toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yuan, Y.; Wu, F.-J.; Xiao, S.-T.; Wang, Y.-T.; Yin, Z.-W.; Van Tendeloo, G.; Chang, G.-G.; Tian, G.; Hu, Z.-Y.; Wu, S.-M.; Yang, X.-Y. url  doi
openurl 
  Title Hierarchical zeolites containing embedded Cd0.2Zn0.8S as a photocatalyst for hydrogen production from seawater Type A1 Journal article
  Year (down) 2023 Publication Chemical communications Abbreviated Journal  
  Volume 59 Issue 47 Pages 7275-7278  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Uncovering an efficient and stable photocatalytic system for seawater splitting is a highly desirable but challenging goal. Herein, Cd0.2Zn0.8S@Silicalite-1 (CZS@S-1) composites, in which CZS is embedded in the hierarchical zeolite S-1, were prepared and show remarkably high activity, stability and salt resistance in seawater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994367000001 Publication Date 2023-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9; 2023 IF: 6.319  
  Call Number UA @ admin @ c:irua:197291 Serial 8878  
Permanent link to this record
 

 
Author Perreault, P.; Van Hoecke, L.; Pourfallah, H.; Kummamuru, N.B.; Boruntea, C.-R.; Preuster, P. pdf  url
doi  openurl
  Title Critical challenges towards the commercial rollouts of a LOHC-based H2 economy Type A1 Journal article
  Year (down) 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 41 Issue Pages 100836-100838  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This short review discusses recent developments related to the storage and release of hydrogen from liquid organic hydrogen carriers (LOHCs). It focusses on three areas of recent literature: the application and development of novel, alternative LOHC systems, process development and process integration in the storage and release of hydrogen from LOHCs, and the electrochemical conversion of LOHCs. For the novel LOHC systems, we briefly focus on reaction enthalpy and storage capacity as main KPIs for the comparison of those systems and discuss the technical availability on a relevant scale. In the field of process- and reactor development our emphasis lies on the power density of the chemical conversion units. The LOHC technology still requires further development to reach the necessary energy efficiency, flexibility and overall research maturity for market competitivity and commercial impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001019180100001 Publication Date 2023-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:196520 Serial 8845  
Permanent link to this record
 

 
Author Gauquelin, N.; Forte, F.; Jannis, D.; Fittipaldi, R.; Autieri, C.; Cuono, G.; Granata, V.; Lettieri, M.; Noce, C.; Miletto-Granozio, F.; Vecchione, A.; Verbeeck, J.; Cuoco, M. pdf  url
doi  openurl
  Title Pattern Formation by Electric-Field Quench in a Mott Crystal Type A1 Journal Article
  Year (down) 2023 Publication Nano letters Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The control of Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2 RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron

microscopy. The nanotexture depends on the orientation of the electric field, it is non-volatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of non-volatile electronics based on voltage-controlled nanometric phases.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001012061600001 Publication Date 2023-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 2 Open Access OpenAccess  
  Notes This project has received funding from the European Union’s Horizon 2020 research and innova- tion programme under grant agreement No 823717 – ESTEEM3. The Merlin camera used in the experiment received funding from the FWO-Hercules fund G0H4316N ’Direct electron detector 15for soft matter TEM’. C. A. and G. C. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. and G. C. acknowledge the access to the computing facil- ities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. GB84-0, GB84-1 and GB84-7 and GB84-7 and Poznan Supercomputing and Networking Center Grant No. 609.. C. A. and G. C. acknowledge the CINECA award under the ISCRA initiative IsC85 “TOP- MOST” Grant, for the availability of high-performance computing resources and support. We acknoweldge A. Guarino and C. Elia for providing support about the electrical characterization of the sample. M.C., R.F., and A.V. acknowledge support from the EU’s Horizon 2020213 research and innovation program under Grant Agreement No. 964398 (SUPERGATE). Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number EMAT @ emat @c:irua:196970 Serial 8789  
Permanent link to this record
 

