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Using the tight-binding approach, we investigate the electronic properties of bilayer phosphorene (BLP)
quantum dots (QDs) in the presence of perpendicular electric and magnetic fields. Since BLP consists of two
coupled phosphorene layers, it is of interest to examine the layer-dependent electronic properties of BLP QDs,
such as the electronic distributions over the two layers and the so-produced layer-polarization features, and to
see how these properties are affected by the magnetic field and the bias potential. We find that in the absence of a
bias potential only edge states are layer polarized while the bulk states are not, and the layer-polarization degree
(LPD) of the unbiased edge states increases with increasing magnetic field. However, in the presence of a bias
potential both the edge and bulk states are layer polarized, and the LPD of the bulk (edge) states depends strongly
(weakly) on the interplay of the bias potential and the interlayer coupling. At high magnetic fields, applying
a bias potential renders the bulk electrons in a BLP QD to be mainly distributed over the top or bottom layer,
resulting in layer-polarized bulk Landau levels (LLs). In the presence of a large bias potential that can drive a
semiconductor-to-semimetal transition in BLP, these bulk LLs exhibit different magnetic-field dependences, i.e.,
the zeroth LLs exhibit a linearlike dependence on the magnetic field while the other LLs exhibit a square-root-like
dependence.
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I. INTRODUCTION

Two-dimensional (2D) black phosphorus (BP) is a direct-
band-gap semiconducting material, which has been recently
fabricated through exfoliation methods [1–3]. Bulk BP is
a layered material in which individual single layers are
stacked and coupled via the van der Waals interaction [4].
A single layer of BP is called phosphorene, where each atom
is covalently bonded with three neighboring atoms via sp3

hybridization, thereby forming a puckered hexagonal lattice
[5]. Due to this unique lattice structure of phosphorene, 2D BP
exhibits strongly anisotropic electronic, optical, and transport
properties [6–8], which are atypical for most 2D materials.
Encapsulation of 2D BP with hexagonal boron nitride leads to
the formation of a 2D electron gas with high electron mobility,
which allows the observation of magnetic quantum oscillations
[9] and the quantum Hall effect [10]. One of the most striking
characteristics of 2D BP is its strong response to external
strain and bias. It was shown that the electronic properties of
monolayer and bilayer BP can be tuned by applying external
strain and/or bias [11,12]. In particular, an external bias
can drive a semiconductor-to-semimetal transition in bilayer
BP [13,14], leading to the appearance of Dirac-like cones
and paraboliclike bands (inverted) in its energy spectrum
[15]. In addition to strain and bias, edge effects also play
an important role in affecting the physical properties of
2D BP nanostructures. For instance, armchair- and zigzag-
terminated nanoribbons of 2D BP exhibit different scaling
rules for the band gap versus the ribbon width (Eg ∼ 1/W and
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1/W 2, respectively, with Eg the band gap and W the ribbon
width) [16].

Recently, BP quantum dots (QDs) have been fabricated
through chemical methods [17,18]. The obtained QDs have a
lateral size of several nanometers and a vertical thickness of
few layers. Therefore, one may expect significant confinement
and edge effects in such small nanoscale QDs. Motivated
by these experiments, theoretical studies have been carried
out on the electronic and optical properties of monolayer
phosphorene (MLP) QDs [19–21]. Interesting results were
obtained, such as unconventional midgap edge states [19],
anomalous size dependence of optical emission gap [20],
and robust magneto-optical absorption by edge states [21].
In addition to MLP QDs, the electronic properties of MLP
quantum rings (QRs) were also investigated recently and
Aharonov-Bohm oscillations were predicted in the energy
spectrum of such QRs [22]. Because the electronic, optical,
and transport properties of 2D BP are also strongly dependent
on its layer number [8,23–25], it is of both fundamental and
practical interest to investigate the effect of the interlayer
coupling on these physical properties. Bilayer phosphorene
(BLP) is a natural candidate that can provide basic information
on such an interlayer coupling effect.

In the present work, we investigate theoretically the elec-
tronic properties of BLP QDs in the presence of perpendicular
electric and magnetic fields. Within the tight-binding (TB)
approach, the energy levels, wave functions, density of states,
and layer-dependent electronic properties of BLP QDs are
obtained numerically as a function of perpendicular magnetic
field and of perpendicular bias potential. The effects of the size
of the QD (i.e., the confinement effect) and the type of edges
on the electronic properties of BLP QDs are also investigated.
Here, for simplicity, we consider square-shaped BLP QDs
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with zigzag and armchair edges as our model QDs. Although
realistic BLP QDs could have more complex (irregular) shapes
and edges, such simple model QDs may provide basic insights
into important confinement and edge effects.

Magnetic-field effects such as Landau levels and magneto-
optical and magneto-transport properties have been investi-
gated in graphene QDs (GQDs) [26] as well as in bulk MLP
and its nanoribbons [27]. However, the subject studied in the
present work is different from those two works: (i) Compared
to GQDs (Ref. [26]), BLP QDs and MLP QDs exhibit midgap
edge states due to the finite band gap of BLP and MLP, the
energy levels of which are quasiflat with increasing magnetic
field, and they also exhibit anisotropic Landau levels formed
by conduction/valence bulk states at high magnetic fields
due to the anisotropic band structure of BLP and MLP.
(ii) When compared to MLP (Ref. [27]), BLP shows some
different features in the electronic energy spectrum due to
the interlayer coupling effect and its QDs exhibit interesting
layer-polarization features for edge and bulk states that can be
influenced by perpendicular electric and magnetic fields. (iii)
The effect of an external perpendicular electric field (i.e., the
bias effect), not considered in Refs. [26,27], was included in
the present paper.

The main results obtained in this work are as follows:
(i) Distinctive edge and bulk states are present in BLP QDs
and they exhibit different responses to perpendicular electric
and magnetic fields. (ii) In small-size BLP QDs edge states
may couple with bulk states. This bulk-edge coupling is not
present in large-size BLP QDs and it decreases and eventually
disappears with increasing magnetic field. (iii) Edge and bulk
states in BLP QDs exhibit different layer-dependent electronic
properties, such as layer-resolved electronic distributions
and so-produced layer-polarization features, and these layer-
dependent properties can be manipulated by perpendicular
electric and magnetic fields. In addition, magneto-electronic
properties of unbiased and biased BLP QDs are analyzed
in detail, which is essential for the understanding of other
important physical properties, such as electrically tunable
magneto-optical and magneto-transport properties.

This paper is organized as follows. In Sec. II, we present
the TB model approach for studying the electronic properties
of BLP QDs in the presence of perpendicular electric and
magnetic fields. In Sec. III, we briefly investigate the effect
of a bias potential on the electronic band structure of bulk
BLP. In Sec. IV, the main results are presented and analyzed
for the magnetic-field and bias-potential dependencies of
layer-dependent electronic properties (i.e., energy levels, wave
functions, and density of states) of BLP QDs. Finally, we make
a summary and give concluding remarks in Sec. V.

II. THEORETICAL APPROACH

We consider AB-stacked (Bernal) BLP consisting of two
phosphorene layers coupled via the van der Waals interac-
tion, as shown in Fig. 1(a). This stacking configuration is
energetically most stable for BLP according to first-principle
calculations [28] and can be viewed as shifting the upper
and lower phosphorene layers by half-unit-cell length along
the armchair or zigzag direction. Due to the puckered lattice
structure, phosphorene has two atomic sublayers and thus
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FIG. 1. (a) Top and (b) side views of the lattice structure of
AB-stacked BLP. The upper and lower phosphorene layers, with
interlayer separation d , are depicted by red and blue phosphorus
atoms, respectively. The armchair (zigzag) edges are assumed to
be along the x (y) direction. External electric and magnetic fields,
denoted by F and B, are applied perpendicular to the phosphorene
layers (i.e., along the z direction). The black rectangle represents the
unit cell of BLP with a and b being the lattice constants. The symbols
t1 and t2 are the intralayer hopping parameters and t3 is the interlayer
hopping parameter. (c) Schematic plot of the first Brillouin zone (the
red rectangle) with four high-symmetry points �, X, Y , and S as
indicated by black dots.

BLP has four atomic sublayers [see Fig. 1(b)]. Low-energy
electrons and holes in BLP are described by the following TB
Hamiltonian:

H =
∑

i

εic
†
i ci +

∑
i �=j

t
‖
ij c

†
i cj +

∑
i �=j

t⊥ij c
†
i cj , (1)

where the summation runs over all lattice sites of the system,
εi is the on-site energy at site i, t

‖
ij (t⊥ij ) is the intralayer

(interlayer) hopping energy between sites i and j , and c
†
i

(cj ) is the creation (annihilation) operator of an electron at
site i (j ). This TB model has been proposed for MLP and
BLP [29–31], and has been shown to accurately reproduce
the band structures of MLP and BLP obtained from DFT-GW

calculations over a wide energy range. However, as pointed
out by the previous works [29,32,33], the main features of
the band structure of MLP can be qualitatively described by
a minimal TB model that only takes into account the two
largest hopping parameters (t1 and t2). For BLP, additional
hopping parameters are required to describe the interlayer
coupling effect, and in a minimal TB model only the nearest-
neighbor interlayer hopping parameter (t3) needs to be taken
into account since it crucially determines the band gap of
BLP. With these hopping parameters (t1, t2, and t3), the
band gap can be evaluated as Eg = 2t2 + 4t1 for MLP and
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Eg = 2t2
√

1 + (t3/t2)2 + 4t1 − 2t3 for BLP. From these two
expressions, it can be seen that the band gap of BLP is smaller
than that of MLP, which is induced by the third hopping
parameter t3 characterizing the interlayer coupling effect in
BLP. We found that by choosing t1 = −1.21 eV, t2 = 3.18 eV,
and t3 = 0.22 eV the band gaps of MLP and BLP calculated
from this minimal TB model are given by EMLP

g = 1.51 eV
and EBLP

g = 1.09 eV, which agree with those obtained by
the full TB model that includes five intralayer hoppings for
MLP and additional four interlayer hoppings for BLP [29].
Moreover, the corresponding band structures of MLP and BLP
near their band gaps are also found to be in agreement with
those obtained by the full TB model. These motivate us to
employ this three-parameter TB model to study the low-energy
electronic properties of BLP.

In the presence of a perpendicular electric field, the two
atomic sublayers in MLP gain different electrostatic on-site
potential energies in the form of −V/2 and V/2, while the four
atomic sublayers in BLP gain different electrostatic on-site
potential energies in the form of (1/2 + ξ )V , (1/2 − ξ )V ,
(−1/2 + ξ )V , and (−1/2 − ξ )V , where V = eFd is the bias
potential energy across the top and bottom phosphorene
layers, with e the elementary charge, F the electric-field
strength, d the interlayer separation, and ξ = 0.202 a linear
scaling factor that accounts for the sublayer dependence of
the on-site electrostatic potential [14]. The effect of applying
a perpendicular magnetic field to BLP is incorporated into
the TB Hamiltonian (1) via the Peierls substitution, which
modifies the intralayer and interlayer hopping energies as
t
‖,⊥
ij → t

‖,⊥
ij exp [i(2π/�0)

∫ j

i
A · dl], where �0 = h/e is the

magnetic flux quantum with h the Planck constant, and
A = (0,Bx,0) is the magnetic vector potential in the Landau
gauge with B the magnetic-field strength. The magnetic flux
threading a plaquette is defined as � = Bab in units of the
flux quantum �0, with a = 4.37 Å and b = 3.31 Å the two
in-plane lattice constants of phosphorene.

In principle, one has to consider for bulk BLP the charge
distribution over the top and bottom phosphorene layers
under an external perpendicular electric field. The charge
distribution produces an internal electric field that counteracts
the external one, which in turn influences the electronic band
structure of BLP and so the charge distribution over the two
phosphorene layers. This charge redistribution may affect
the interlayer coupling strength because it may change the
interlayer electronic hopping distance. In order to account for
such a charge redistribution effect, a self-consistent calculation
based on a band-structure model (e.g., DFT or TB) and the
Poisson equation is needed. The charge screening depends
on its densities in the two layers, which can reduce the
external electric field applied and can be obtained from the
self-consistent calculation. A rough estimate of the charge-
screening-induced potential energy gives a value of the order of
tens of meV for layer charge density of 1012 cm−2, which is less
than the external bias potential energy of 1 eV. Furthermore,
as we consider QDs in BLP, the charge screening effect should
be even smaller in such nanostructures because the layer
charge densities are much smaller as compared to those in
bulk (infinite) BLP. Previous theoretical works on bulk BLP
[30,31] that did not consider the charge screening effect in the

TB model give good agreement with DFT calculations. There
are also other screening effects, such as substrate screening,
which may be important but are not relevant to the present
work where we considered QDs in pristine BLP. Therefore, the
present TB model is qualitatively valid to describe the effect
of an external perpendicular electric field on the electronic
properties of BLP QDs.

BLP QDs can be modeled by cutting an infinite BLP sheet
into small-area flakes with various geometric shapes (e.g.,
rectangle, triangle, hexagon, and circle) and with different
edge types (e.g., zigzag, armchair, and disordered). Here,
for simplicity, we consider square-shaped BLP QDs with
zigzag and armchair edges as our model QDs. Although
realistic BLP QDs could have more complex (irregular)
shapes and edges, such simple model QDs may provide
basic insights into crucial edge and confinement effects. The
energy levels and wave functions of square-shaped BLP QDs
subjected to perpendicular electric and magnetic fields are
obtained by numerically solving the TB model. All numerical
TB calculations are performed using the recently developed
PYBINDING package [34].

With the energy levels obtained, the electronic density of
states is computed as DOS(E) = ∑

n exp[−(E − En)2/�2],
with E the given energy, n the state index, En the energy
level, and � the broadening factor. In the present work, unless
otherwise specified, � = 5 meV is adopted throughout the
DOS calculations.

III. BULK BLP: BIAS EFFECT

Before diving into BLP QDs, we first consider the effect
of a perpendicular electric field (i.e., the bias effect) on the
band structure of bulk BLP. Due to the in-plane translational
invariance, a Fourier transform is performed to convert the
real-space TB Hamiltonian (1) into momentum space, and then
the corresponding Hamiltonian is numerically diagonalized to
obtain the band structure.

In Figs. 2(a)–2(d), we show the band structure of bulk BLP
for different bias potential energies V as indicated in (a)–(c)
and the band energies at the � point as a function of V in
(d). As can be seen, unbiased BLP has an anisotropic band
structure with a finite direct band gap, which is inherently due
to the puckered lattice structure of phosphorene. Applying
a bias reduces the band gap of BLP and eventually drives
a semiconductor-to-semimetal transition. The critical bias
potential energy for such a transition is found to be Vc �
1.5 eV, in agreement with recent theoretical work [13]. In
the semimetal phase, biased BLP exhibits an interesting
anisotropic band structure: it is linearlike and gapless in
the �-Y direction, but quadraticlike and inverted in the
�-X direction. Consequently, Dirac-like cones, paraboliclike
bands, and band inversions coexist in biased semimetallic BLP.
For comparative purposes, we also show in Figs. 2(e)–2(h) the
effect of a perpendicular electric field on the band structure and
the corresponding �-point band energies of bulk MLP: (e)–(g)
for the band structure and (h) for the �-point band energies. As
can be seen, applying a bias potential only increases the band
gap of MLP while it has little effect on the main characteristics
of the band dispersion, in sharp contrast to the case of BLP. This
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FIG. 2. Band structures of infinite BLP (MLP) subjected to different bias potential energies V as indicated in (a)–(c) [(e)–(g)] and the band
energies at the � point as a function of V shown in (d) [(h)]. The red dashed line denotes the zero-energy reference.

large difference is attributed to the interlayer coupling effect
in BLP, which is also responsible for the band-gap decrease in
BLP as compared to that in MLP. The electrically tunable band
structure of BLP is expected to have important consequences
on the electronic properties of biased BLP QDs in the presence
of a perpendicular magnetic field.

It should be noted that in Fig. 2 the bias potential energy V

is set in the range of 0–2 eV. For a typical value of V = 1 eV, a
rough estimate using the relation V = eFd (d = 0.523 nm is
the interlayer separation of BLP) gives a corresponding electric
field F as high as 20 MV/cm. It is known that generating such
a huge electric field is a big challenge for experiments, which
could possibly be generated by ionic gating and/or polarized
interfaces as proposed in Ref. [35]. On the other hand, there
are a large number of theoretical studies on phosphorene
based on TB or DFT calculations that consider an external
electric field of this magnitude or even larger [13,14,30,31].
Experimentally, strong electric fields are also commonly used
to study the electrical response of material properties. For
instance, the vibrational Stark effects were measured by apply-
ing an external electric field of order 1 MV/cm to an organic
compound containing the vibrational probe of interest [36].
Moreover, it was already demonstrated that the magnitude of
the gate-induced electric field can reach up to the order of 1
MV/cm in micrometer-scale samples [37], which is expected to
be even larger in nanostructures due to the reduced screening.

IV. BLP QD: MAGNETIC AND BIAS EFFECTS

Now we turn to the study of the electronic properties of BLP
QDs in the presence of perpendicular magnetic field and bias
potential. Because the finite size breaks in-plane translational
invariance, the real-space TB Hamiltonian (1) is directly
diagonalized to obtain the eigenenergies and eigenfunctions
of the electronic states in BLP QDs. In the following, the
effects of magnetic field and bias potential on the electronic
properties of such QDs are investigated.

A. Magnetic-field effect

In Figs. 3(a) and 3(b), we show the DOS-projected energy
levels of an unbiased BLP QD (i.e., V = 0), as a function of
the magnetic flux �, for different dot sizes L: (a) L = 3.5 nm
and (b) L = 7.5 nm. Because of the small size of the QD, a
large magnetic field (B = 2850 T for � = 0.1 �0) is required
in order to produce a significant influence on the energy levels.
Nevertheless, as the influence of the magnetic field scales with
the magnetic flux threading the QD, similar results will be
obtained for smaller magnetic fields if larger-size QDs are con-
sidered. Such large magnetic fields have also been considered
in the TB modeling of phosphorene confined systems [19,38].

As can be seen in Figs. 3(a) and 3(b), there are nearly flat
energy levels within the band gap of the BLP QD. These energy
levels correspond to the edge states, while those above (below)
the band gap correspond to the conduction (valence) bulk
states. Here we distinguish edge and bulk states in terms of their
wave-function properties: the former are strongly localized at
the QD boundary while the latter are mainly distributed around
the QD center [see Figs. 3(c)–3(e)], which show the probability
densities |�|2 of the electronic states indicated by points 1–3
in Fig. 3(a). An important feature of the edge states is that they
are almost unaffected by the magnetic field, as reflected by
the quasiflat energy levels shown in Figs. 3(a) and 3(b). This
feature is attributed to the strong localized nature of the edge
states. Furthermore, we find that the DOS of the edge states
is larger than that of the bulk states. This is because the edge
levels are spaced very closely to each other and thus they can
be viewed as nearly degenerate.

However, when comparing Figs. 3(a) and 3(b), the follow-
ing differences can be observed: (i) The smaller-size QD has
a larger band gap and also a larger energy-level separation
due to the stronger confinement effect. (ii) The larger-size QD
has a larger electronic DOS for both the bulk and edge states.
This is because the bulk (edge) DOS is proportional to the
number of atoms in the QD center (at the zigzag boundary)
and thus both of them increase with the dot size. (iii) At high
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FIG. 3. (a) [(b)] Energy levels of an unbiased BLP QD, with dot size L = 3.5 (7.5) nm, as a function of the magnetic flux �, where the
colorbar shows the DOS values at these levels. (c)–(e) Probability densities of the electronic states denoted by points 1–3 shown in (a). (f)–(h)
Probability densities of the electronic states denoted by points 4–9 shown in (a) and (b). The size of the blue and red dots shown in (c)–(h)
represents the amplitude of the electronic probability density.

magnetic fields, the bulk levels in the larger-size QD converge
to distinct Landau levels (LLs) with a large DOS due to the
high LL degeneracy. (iv) The edge states in the smaller-size
QD are less unaffected by the magnetic field and have a certain
bandlike broadening at lower magnetic fields. This broadening
comes from the bulk-edge coupling in the smaller-size QD,
while it is absent in the larger-size QD where the edge states
have no such bandlike broadening. Our numerical calculations
indicate that similar bulk-edge coupling can also be observed
in small-size MLP QDs.

To see clearly the presence (absence) of the bulk-edge
coupling in the smaller-sized (larger-sized) QD, we show in
Figs. 3(f) and 3(g) the probability densities of the bulk and edge
states denoted by points 4 and 5 in Fig. 3(a) and those denoted
by points 6 and 7 in Fig. 3(b). We also find that the bulk-edge
coupling in the smaller-size QD becomes much weaker at high
magnetic fields [see Fig. 3(h)], which shows the probability
densities of the bulk and edge states denoted by points 8 and 9
in Fig. 3(a). This is because the bulk states are more confined
around the QD center at high magnetic fields due to the strong
magnetic confinement.

We have to point out that the edge states predicted
here will vanish in phosphorene nanoribbons and QDs with
edge bond termination (passivation), as demonstrated by
DFT calculations [39]. Therefore, such edge-state induced
phenomena are likely to be invisible in the experiments.
However, from a theoretical point of view, such edge states
can still survive as long as there are zigzag boundaries
assumed in the model system. Furthermore, such well-defined
boundaries may possibly be realized in the future because
of continuously improved nanofabrication techniques, as was
already demonstrated for the case of graphene nanoribbons
[40].

Since BLP is made of two coupled phosphorene layers with
each one having two atomic sublayers, it is natural to think
of studying the electronic-state distributions over these two
atomic layers or four atomic sublayers. In doing so, we need
to look into the layer-resolved electronic probability densities
for both the bulk and edge states. Therefore, we define a new
physical quantity η, the layer-polarization degree (LPD), for
the electronic states in a BLP QD, which characterizes how
much an electronic state is distributed over the top and bottom
layers, and mathematically this quantity is given by

η =
∫ |�t (r)|2dr − ∫ |�b(r)|2dr∫ |�t (r)|2dr + ∫ |�b(r)|2dr

, (2)

where �t (r) and �b(r) are the electronic probability densities
in the top and bottom layers, respectively. Thus, η = 1 (−1)
indicates that the electronic states are only distributed over
the top (bottom) layer (i.e., completely layer polarized),
η = 0 indicates that the electronic states are symmetrically
distributed over the two layers (i.e., fully layer unpolarized),
and 0 < |η| < 1 indicates that the electronic states are asym-
metrically distributed over the two layers (i.e., partially layer
polarized).

In Fig. 4(a), we show the LPD-projected energy levels
of the same BLP QD as in Fig. 3(a). The inset plot shows
more clearly the edge-state levels that are very close to each
other around zero energy. As can be seen, the edge states
inside the band gap of the QD are partially layer polarized
(0 < |η| < 1) while the conduction and valence bulk states
outside the band gap are fully layer unpolarized (η = 0).
To clearly see such layer-polarized features of the bulk and
edge states, we show in Figs. 4(b)–4(d) the layer-resolved
electronic probability densities |�t |2 and |�b|2 of the bulk and
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FIG. 4. (a) Energy levels of an unbiased BLP QD with dot size L = 3.5 nm, as a function of the magnetic flux �, where the colorbar
shows the LPD (η) values at these levels. The inset shown in (a) shows a zoom of the edge levels around zero energy. (b)–(g) Layer-resolved
probability densities of the electronic states indicated by points 1–3 shown in (a). |�t

j |2 and |�b
j |2 (j = 1,2,3) denote the top-layer and

bottom-layer electronic distributions, respectively. The size of the blue dots shown in (b)–(g) represents the amplitude of the electronic
probability density. (h) Zero-field LPD (η) values of the edge and bulk states for different QD sizes L as indicated. There are many points
around E = 0 due to the highly quasidegenerate edge states around this zero energy.

edge states corresponding to points 1–3 marked in Fig. 4(a).
Indeed, those edge states are partially layer polarized while
those conduction and valence bulk states are fully layer
unpolarized. Such a difference is mainly attributed to the
different interlayer symmetries for the edge and bulk states,
which can be understood as follows: When cutting the BLP
sheet perpendicularly into squared-shaped QDs, we find that
the presence of interlayer hoppings breaks the edge symmetry
between the top and bottom phosphorene layers while it
keeps the bulk symmetry between the two layers, as shown
in Fig. 1(b). Notice that the edge atom of one layer is two
hops away from the interlayer hopping t3 while the other
layer is only one hop away from it. Because edge states are
strongly localized at the zigzag boundaries, the broken edge
symmetry gives rise to zero-field layer polarization of the edge
states. However, due to the bulk symmetry between the top and
bottom phosphorene layers, the bulk states are symmetrically
distributed over the two layers and thus there is no such layer
polarization for the bulk states.

At lower magnetic fields, the edge states are less polar-
ized due to their coupling to the unpolarized bulk states.
With increasing magnetic field, they become more polarized
because they are gradually decoupled from the bulk states
(which become more localized around the QD center at high
magnetic fields). Our numerical calculations also indicate a
similar result for the larger-size QD, i.e., the edge (bulk) states
are asymmetrically (symmetrically) distributed over the two
layers and thus they are partially layer polarized (fully layer
unpolarized). However, the difference is that the LPD values of
the edge levels in the larger-size QD are almost unaffected by
the magnetic field due to the absence of the bulk-edge coupling.

We also find that the zero-field LPD (η) of edge states
depends sensitively on the size of the BLP QD and its
magnitude (|η|) is increased by decreasing the QD size, as
shown in Fig. 4(h). This is because the importance of dot
boundaries is more significant in smaller-size QDs due to
the increased edge-to-volume ratio. Note that there are many
points around E = 0 due to the highly quasidegenerate edge
states around this zero energy. In addition, the zero-field LPD
of edge states should also depend on the stacking order of
BLP. For instance, (i) its sign is positive η > 0 (or negative
η < 0) for the AB stacking, which may turn into negative
η < 0 (or positive η > 0) for the BA stacking due to the
inverted interlayer (boundary) symmetry (the two layers are
just spatially flipped for the cases of AB and BA stackings);
and (ii) its value for the AB (or BA) stacking might be changed
for the AA stacking due to the different interlayer (boundary)
symmetries of these two stacking orders (the AB stacking has
a relative in-plane shift between the two layers while the AA
stacking does not).

B. Bias effect

Now we consider the effect of applying a perpendicular
electric field (i.e., a bias potential) on the electronic properties
of a BLP QD. Here, the bias potential energy V is antisymmet-
ric with respect to the z = 0 plane, i.e., V (z) = −V (−z), due
to the mirror symmetry between the two layers in a BLP QD. In
Figs. 5(a) and 5(b), we show the LPD-projected energy levels
of a BLP QD at zero magnetic field (� = 0), as a function of
the bias potential V , for different dot sizes L: (a) L = 3.5 nm
and (b) L = 7.5 nm. For comparative purposes, we also show
in Fig. 5(c) the results of a MLP QD with dot size L = 7.5 nm.

155425-6



ELECTRONIC PROPERTIES OF BILAYER PHOSPHORENE . . . PHYSICAL REVIEW B 96, 155425 (2017)

(a) (b) (c)

2

4

3

6

1

5

6

1 2 3 4 5 6

LPD

(d)

FIG. 5. (a) [(b)] LPD-projected energy levels of a BLP QD with dot size L = 3.5 (7.5) nm, at zero magnetic field (� = 0), as a function of
the bias potential energy V . (c) Results of a MLP QD with dot size L = 7.5 nm shown for comparative purposes. (d) Layer-resolved probability
densities |�t |2 and |�b|2 of the electronic states denoted by points 1–6 shown in (b). Here, the black rectangle shown in (b) is enlarged as
an inset, and the vertical dashed lines shown in (a) and (b) mark the position at which the bias potential V is equal to the interlayer coupling
energy t3.

As can be seen in Figs. 5(a) and 5(b), for smaller bias
potentials the energy levels of the edge (bulk) states exhibit a
linear (quadratic) Stark shift, while for larger bias potentials
both the bulk and edge levels exhibit a linearlike Stark shift.
We explain in the following the different behaviors of these
Stark shifts observed for smaller and larger bias potentials.

The linear (quadratic) Stark effect exhibited by the edge
(bulk) states observed for smaller bias potentials can be
understood qualitatively within the framework of perturbation
theory. As already shown in Figs. 3(a) and 3(b), the energy
levels of the edge states are spaced very closely while those of
the bulk states are not. Therefore, degenerate (nondegenerate)
perturbation theory can be used to study the response of the
edge (bulk) states to the external bias. For simplicity, we use a
two-level model to explain the linear (quadratic) Stark effect
observed for the edge (bulk) states in the BLP QD. Here for
both the edge and bulk states, the two unperturbed (unbiased)
energy levels are denoted by their eigenenergies E1 and E2

and corresponding eigenfunctions |1〉 and |2〉, and for the edge
states E1 � E2 can be reasonably assumed due to their nearly
degenerate energy levels. We further denote the edge-state or
bulk-state Hamiltonian in the presence of an external bias

as H = H0 + V (z) with H0 the unperturbed Hamiltonian
and V (z) the layer-dependent bias potential energy. For the
unperturbed Hamiltonian H0, we have H0 |j 〉 = Ej |j 〉 (j = 1,
2) and we apply perturbation theory with respect to the bias
potential V (z).

Within nondegenerate perturbation theory, the energy of the
perturbed bulk states can be obtained up to second order as

Ej = Ej + 〈j | V (z) |j 〉 + | 〈j | V (z) |i〉 |2
Ej − Ei

, (3)

with j = 1, 2 and i �= j . As mentioned previously, the
unbiased bulk states have symmetric electronic distributions
over the two layers, i.e., their wave functions are symmetric
with respect to the z = 0 plane. However, the perturbation
(bias) potential energy is antisymmetric with respect to the z =
0 plane, namely, V (z) = −V (−z). Therefore, the first-order
term in Eq. (3) is zero while the second-order one is nonzero.
This simple result may qualitatively explain the quadratic Stark
effect observed for the bulk states in the lower bias potential
region. The perturbed edge-state Hamiltonian matrix H can be
obtained within first-order degenerate perturbation theory, in a
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basis set composed of unperturbed eigenfunctions {|1〉 , |2〉} as

[H ] =
[
E0 



† E0

]
, (4)

where E0 = E1 = E2 and 
 = 〈1| V (z) |2〉. Diagonalizing
this Hamiltonian matrix, we obtain the energy levels of the
edge states under the bias perturbation as E± = E0 ± |
|,
which may qualitatively explain the linear Stark effect
observed for the edge states in the lower bias potential region.

However, for larger bias potentials, perturbation theory is
no longer valid and can not be applied to explain the observed
linearlike Stark shifts for both the bulk and edge states in the
BLP QD. In this case, one has to resort to the TB Hamiltonian
itself [Eq. (1)], where the bias potential energy is included as
the on-site energy. In the presence of a bias potential, both
the center and boundary atoms in the top (bottom) layer gain
the same on-site energy +V/2 (−V/2). That is why both
the bulk and edge states in the BLP QD exhibit a linearlike
Stark effect at large bias potentials. Furthermore, because a
large bias potential makes both states layer polarized, all the
top-layer (bottom-layer) states feel only the on-site energy
+V/2 (−V/2) and thus their energy levels move up (down)
with increasing V [see the blue and red curves shown in
Figs. 5(a) and 5(b)]. However, this is not the case for the bulk
and edge states in the MLP QD due to the absence of the layer-
polarization feature. Because all the bulk/edge states are
distributed only over one layer and they feel the same on-site
potential +V/2 (or −V/2), their energy levels move up (or
down) with increasing V , as shown in Fig. 5(c).

It is worth noting that in Figs. 5(a) and 5(b) the energy
levels of the edge states in the biased BLP QD are split
into four branches. However, the energy levels of the edge
states in the biased MLP QD are only split into two such
branches [see Fig. 5(c)]. This difference is attributed to the
interlayer coupling effect. The four branches of edge states
in the BLP QD have opposite linear Stark responses to the
external bias: two of them go up while the other two go down,
as the bias potential energy increases. Likewise, the conduction
and valence bulk states in the BLP QD have opposite quadratic
Stark responses to the external bias. For instance, the energy of
the lowest (highest) conduction (valence) bulk states decreases
(increases) with the bias potential energy, thereby leading to a
decrease in the band gap of the BLP QD. Therefore, those two
branches of edge states that move up (down) with increasing
bias potential energy eventually merge into the conduction
(valence) bulk states at large bias potentials. Notice that this
merging may lead to anticrossings between the energy levels of
those bulk and edge states [see Fig. 5(a)]. These anticrossings
are more pronounced for the smaller BLP QD because of the
larger bulk-edge coupling as mentioned above. The energy
levels before or after anticrossings correspond to the pure bulk
and edge states, while at anticrossings they correspond to the
mixed bulk/edge states.

It is also of interest to look at the LPD (η) values of the
energy levels of the bulk and edge states shown in Fig. 5(b).
From the line colors that characterize the η values, we observe
the following features: (i) The bulk states are weakly layer
polarized when the bias potential energy is less than the
interlayer coupling energy (i.e., V < t3). (ii) With increasing

bias potential energy such that V > t3, the bulk states become
strongly layer polarized. (iii) The edge states are always
layer polarized whether V < t3 or V > t3. (iv) Once the edge
states merge into the bulk states, their mixed states become
less layer polarized as compared to the unmixed bulk and
edge states. (v) At large bias potential energies, the lowest
conduction bulk states are coupled to the highest valence bulk
states, leading to anticrossings between their energy levels [see
the inset shown in Fig. 5(b)]. Although both the uncoupled
conduction and valence bulk states are layer polarized, the
coupled conduction-valence bulk states are layer unpolarized
due to the electron-hole symmetry of the energy spectrum.

To see the above features more clearly, we choose typical
bulk and edge states marked by points 1–6 shown in Fig. 5(b)
and plot their layer-resolved probability densities in Fig. 5(d).
As can be seen, the bulk state corresponding to point 1
has almost equal electronic distribution over the top and
bottom layers, implying that the bulk states are almost layer
unpolarized when V < t3, which is due to the dominant
interlayer coupling effect. When V > t3, the bulk states
become layer polarized because of the stronger bias effect (see
the result corresponding to point 2). However, the biased edge
states are always layer polarized whether V < t3 or V > t3,
which is almost unaffected by the bias potential energy (see
the results corresponding to points 3 and 4). Once the edge
states merge into the bulk states, their mixed states have finite
electronic distributions in both the top and bottom layers (see
the result corresponding to point 5), implying that the mixed
states are less layer polarized as compared to the unmixed
individual states. At large bias potentials, the layer-polarized
conduction bulk states are coupled to the layer-polarized
valence bulk states. The coupled conduction-valence bulk
states have almost equal electronic distribution over the two
layers (see the result corresponding to point 6), implying that
they are layer unpolarized.

Additionally, when comparing Figs. 5(b) and 5(c), we find
that the band gap of the BLP (MLP) QD decreases (increases)
with increasing bias potential energy. This is a consequence of
the different bias-potential-energy dependencies of their bulk
counterparts (i.e., infinite BLP and MLP; see Fig. 2). However,
unlike infinite BLP shown in Fig. 2, the band gap of the BLP
QD cannot be closed completely with increasing bias potential
energy [see the inset shown in Fig. 5(b)]. This difference is
clearly induced by the finite-size effect in the BLP QD.

C. Biased magnetic-field effect

In Figs. 6(a)–6(c), we show the DOS-projected energy
levels of a BLP QD with dot size L = 5.5 nm, as a function of
the magnetic flux �, for different bias potential energies V : (a)
V = 0 eV, (b) V = 0.5 eV, and (c) V = 2 eV. As can be seen, in
the presence of a finite bias potential, the single unbiased edge
band is split into four individual bands and the corresponding
biased edge states are not only layer resolved but also
boundary resolved. To show this, we choose four typical biased
edge states indicated by points 1–4 shown in Fig. 6(b) and
plot their corresponding probability densities over the two
layers in Fig. 6(d). Clearly, these four biased edge states are
localized at the different zigzag boundaries and are distributed
over the different layers. Their layer- and boundary-resolved
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FIG. 6. DOS-projected energy levels of a BLP QD with dot size L = 5.5 nm, as a function of the magnetic flux �, for different bias
potential energies V : (a) V = 0 eV, (b) V = 0.5, and (c) V = 2 eV. (d) Layer-resolved probability densities |�t |2 and |�b|2 of the electronic
states denoted by points 1–8 shown in (a) and (b). The size of the blue dots shown in (d) represents the amplitude of the electronic probability
density.

features are induced by the combined effects of perpendicular
electric field and a puckered phosphorene lattice, introducing
electrostatic on-site potential energies in a biased BLP QD that
are not only layer dependent but also sublayer dependent.

With increasing bias potential energy from V = 0 to
0.5 eV, the bulk LLs at high magnetic fields become layer
polarized [see Fig. 6(d) corresponding to points 5–8 shown
in Figs. 6(a) and 6(b)]. The biased bulk-LL states marked
by points 7 and 8 shown in Fig. 6(b) have very different
layer-resolved characteristics: one of them (the other) is only
distributed over the top (bottom) layer. This feature indicates
that there exist two groups of biased bulk LLs with distinctive
electronic distributions over the two layers. When looking at
the magnetic-field dependence of the bulk LLs formed at large
magnetic fields, as shown in Figs. 6(a) and 6(b), we find that
both unbiased and biased LLs exhibit a linearlike dependence
on �, which is characteristic of conventional 2D electronic
systems with paraboliclike energy bands.

With further increasing bias potential energy to V = 2 eV,
the bulk system of BLP (i.e., infinite BLP) becomes a
Dirac-like semimetal, as shown in Fig. 2(c). This Dirac-
like semimetal phase of biased BLP features a gapless
linearlike band dispersion along the �-Y direction, a gapped
paraboliclike energy spectrum along the �-X direction, and
an inverted band gap at the � point due to the inversion

of valence and conduction bands around this point. Similar
interesting results were also demonstrated in Ref. [41],
which studied electric-field tunable Dirac semimetal states
in phosphorene multilayers with density functional theory.
However, the confinement effect in the BLP QD opens a
finite band gap at zero magnetic flux or field (� = 0) [see
Fig. 6(c)]. As the magnetic flux � increases, this band
gap is first closed, leading to a semiconductor-to-semimetal
transition, similar to that observed in Dirac material systems
such as graphene QDs [42]; and then it is reopened, leading
to a semimetal-to-semiconductor transition, similar to that
observed in semiconductor material systems with paraboliclike
band inversions such as InAs/GaSb broken-gap quantum wells
[43]. Such two consecutive phase transitions induced by the
magnetic field arise due to the coexistence of the gapless
linearlike dispersion and the gapped paraboliclike spectrum in
biased BLP, as shown in Fig. 2(c). At higher magnetic fields,
a significantly large band gap can be observed. We note that
inside this band gap no edge states are present because they
merge into the bulk states outside the band gap. Moreover, we
find in the presence of a large bias potential energy (V = 2 eV)
and for larger magnetic fields that the zeroth bulk LLs exhibit
a linearlike dependence on the magnetic field, while the others
exhibit a square-root-like dependence [see Fig. 6(c)]. This
feature is remarkably different than that shown in Figs. 6(a) and
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6(b), which is also attributed to the coexistence of the gapless
Dirac-like dispersion and the gapped paraboliclike spectrum
in biased BLP.

V. CONCLUDING REMARKS

By means of the TB approach, we have investigated
the electronic properties of BLP QDs in the presence of
perpendicular electric and magnetic fields. The energy levels,
wave functions, and density of states of BLP QDs were
obtained as a function of magnetic field and of bias potential.
We find in-gap edge states that are well separated from gapped
bulk states. The edge states are strongly localized at the
zigzag boundaries of the QD and, as a result, they are almost
unaffected by the magnetic field, while the bulk states are
mainly distributed around the center part of the QD and thus
they are strongly affected by the magnetic field, resulting
in distinct LLs at high magnetic fields. However, both the
edge and bulk states are found to be strongly influenced by
the bias potential. For instance, their energy levels exhibit
remarkably linear and quadratic Stark shifts, respectively. The
different Stark effects exhibited by the edge and bulk states
are qualitatively explained by using perturbation theory.

The size effect on the bulk and edge states in BLP QDs was
also investigated. We found that in smaller-sized BLP QDs
the edge states couple to the bulk states. Such a bulk-edge
coupling decreases and eventually disappears with increasing
magnetic field, because the bulk states become more confined
due to the strong magnetic confinement while the edge states
are almost unaffected by the magnetic field.

Since BLP is composed of two coupled phosphorene
layers, the bulk and edge states in BLP QDs show interesting
layer-dependent electronic properties, such as layer-resolved
electronic distributions and their layer-polarization features,
in the absence and presence of perpendicular electric and
magnetic fields. We find that in the absence of a bias potential
only edge states are layer polarized while the bulk states are

not. The layer-polarization degree of edge states increases with
increasing magnetic field and decreases with increasing QD
size. However, in the presence of a bias potential both the edge
and bulk states are layer polarized, and the layer-polarization
degrees of the bulk (edge) states depend strongly (weakly) on
the interplay of the bias potential and the interlayer coupling.
The layer-polarization features of the edge and bulk states
are clearly demonstrated by their layer-resolved electronic
distributions. At high magnetic fields, the applied bias renders
the bulk electrons in a BLP QD to perform cyclotron motion
mainly in the bottom or top layer, leading to layer-polarized
bulk LLs, and consequently there are two groups of biased bulk
LLs with distinctive layer-resolved electronic distributions.

We also found that, in the presence of a large bias potential,
semiconducting bulk BLP becomes a Dirac-like semimetal
with a paraboliclike band inversion. As a consequence, with
increasing magnetic field, the band gap of the BLP QD is first
closed, leading to a semiconductor-to-semimetal transition,
similar to that observed in Dirac material systems such as
graphene QDs, and then it is reopened, leading to a semimetal-
to-semiconductor transition, similar to that observed in semi-
conductor material systems with paraboliclike band inversions
such as InAs/GaSb broken-gap quantum wells. Moreover, due
to the coexistence of the gapless Dirac-like band dispersion
and the inverted paraboliclike energy spectrum in biased BLP,
at large magnetic fields the zeroth bulk LLs in biased BLP
QDs exhibit a linearlike dependence on magnetic field while
the other LLs exhibit a square-root-like dependence.
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