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We derived a nonlinear differential equation that describes the profile of a suspended helium film over a
ring-shaped substrate in the presence of a perpendicular external electric field. The profile of the helium film
was calculated as a function of the bulk liquid helium level and for several values of the external radius of the
ring. The one electron surface states were calculated in the presence of external electric and magnetic fields.
The electron energy levels increase with electric field as well as with the height of bulk helium. Aharonov-
Bohm oscillations were observed in this system under appropriate conditions.
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I. INTRODUCTION

Since the first works of Sommer,1 Cole and Cohen,2 and
Shikin,3 the study of surface states of electrons bounded to
the surface of liquid helium has been the subject of many
studies.4,5

The progress in nanofabrication of semiconductor materi-
als allowed the construction of quantum wires and a new
confined structure called quantum rings �QRs�. The semicon-
ductors materials, QRs, are modeled by a cylindrical quan-
tum dot with an internal axially symmetric cavity. This
unique geometry has attracted much attention in the last few
years.6–8 Although the new techniques of building new semi-
conductor structures improved considerably in the last few
years, the electron properties are strongly influenced by spa-
tial inhomogeneities and impurity scattering.9–11 The unifor-
mity and cleanliness of electron systems on a helium surface
have proved to be practically ideal for experimental and the-
oretical research on low-dimensional systems. Taking into
account these studies on low-dimensional systems devoted to
quantum wires and quantum dots in semiconductor devices,
it would be natural to study similar systems of electrons
above a helium surface in quasi-one-dimensional �Q1D� and
quasi-zero-dimensional structures �see review12�. The physi-
cal realization of Q1D electron systems over liquid helium
allowed us to study different phenomena, such as transport
properties, plasmons, and polaronic states.12–14 In these sys-
tems, the charge carriers can move only in one spatial direc-
tion due to lateral confinement. Such confinement leads to a
lateral potential introducing a new spatial quantization lead-
ing to a multisubband electron system. Considering a para-
bolic lateral confinement, Sokolov and Studart15 studied the
effects of a transverse magnetic field on the electron states in
a Q1D electron system over liquid helium. Recently, the pro-
file of the suspended helium film, forming a channel, was
calculated self-consistently. It was shown that, under certain
experimental conditions reported in the literature,14 the lat-
eral potential can be approximated by a parabolic potential.16

In fact, a very efficient way to produce Q1D electron systems
over liquid helium is the technique of suspended helium film
on a structured substrate. Compared to a thin van der Waals

film, a suspended helium film has the advantage of being
much thicker and therefore less sensitive to the roughness of
the substrate beneath it. This improves the mobility of the
electrons on the film.17 Furthermore, since the suspended he-
lium film follows the substrate shape, it opens up the possi-
bility to create one-dimensional channels by suspending a
film between ribs, zero-dimensional structures by making
�small� holes in a flat substrate, and even rings.

The QR is usually modeled by a cylindrical quantum dot
with an internal axially symmetric cavity. This unique geom-
etry has attracted much attention in the last few
years.6–10,18–22 In the presence of an axially directed mag-
netic field, oscillations of the electron energy as a function of
the magnetic flux �Aharonov-Bohm effect �ABE�� were
found to occur.23 The AB oscillations are due to a change of
phase of the wave function when the magnetic flux � passing
through the ring reaches the magnetic quantum flux �0
=h /e �h is the Planck constant and e is the electronic
charge�. As expected for semiconductor structures, some
works have pointed out that the presence of impurities and
geometrical imperfections affect strongly the optical proper-
ties and the electronic states of these structures and eventu-
ally can suppress the ABE in quantum rings.9,11,24,25 In order
to study electron states in ring-shaped systems, free of impu-
rities and pinning centers, Dyugaev et al.26 proposed an ex-
perimental apparatus consisting of a thin film of liquid he-
lium over a substrate with a metal ring placed below,
producing an electron confinement in the shape of a ring.
Since its confinement potential is electrostatic, the proposal
was applied only in the limit where the lateral confinement
could be approximated by a parabolic potential, when the
ABE is achieved.27,28

In the present paper, we propose a geometrical ring-
shaped electron confinement built by a liquid helium film
suspended by a substrate, where the distance between the
helium film surface and the substrate is large enough, such
that the van der Waals effect is not important and subjected
to external electric and magnetic fields. Considering a single
electron problem, the paper is organized as follows. In Sec.
II, we present the calculation of the helium film profile and
calculate the lateral confining potential of the electron in the
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ring for various values of the external electric field, height of
the bulk helium, and for different external radii of the ring.
In Sec. III, we present the energy states of one electron sub-
jected to the lateral confining potential, where we observe
AB oscillations in the presence of a magnetic field. Finally,
in Sec. IV, we present our conclusions.

