toggle visibility
Search within Results:
Display Options:
Number of records found: 2235

Select All    Deselect All
 | 
Citations
 | 
   print
Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder”. Craco L, Carara SS, Barboza E da S, Milošević, MV, Pereira TAS, RSC advances 13, 17907 (2023). http://doi.org/10.1039/D3RA00898C
toggle visibility
Electronic and vibrational properties of PbI2: From bulk to monolayer”. Yagmurcukardes M, Peeters FM, Sahin H, Physical review B 98, 085431 (2018). http://doi.org/10.1103/PHYSREVB.98.085431
toggle visibility
Electronic band structures and native point defects of ultrafine ZnO nanocrystals”. Zeng Y-J, Schouteden K, Amini MN, Ruan S-C, Lu Y-F, Ye Z-Z, Partoens B, Lamoen D, Van Haesendonck C, ACS applied materials and interfaces 7, 10617 (2015). http://doi.org/10.1021/acsami.5b02545
toggle visibility
Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction”. Mirzakhani M, Myoung N, Peeters FM, Park HC, Carbon 201, 734 (2023). http://doi.org/10.1016/J.CARBON.2022.09.058
toggle visibility
Mirzakhani M (2017) Electronic properties and energy levels of graphene quantum dots. Antwerpen
toggle visibility
Electronic properties of 2H-stacking bilayer MoS₂, measured by terahertz time-domain spectroscopy”. Cheng X, Xu W, Wen H, Zhang J, Zhang H, Li H, Peeters FM, Chen Q, Frontiers of physics 18, 53303 (2023). http://doi.org/10.1007/S11467-023-1295-1
toggle visibility
Electronic properties of bilayer phosphorene quantum dots in the presence of perpendicular electric and magnetic fields”. Li LL, Moldovan D, Xu W, Peeters FM, Physical review B 96, 155425 (2017). http://doi.org/10.1103/PHYSREVB.96.155425
toggle visibility
Electronic properties of emergent topological defects in chiral p-wave superconductivity”. Zhang L, Fernández Becerra V, Covaci L, Milošević, MV, Physical review B 94, 024520 (2016). http://doi.org/10.1103/PhysRevB.94.024520
toggle visibility
Masir MR (2012) Electronic properties of graphene in inhomogeneous magnetic fields. Antwerpen
toggle visibility
Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy”. Singh SK, Neek-Amal M, Peeters FM, The journal of chemical physics 140, 074304 (2014). http://doi.org/10.1063/1.4865414
toggle visibility
Electronic properties of oxidized graphene : effects of strain and an electric field on flat bands and the energy gap”. Alihosseini M, Ghasemi S, Ahmadkhani S, Alidoosti M, Esfahani DN, Peeters FM, Neek-Amal M, The journal of physical chemistry letters (2021). http://doi.org/10.1021/ACS.JPCLETT.1C03286
toggle visibility
Moldovan D (2016) Electronic properties of strained graphene and supercritical charge centers. Antwerpen
toggle visibility
Electronic properties of triangular and hexagonal MoS2 quantum dots”. Pavlović, S, Peeters FM, Physical review : B : condensed matter and materials physics 91, 155410 (2015). http://doi.org/10.1103/PhysRevB.91.155410
toggle visibility
Electronic states above a helium film suspended on a ring-shaped substrate”. Ramos ACA, Chaves A, Farias GA, Peeters FM, Physical review : B : condensed matter and materials physics 77, 045415 (2008). http://doi.org/10.1103/PhysRevB.77.045415
toggle visibility
Electronic states in a graphene flake strained by a Gaussian bump”. Moldovan D, Masir MR, Peeters FM, Physical review : B : condensed matter and materials physics 88, 035446 (2013). http://doi.org/10.1103/PhysRevB.88.035446
toggle visibility
Electronic states in an atomistic carbon quantum dot patterned in graphene”. Craco L, Carara SS, da Silva Pereira TA, Milošević, MV, Physical review B 93, 155417 (2016). http://doi.org/10.1103/PhysRevB.93.155417
toggle visibility
Electronic structure and band gap of zinc spinel oxides beyond LDA : ZnAl2O4, ZnGa2O4 and ZnIn2O4”. Dixit H, Tandon N, Cottenier S, Saniz R, Lamoen D, Partoens B, van Speybroeck V, Waroquier M, New journal of physics 13, 063002 (2011). http://doi.org/10.1088/1367-2630/13/6/063002
toggle visibility
Electronic structure and electric quadrupoles of a polymerized chain in solid AC60”. Nikolaev AV, Michel KH, Solid state communications 117, 739 (2001). http://doi.org/10.1016/S0038-1098(01)00017-5
toggle visibility
Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires”. Kishore VVR, Partoens B, Peeters FM, Physical review : B : condensed matter and materials physics 82, 235425 (2010). http://doi.org/10.1103/PhysRevB.82.235425
toggle visibility
Electronic structure of a hexagonal graphene flake subjected to triaxial stress”. Neek-Amal M, Covaci L, Shakouri K, Peeters FM, Physical review : B : condensed matter and materials physics 88, 115428 (2013). http://doi.org/10.1103/PhysRevB.88.115428
toggle visibility
Electronic structure of a Si \delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier”. Shi JM, Koenraad PM, van de Stadt AFW, Peeters FM, Devreese JT, Wolter JH, Physical Review B 54, 7996 (1996). http://doi.org/10.1103/PhysRevB.54.7996
toggle visibility
Kishore VVR (2013) Electronic structure of core-shell nanowires. Antwerpen
toggle visibility
Electronic structure of InAs/GaSb core-shell nanowires”. Kishore VVR, Partoens B, Peeters FM, Physical review : B : condensed matter and materials physics 86, 165439 (2012). http://doi.org/10.1103/PhysRevB.86.165439
toggle visibility
Electronic structure of the valence band in cylindrical strained InP/InGaP quantum dots in an external magnetic field”. Tadic, Peeters FM, Physica. E: Low-dimensional systems and nanostructures T2 –, 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic 12, 880 (2002). http://doi.org/10.1016/S1386-9477(01)00445-3
toggle visibility
Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential”. Dixit H, Saniz R, Cottenier S, Lamoen D, Partoens B, Journal of physics : condensed matter 24, 205503 (2012). http://doi.org/10.1088/0953-8984/24/20/205503
toggle visibility
Electronic structures of iMAX phases and their two-dimensional derivatives: A family of piezoelectric materials”. Khazaei M, Wang V, Sevik C, Ranjbar A, Arai M, Yunoki S, Physical review materials 2, 074002 (2018). http://doi.org/10.1103/PHYSREVMATERIALS.2.074002
toggle visibility
de Paula Miranda L (2022) Electronic transport in two dimensional systems with defects. 104 p
toggle visibility
Electronic transport mechanisms correlated to structural properties of a reduced graphene oxide sponge”. Pinto N, McNaughton B, Minicucci M, Milošević, MV, Perali A, Nanomaterials 11, 2503 (2021). http://doi.org/10.3390/NANO11102503
toggle visibility
Milovanović, S (2017) Electronic transport properties in nano- and micro-engineered graphene structures. Antwerpen
toggle visibility
Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study”. Yagmurcukardes M, Sevik C, Peeters FM, Physical review B 100, 045415 (2019). http://doi.org/10.1103/PHYSREVB.100.045415
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: