5-50 W) and gas pressure (15-60 mTorr) is explored, and the validity of T-exc(OES) as an alternative diagnostic to T-e(LP) is tested in the two modes of MaPE-ICP. The OES based non-invasive measurement of the plasma parameters such as electron temperature is very useful for plasma processing applications in which probe measurements are limited. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000322631400014 Publication Date 2013-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-1739; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.971 Times cited 13 Open Access
Notes Approved Most recent IF: 1.971; 2013 IF: 2.026
Call Number UA @ lucian @ c:irua:110718 Serial 421
Permanent link to this record
 

 
Author Gorbanev, Y.; Fedirchyk, I.; Bogaerts, A.
Title Plasma catalysis in ammonia production and decomposition: Use it, or lose it? Type A1 Journal Article
Year 2024 Publication Current Opinion in Green and Sustainable Chemistry Abbreviated Journal (up) Current Opinion in Green and Sustainable Chemistry
Volume 47 Issue Pages 100916
Keywords A1 Journal Article; Plasma Nitrogen fixation Ammonia Plasma catalysis Production and decomposition; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The combination of plasma with catalysis for the synthesis and decomposition of NH3 is an attractive route to the production of carbon-neutral fertiliser and energy carriers and its conversion into H2. Recent years have seen fast developments in the field of plasma-catalytic NH3 life cycle. This work summarises the most recent advances in plasma-catalytic and related NH3-focussed processes, identifies some of the most important discoveries, and addresses plausible strategies for future developments in plasma-based NH3 technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links
Impact Factor 9.3 Times cited Open Access
Notes The work was supported by the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant G0G2322N) funded by the European Union-NextGe- nerationEU, the HyPACT project funded by the Belgian Energy Transition Fund, and the MSCA4Ukraine project 1233629 funded by the European Union. Approved Most recent IF: 9.3; 2024 IF: NA
Call Number PLASMANT @ plasmant @ Serial 9117
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van den Sanden, M.C.M.
Title Molecular dynamics simulations for the growth of diamond-like carbon films from low kinetic energy species Type A1 Journal article
Year 2004 Publication Diamond and related materials Abbreviated Journal (up) Diam Relat Mater
Volume 13 Issue Pages 1873-1881
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000223883400021 Publication Date 2004-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 53 Open Access
Notes Approved Most recent IF: 2.561; 2004 IF: 1.670
Call Number UA @ lucian @ c:irua:48276 Serial 2173
Permanent link to this record
 

 
Author Liu, Y.H.; Neyts, E.; Bogaerts, A.
Title Monte Carlo method for simulations of adsorbed atom diffusion on a surface Type A1 Journal article
Year 2006 Publication Diamond and related materials Abbreviated Journal (up) Diam Relat Mater
Volume 15 Issue 10 Pages 1629-1635
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241224000021 Publication Date 2006-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 5 Open Access
Notes Approved Most recent IF: 2.561; 2006 IF: 1.935
Call Number UA @ lucian @ c:irua:59633 Serial 2196
Permanent link to this record
 

 
Author Neyts, E.; Tacq, M.; Bogaerts, A.
Title Reaction mechanisms of low-kinetic energy hydrocarbon radicals on typical hydrogenated amorphous carbon (a-C:H) sites: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Diamond and related materials Abbreviated Journal (up) Diam Relat Mater
Volume 15 Issue 10 Pages 1663-1676
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241224000026 Publication Date 2006-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 18 Open Access
Notes Approved Most recent IF: 2.561; 2006 IF: 1.935
Call Number UA @ lucian @ c:irua:59634 Serial 2819
Permanent link to this record
 

 
Author Sankaran, K.; Clima, S.; Mees, M.; Pourtois, G.
Title Exploring alternative metals to Cu and W for interconnects applications using automated first-principles simulations Type A1 Journal article
Year 2015 Publication ECS journal of solid state science and technology Abbreviated Journal (up) Ecs J Solid State Sc
Volume 4 Issue 4 Pages N3127-N3133
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The bulk properties of elementary metals and copper based binary alloys have been investigated using automated first-principles simulations to evaluate their potential to replace copper and tungsten as interconnecting wires in the coming CMOS technology nodes. The intrinsic properties of the screened candidates based on their cohesive energy and on their electronic properties have been used as a metrics to reflect their resistivity and their sensitivity to electromigration. Using these values, the 'performances' of the alloys have been benchmarked with respect to the Cu and W ones. It turns out that for some systems, alloying Cu with another element leads to a reduced tendency to electromigration. This is however done at the expense of a decrease of the conductivity of the alloy with respect to the bulk metal. (C) 2014 The Electrochemical Society. All rights reserved.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000349547900018 Publication Date 2014-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769;2162-8777; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 19 Open Access
Notes Approved Most recent IF: 1.787; 2015 IF: 1.558
Call Number c:irua:125296 Serial 1150
Permanent link to this record
 

 
Author Loo, R.; Arimura, H.; Cott, D.; Witters, L.; Pourtois, G.; Schulze, A.; Douhard, B.; Vanherle, W.; Eneman, G.; Richard, O.; Favia, P.; Mitard, J.; Mocuta, D.; Langer, R.; Collaert, N.
Title Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures Type A1 Journal article
Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal (up) Ecs J Solid State Sc
Volume 7 Issue 2 Pages P66-P72
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Epitaxially grown ultra-thin Si layers are often used to passivate Ge surfaces in the high-k gate module of (strained) Ge FinFET and Gate All Around devices. We use Si4H10 as Si precursor as it enables epitaxial Si growth at temperatures down to 330 degrees. C-V characteristics of blanket capacitors made on Ge virtual substrates point to the presence of an optimal Si thickness. In case of compressively strained Ge fin structures, the Si growth results in non-uniform and high strain levels in the strained Ge fin. These strain levels have been calculated for different shapes of the Ge fin and in function of the grown Si thickness. The high strain is the driving force for potential (unwanted) Ge surface reflow during Si deposition. The Ge surface reflow is strongly affected by the strength of the H-passivation during Si-capping and can be avoided by carefully selected process conditions. (C) The Author(s) 2018. Published by ECS.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000425215200010 Publication Date 2018-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 5 Open Access OpenAccess
Notes Approved Most recent IF: 1.787
Call Number UA @ lucian @ c:irua:149326 Serial 4933
Permanent link to this record
 

 
Author Dabral, A.; Pourtois, G.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Collaert, N.; Horiguchi, N.; Houssa, M.
Title Study of the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type A1 Journal article
Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal (up) Ecs J Solid State Sc
Volume 7 Issue 6 Pages N73-N80
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped n-type 2D and 3D semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first principles calculations with Non-Equilibrium Green functions transport simulations. The evolution of the intrinsic contact resistivity with the doping concentration is found to saturate at similar to 2 x 10(-10) Omega.cm(2) for the case of TiSi and imposes an intrinsic limit to the ultimate contact resistance achievable for n-doped Silamorphous-TiSi (aTiSi). The limit arises from the intrinsic properties of the semiconductors and of the metals such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting heavy electron effective mass metals with semiconductor helps reducing the interface intrinsic contact resistivity. This observation seems to hold true regardless of the 3D character of the semiconductor, as illustrated for the case of three 2D semiconducting materials, namely MoS2, ZrS2 and HfS2. (C) The Author(s) 2018. Published by ECS.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000440836000004 Publication Date 2018-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 2 Open Access Not_Open_Access
Notes ; The authors thank the imec core CMOS program members, the European Commission, its TAKEMI5 ECSEL research project and the local authorities for their support. ; Approved Most recent IF: 1.787
Call Number UA @ lucian @ c:irua:153205UA @ admin @ c:irua:153205 Serial 5130
Permanent link to this record
 

 
Author Dhayalan, S.K.; Kujala, J.; Slotte, J.; Pourtois, G.; Simoen, E.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Loo, R.; Vandervorst, W.
Title On the evolution of strain and electrical properties in as-grown and annealed Si:P epitaxial films for source-drain stressor applications Type A1 Journal article
Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal (up) Ecs J Solid State Sc
Volume 7 Issue 5 Pages P228-P237
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Heavily P doped Si:P epitaxial layers have gained interest in recent times as a promising source-drain stressor material for n type FinFETs (Fin Field Effect Transistors). They are touted to provide excellent conductivity as well as tensile strain. Although the as-grown layers do provide tensile strain, their conductivity exhibits an unfavorable behavior. It reduces with increasing P concentration (P > 1E21 at/cm(3)), accompanied by a saturation in the active carrier concentration. Subjecting the layers to laser annealing increases the conductivity and activates a fraction of P atoms. However, there is also a concurrent reduction in tensile strain (<1%). Literature proposes the formation of local semiconducting Si3P4 complexes to explain the observed behaviors in Si:P [Z. Ye et al., ECS Trans., 50(9) 2013, p. 1007-10111. The development of tensile strain and the saturation in active carrier is attributed to the presence of local complexes while their dispersal on annealing is attributed to strain reduction and increase in active carrier density. However, the existence of such local complexes is not proven and a fundamental void exists in understanding the structure-property correlation in Si:P films. In this respect, our work investigates the reason behind the evolution of strain and electrical properties in the as-grown and annealed Si:P epitaxial layers using ab-initio techniques and corroborate the results with physical characterization techniques. It will be shown that the strain developed in Si:P films is not due to any specific complexes while the formation of Phosphorus-vacancy complexes will be shown responsible for the carrier saturation and the increase in resistivity in the as-grown films. Interstitial/precipitate formation is suggested to be a reason for the strain loss in the annealed films. (C) The Author(s) 2018. Published by ECS.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000440834200010 Publication Date 2018-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 1.787
Call Number UA @ lucian @ c:irua:153204 Serial 5122
Permanent link to this record
 

 
Author Dhayalan, S.K.; Nuytten, T.; Pourtois, G.; Simoen, E.; Pezzoli, F.; Cinquanta, E.; Bonera, E.; Loo, R.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Vandervorst, W.
Title Insights into the C Distribution in Si:C/Si:C:P and the Annealing Behavior of Si:C Layers Type A1 Journal article
Year 2019 Publication ECS journal of solid state science and technology Abbreviated Journal (up) Ecs J Solid State Sc
Volume 8 Issue 4 Pages P209-P216
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Si:C and Si:C:P alloys are potential candidates for source-drain stressor applications in n-type Fin Field Effect Transistors (FinFETs). Increasing the C content to achieve high strain results in the arrangement of C atoms as third nearest neighbors (3nn) in the Si: C lattice. During thermal annealing, the presence of C atoms as 3nn may promote clustering at the interstitial sites, causing loss of stress. The concentration of C atoms as 3nn is reduced by the incorporation of a small amount of Ge atoms during the growth, whereas in-situ P doping does not influence this 3nn distribution [J Solid State Sci. Technol vol 6, p 755, 2017]. Small amounts of Ge are provided during low temperature selective epitaxial growth scheme, which are based on cyclic deposition and etching (CDE). In this work, we aim to provide physical insights into the aforementioned phenomena, to understand the behavior of 3nn C atoms and the types of defects that are formed in the annealed Si: C films. Using ab-initio simulations, the Ge-C interaction in the Si matrix is investigated and this insight is used to explain how the Ge incorporation leads to a reduced 3nn distribution of the C atoms. The interaction between C and P in the Si: C: P films is also investigated to explain why the P incorporation has not led to a reduction in the 3nn distribution. We then report on the Raman characterization of Si: C layers subjected to post epi annealing. As the penetration depth of the laser is dependent on the wavelength, Raman measurements at two different wavelengths enable us to probe the depth distribution of 3nn C atoms after applying different annealing conditions. We observed a homogeneous loss in 3nn C throughout the layer. Whereas in the kinematic modeling of high resolution X-ray diffraction spectra, a gradient in the substitutional C loss was observed close to the epitaxial layer/substrate interface. This gradient can be due to the out diffusion of C atoms into the Si substrate or to the formation of interstitial C clusters, which cannot be distinguished in HR-XRD. Deep Level Transient Spectroscopy indicated that the prominent out-diffusing species was interstitial CO complex while the interstitial C defects were also prevalent in the epi layer. (c) 2019 The Electrochemical Society.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465069200001 Publication Date 2019-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.787 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.787
Call Number UA @ admin @ c:irua:160399 Serial 5275
Permanent link to this record
 

 
Author Vohra, A.; Makkonen, I.; Pourtois, G.; Slotte, J.; Porret, C.; Rosseel, E.; Khanam, A.; Tirrito, M.; Douhard, B.; Loo, R.; Vandervorst, W.
Title Source/drain materials for Ge nMOS devices: phosphorus activation in epitaxial Si, Ge, Ge1-xSnx and SiyGe1-x-ySnx Type A1 Journal article
Year 2020 Publication Ecs Journal Of Solid State Science And Technology Abbreviated Journal (up) Ecs J Solid State Sc
Volume 9 Issue 4 Pages 044010-44012
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper benchmarks various epitaxial growth schemes based on n-type group-IV materials as viable source/drain candidates for Ge nMOS devices. Si:P grown at low temperature on Ge, gives an active carrier concentration as high as 3.5 x 10(20) cm(-3) and a contact resistivity down to 7.5 x 10(-9) Omega.cm(2). However, Si:P growth is highly defective due to large lattice mismatch between Si and Ge. Within the material stacks assessed, one option for Ge nMOS source/drain stressors would be to stack Si:P, deposited at contact level, on top of a selectively grown n-SiyGe1-x-ySnx at source/drain level, in line with the concept of Si passivation of n-Ge surfaces to achieve low contact resistivities as reported in literature (Martens et al. 2011 Appl. Phys. Lett., 98, 013 504). The saturation in active carrier concentration with increasing P (or As)-doping is the major bottleneck in achieving low contact resistivities for as-grown Ge or SiyGe1-x-ySnx. We focus on understanding various dopant deactivation mechanisms in P-doped Ge and Ge1-xSnx alloys. First principles simulation results suggest that P deactivation in Ge and Ge1-xSnx can be explained both by P-clustering and donor-vacancy complexes. Positron annihilation spectroscopy analysis, suggests that dopant deactivation in P-doped Ge and Ge1-xSnx is primarily due to the formation of P-n-V and SnmPn-V clusters. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000531473500002 Publication Date 2020-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access
Notes ; The imec core CMOS program members, European Commission, the TAKEMI5 ECSEL project, local authorities and the imec pilot line are acknowledged for their support. Air Liquide Advanced Materials is acknowledged for providing advanced precursor gases. A. V. acknowledges his long stay abroad grant and a grant for participation in congress abroad from the Research Foundation-Flanders (Application No. V410518N and K159219N). I. M. acknowledges financial support from Academy of Finland (Project Nos. 285 809, 293 932 and 319 178). CSC-IT Center for Science, Finland is acknowledged for providing the computational resources. ; Approved Most recent IF: 2.2; 2020 IF: 1.787
Call Number UA @ admin @ c:irua:169502 Serial 6607
Permanent link to this record
 

 
Author Goux, L.; Fantini, A.; Govoreanu, B.; Kar, G.; Clima, S.; Chen, Y.-Y.; Degraeve, R.; Wouters, D.J.; Pourtois, G.; Jurczak, M.
Title Asymmetry and switching phenomenology in TiN\ (Al2O3) \ HfO2 \ Hf systems Type A1 Journal article
Year 2012 Publication ECS solid state letters Abbreviated Journal (up) Ecs Solid State Lett
Volume 1 Issue 4 Pages 63-65
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this letter, we address the bipolar resistive switching phenomenology in scaled TiN\HfO2\Hf cells. By means of stack engineering using a thin Al2O3 layer inserted either at the TiN\HfO2 or at the Hf\HfO2 interface, we demonstrate that the reset operation takes place close to the TiNanode. Due to the increase of the oxygen-vacancy profile from the TiN to the Hf interface, the filament-confining and wide band-gap Al2O3 layer should indeed be engineered at the interface with the TiN electrode in order to further improve the switching control and to allow reaching larger state resistances. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.003204ssl] All rights reserved.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000318340300005 Publication Date 2012-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.184 Times cited 11 Open Access
Notes Approved Most recent IF: 1.184; 2012 IF: NA
Call Number UA @ lucian @ c:irua:108530 Serial 160
Permanent link to this record
 

 
Author Delabie, A.; Jayachandran, S.; Caymax, M.; Loo, R.; Maggen, J.; Pourtois, G.; Douhard, B.; Conard, T.; Meersschaut, J.; Lenka, H.; Vandervorst, W.; Heyns, M.;
Title Epitaxial chemical vapor deposition of silicon on an oxygen monolayer on Si(100) substrates Type A1 Journal article
Year 2013 Publication ECS solid state letters Abbreviated Journal (up) Ecs Solid State Lett
Volume 2 Issue 11 Pages P104-P106
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Crystalline superlattices consisting of alternating periods of Si layers and O-atomic layers are potential new channel materials for scaled CMOS devices. In this letter, we investigate Chemical Vapor Deposition (CVD) for the controlled deposition of O-atoms with O-3 as precursor on Si(100) substrates and Si epitaxy on the O-layer. The O-3 reaction at 50 degrees C on the H-terminated Si results in the formation of Si-OH and/or Si-O-Si-H surface species with monolayer O-content. Defect-free epitaxial growth of Si on an O-layer containing 6.4E+14 O-atoms/cm(2) is achieved from SiH4 at 500 degrees C. (C) 2013 The Electrochemical Society. All rights reserved.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000324582600006 Publication Date 2013-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.184 Times cited 12 Open Access
Notes Approved Most recent IF: 1.184; 2013 IF: 0.781
Call Number UA @ lucian @ c:irua:111208 Serial 1070
Permanent link to this record