II. HELIUM FILM PROFILE AND CONFINEMENT
POTENTIAL

The system is schematically shown in Fig. 1 and consists
of superfluid helium that flows from bulk liquid helium at a
given level z=−H and fills a ring-shaped structure of height
h, produced on a substrate, due to the action of capillary
forces. The ring has internal and external radii r� and r�,
respectively, where electrons over the liquid helium surface
will be confined.

In order to obtain the helium profile suspended over the
circular substrate, we calculate the pressure difference be-
tween the suspended film over the substrate and the free
surface of the bulk liquid at height −H, as shown in Fig. 1,
that produces a curved surface, due to the surface tension
�.29 We use the fact that in equilibrium, the chemical poten-
tial per unit mass is the same everywhere on the surface of
the helium.30 Thus, the work necessary to deform the surface
by −�� from its equilibrium position, z=0, is given by29

�W =� �p1 − p2���df + ��f , �1�

where df is the surface element, p1 the pressure on the free
surface of the bulk, and p2 the pressure inside the suspended
helium film. The first term in Eq. �1� corresponds to the
volume variation, whereas the second one corresponds to the
surface area variation associated with this volume variation.

In accordance with Fig. 1, the surface of the helium film is
described by z�r�=��r�−h and we assume that ��r� is small
everywhere, i.e., that the surface deviates only slightly from
the plane z=0. Then, as the surface has angular symmetry,
the surface area is given by

f = 2��
r�

r�

r�1 + �d�

dr
�2

dr , �2�

where r� and r� are the internal and external radii of the
ring. Since we assumed ��r� to be small, we can expand Eq.
�2� and obtain

f 	 2��
r�

r� 
1 +
1

2
�d�

dr
�2�rdr , �3�

such that the variation �f is given by

�f = 2��
r�

r� d�

dr

d��

dr
rdr . �4�

Integrating Eq. �4� by parts, we find

�f = − 2��
r�

r� �d2�

dr
+

1

r

d�

dr
���rdr . �5�

Inserting Eq. �5� into Eq. �1� and taking �W=0 �thermo-
dynamic equilibrium condition�, we obtain the pressure dif-
ference at the helium film that is suspended by the substrate,

p2 = p1 − ��d2�

dr2 +
1

r

d�

dr
� . �6�

Knowing the pressures in and out of the ring, we can
calculate the total chemical potential per unit mass in all
regions, which is given by30

	 =
p



− sT + gz�r� −

�


�3�r�
, �7�

where p is the pressure per unit mass, 
=0.145 g /cm3 the
helium density, �=9.5�10−15 erg the van der Waals cou-
pling constant of the helium substrate �assumed to be glass�,
s the specific entropy per unit mass, gz�r� the potential en-
ergy per unit mass at height z�r�, ��r� the thickness variation
of the helium film, and g the gravity acceleration. Conse-
quently, the total chemical potential per unit mass of the free
surface of the bulk liquid, at height −H, is given by

	1 =
p1



− sT − gH , �8�

and the chemical potential of the suspended liquid helium
film by the substrate is given by

	2 =
p2



− sT + gz�r� −

�


�3�r�
, �9�

where z�r�=��r�−h. In thermodynamic equilibrium, we have
	1=	2. Using Eqs. �6�–�9�, we obtain

(0,0)

z

-x(r)-H
-h

He Substrate Au

(a)

(b)

FIG. 1. �a� The cell transversal section of the helium film sus-
pended over a ring-shaped substrate. �b� Top view of the system.
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d2��r�
dr2 +

1

r

d��r�
dr

=

g

�
���r� − h + H� −

�

��3�r�
, �10�

which describes the profile of the liquid helium film in the
ring, where �=0.378 erg /cm22 is the liquid helium surface
tension. Similar equation was obtained in Ref. 16 for the
liquid helium film profile in channels.

Since the bonding energy of the electron over the liquid
helium is around 8 K,31 to confine the electron inside the
ring of the suspended helium film, it is necessary to add an
external electric field Ep in the z direction. The lateral con-
fining potential due to the presence of this external electric
field is given by

V�r� = �
r̄

r

dr�eEp
dz�r��

dr�
, �11�

where r̄ is the lowest point at the surface of the suspended
helium film. Since z�r�=��r�−h, the integral in Eq. �11� is
straightforward and the lateral confining energy potential of
the electron in the ring is given by

V�r� = eEp���r� − ��r̄�� . �12�

We solved Eq. �10� numerically, considering a ring with
fixed internal radius r�=200 Å and height h=3�104 Å, and
calculated the lateral confining energy potential of the elec-
tron as a function of the radius for different values of the
bulk liquid helium level H, ring external radius r�, and ex-
ternal electric field.

Considering an external ring of radius r�=6000 Å and an
external electric field Ep=3 kV /cm, we show in Fig. 2 the
lateral confining potential as a function of the radius for sev-
eral values of H. The inset shows the corresponding helium
film profile. First, we notice that the helium film profile be-
comes deeper with increasing H and, consequently, the lat-
eral confining energy potential also increases, with energy
values up to 35 K. As can be seen, the lateral confinement

potential is asymmetrical, such that only very close to the
region of the lowest point at the surface of the suspended
helium film the parabolic approximation is valid.

In Fig. 3�a�, we show the helium film profile for several
values of the external radius. In Fig. 3�b�, we show the con-
finement potential for the same external radius. These results
were obtained for a bulk helium level of H=10 cm, internal
radius r�=200 Å, height h=104 Å, and an external electric
field of Ep=3 kV /cm. We note that the liquid helium profile
becomes deeper when the external radius increases. Again,
the lateral confinement is asymmetric and can reach values
of the order of 4000 K, allowing electron confinement inside
the ring for realistic values of the geometrical parameters.
The parabolic approximation of the confinement potential is
valid for values up to r�=4.6�104 Å. In Fig. 4, we show
the frequency �
0� associated with each parabolic potential
approximation shown in Fig. 3�b�, and in the inset, we
present the minimum value of the liquid helium film profile

FIG. 2. The lateral confining potential of an electron in the ring
as a function of the radius for various values of H. The solid,
dashed, dotted, and dot-dashed curves correspond to H=3, 4, 5, and
6 cm, respectively. In the inset, we show the corresponding helium
film profile.

FIG. 3. �a� Helium film profile in the ring for several values of
the external radius. The solid, dashed, dotted, dash-dotted, dash-dot-
dotted, and short-dashed curves correspond to external radii r�=1,
2, 3, 4, 5, and 6�104 Å, respectively. �b� The lateral confining
potential of an electron in the ring for the same conditions.

FIG. 4. The parabolic confining frequency versus r�. In the
inset, the minimum value of the liquid helium film profile ��d� as a
function of the external radius. The parameters used here are the
same as in Figs. 3�a� and 3�b�.

ELECTRONIC STATES ABOVE A HELIUM FILM… PHYSICAL REVIEW B 77, 045415 �2008�

045415-3



��d� as a function of the external radius. We observe that, for
an external radius up to r�=3.5�104 Å �r��lim��, �d is a
linear function and 
0 is a constant. For values of the exter-
nal radius greater than r��lim� and below r��max�=r�

=4.6�104 Å, there is a transition such that the curve �d
versus r� is still linear but changes its slope and the fre-
quency 
0 decreases. For values above r��max�, a second
transition occurs, such that the parabolic approximation is no
longer valid and the liquid helium profile becomes flat and
behaves as a van der Waals film. The parameters used here
for the liquid helium film are far below the first transition.

III. HAMILTONIAN MODEL AND ELECTRON ENERGY
LEVELS

Considering now the system subjected to external electric
and magnetic fields applied in the z direction, the Hamil-
tonian is given by

H =
1

2m
�p� −

e

c
A��2

+ V�r� , �13�

where V�r� is given by Eq. �12�. For an applied magnetic

field perpendicular to the ring plane, i.e., B� =Bẑ, the symmet-

ric gauge A� =1 /2Br�̂ is taken for the vector potential, which
leads to the following form for the Schrödinger equation:

�−
�2

2m

1

r

�

�r
�r

�

�r
� +

1

r2

�2

��2� −
i

2
�
c

�

��
+

1

8
m
c

2r2

+ V�r�
��r,�� = E��r,�� , �14�

where 
c=eB /mc. Taking the solution in � given by
eil� /�2�, where l=0, �1, �2, . . .. is the angular momentum
quantum number, the radial part of the Schrödinger equation
will be32

�−
�2

2m

1

r

�

�r
�r

�

�r
� +

l2�2

2mr2 +
l

2
�
c +

1

8
m
c

2r2 + V�r�
Rn,l�r�

= En,lRn,l�r� . �15�

Again, considering a ring with fixed internal radius r�

=200 Å and height h=3�104 Å, we obtain the energy levels
of the electron confined in the ring as a function of the ex-
ternal electric field, bulk liquid helium level H, and external
magnetic field. Also, to solve numerically Eq. �15�, we con-
sider an infinity potential for the region r�=200 Å which is
a very good approximation, as can be seen from Figs. 2 and
3. This approximation does not change significantly our re-
sults since the electron wave function is already negligible
for r�r�.

Considering initially B=0, H=5 cm, and r�=2000 Å, we
obtain the electron energy levels �Eq. �15�� as a function of
the external electric field �Fig. 5�. We observe that the num-
ber of bound states in the ring increases with the external
electric field. This behavior is due to the fact that the lateral
confining potential in the ring also increases with the exter-
nal electric field. The line �n , l�= �3,0� represents a bound
state energy limit on the ring. Moreover, we note degenerate

states in the crossing of the levels, for Ep	1.5 kV /cm,
�n , l�= �1, �4� and �2, �1�, as well as for �1, �4� and �2,0�
for Ep	2.5 kV /cm.

Taking r�=6000 Å and Ep=3 kV /cm, we obtain the en-
ergy levels of the electron confined in the ring as a function
of the bulk liquid helium level �see Fig. 6�. The results with
l= �1 were not shown since they differ from the ones with
l=0 by less than 10−2 K. We observe that the distance be-
tween the energy levels with n and n+1 increases with H,
whereas the difference between energy levels with l and l
+1 for a given n is constant, forming an energy band struc-
ture. The levels increase with H since the lateral confining
potential increases with H, as shown in Fig. 2.

In Fig. 7, we show the energy levels as a function of the
external radius with B=0, Ep=3 kV /cm, h=3�104 Å, and
H=5 cm. The numbers of bound electron levels increase for
rings with larger radius. We also note crossing of energy
levels for different values of n. Therefore, more degenerate
states can be obtained when increasing the external radius.
Again, an energy band structure is observed in the limit of
large values of the external radius. Note that the energy lev-
els do not go to zero near r�=104 Å but remain constant.
The reason for this remarkable result is that for this value of

FIG. 5. Energy levels of the electron confined in the ring as a
function of the external electric field. From bottom to top, the
dashed, dotted, and solid curves correspond to energy levels n
=1�l=0, �1, �2, �3, �4, �5�, n=2�l=0, �1, �2�, and n=3�l
=0�, respectively.

FIG. 6. Electron energy levels as a function of the bulk liquid
helium level. The dashed, dotted, and solid curves correspond to
levels n=1, 2, and 3, with l=0, �2, �3, and �4 for each value of
n, respectively.
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the external radius, H=5 cm and h=3�104 Å, the confining
potential may be approximated by a parabola, with confining
frequency 
0	1011 s−1, which is constant up to
r��max��9�105 Å. For external radius larger than
r��max�, 
0 decreases to zero since the helium film profile
and the confining potential become flat. This is consistent
with the results shown in Figs. 3 and 4.

In Fig. 8, we present the energy levels of the electron
confined in the ring as a function of the external magnetic
field for r�=1600 Å, Ep=3 kV /cm, and H=5 cm. Notice
that the magnetic field lifts the −l , l degeneracy as expected.
We observe that the ground state oscillates with magnetic
field, showing the well known Aharonov-Bohm
oscillations.23 The present results shown are not limited, as
the ones obtained by Dyugaev et al.,26 to the weak-field
limit.

IV. CONCLUSIONS

We obtained the lateral confining potential for an electron,
subjected to external electric and magnetic fields, in a sus-

pended helium film over a ring-shaped substrate. Consider-
ing realistic values for the geometrical parameters, we found
that the parabolic potential approximation for the confine-
ment potential has a very limited applicability. The energy
levels tend to form an energy band structure, in the limit of
high external electric field and large values of the outer ring
radius. AB oscillations were found when a magnetic field is
applied. Finally, this system can be used to study similar
phenomena previously observed in quantum rings grown in
semiconductor heterostructures, where geometrical imperfec-
tions and impurities are usually present, and the geometrical
dimensions are an order of magnitude less than the one con-
sidered here.
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