 
Author Bellizotti Souza, J.C.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. url  doi
openurl 
  Title Spontaneous skyrmion conformal lattice and transverse motion during dc and ac compression Type A1 Journal article
  Year (down) 2023 Publication New journal of physics Abbreviated Journal  
  Volume 25 Issue 5 Pages 053020-15  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We use atomistic-based simulations to investigate the behavior of ferromagnetic skyrmions being continuously compressed against a rigid wall under dc and ac drives. The compressed skyrmions can be annihilated close to the wall and form a conformal crystal with both a size and a density gradient, making it distinct from conformal crystals observed previously for superconducting vortices and colloidal particles. For both dc and ac driving, the skyrmions can move transverse to the compression direction due to a combination of density and size gradients. Forces in the compression direction are converted by the Magnus force into transverse motion. Under ac driving, the amount of skyrmion annihilation is reduced and we find a skyrmion Magnus ratchet pump. We also observe shear banding in which skyrmions near the wall move up to twice as fast as skyrmions further from the wall. When we vary the magnitude of the applied drive, we find a critical current above which the skyrmions are completely annihilated during a time scale that depends on the magnitude of the drive. By varying the magnetic parameters, we find that the transverse motion is strongly dependent on the skyrmion size. Smaller skyrmions are more rigid, which interferes with the size gradient and destroys the transverse motion. We also confirm the role of the size gradient by comparing our atomistic simulations with a particle-based model, where we find that the transverse motion is only transient. Our results are relevant for applications where skyrmions encounter repulsive magnetic walls, domain walls, or interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994003200001 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.3; 2023 IF: 3.786  
  Call Number UA @ admin @ c:irua:197365 Serial 8934  
Permanent link to this record
 

 
Author Monai, M.; Jenkinson, K.; Melcherts, A.E.M.; Louwen, J.N.; Irmak, E.A.; Van Aert, S.; Altantzis, T.; Vogt, C.; van der Stam, W.; Duchon, T.; Smid, B.; Groeneveld, E.; Berben, P.; Bals, S.; Weckhuysen, B.M. pdf  url
doi  openurl
  Title Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis Type A1 Journal article
  Year (down) 2023 Publication Science Abbreviated Journal  
  Volume 380 Issue 6645 Pages 644-651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400 degrees C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600 degrees C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000999020900010 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 29 Open Access Not_Open_Access  
  Notes This work was supported by BASF and NWO CHIPP (research grant to B.M.W.); the MCEC NWO Gravitation Program (B.M.W.); the ARC-CBBC NWO Program (B.M.W.); the European Research Council (grant 770887 PICOMETRICS to S.V.A.); and the European Research Council (grant 815128 REALNANO to S.B.). Approved Most recent IF: 56.9; 2023 IF: 37.205  
  Call Number UA @ admin @ c:irua:197432 Serial 8923  
Permanent link to this record
 

 
Author Borah, R.; Kumar, A.; Samantaray, M.; Desai, A.; Tseng, F.-G. pdf  doi
openurl 
  Title Photothermal heating of Au nanorods and nanospheres : temperature characteristics and strength of convective forces Type A1 Journal article
  Year (down) 2023 Publication Plasmonics Abbreviated Journal  
  Volume 18 Issue 4 Pages 1449-1465  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The nanoscale photothermal effect and the optofluidic convection around plasmonic nanoparticles drive the application of such nanoparticles in micro-environment. In this work, heat transfer and fluid flow around Au nanospheres and nanorods in water medium under continuous and pulsed wave laser irradiance was investigated using an FEM based numerical framework. Au nanospheres of a wide range of diameter: 40 nm = Diameter (D) = 180 nm and relatively large nanorods (diameter: 50 nm) with varying aspect ratio (1 = Aspect ratio (A) = 5) and orientation (0 degrees = ? = 90 degrees, ? = 0 degrees, 90 degrees) with respect to the incident EM radiation were investigated for continuous wave (CW) and pulsed wave laser. It was found that although nanorods can attain much higher temperature than nanospheres, orientation of a nanorod is an important factor to be carefully considered in applications. In micro-scale spherical and hemispherical confinements (diameter < 14.4 p.m), the convective velocity fields around nanoparticles is in the order of 10-9 m/s, with only a weak effect of the slip or no-slip boundary condition on the confining walls. Importantly, the size of the confinement has a strong effect leading to an order of magnitude stronger convection for 14.4 p.m (diameter) spherical confinement as compared to 3.6 p.m confinement. Additionally close proximity of the nanoparticles to the confining walls strongly reduces (by an order of magnitude) the convective currents. The results reported herein provides important insights for the use of photothermal nanoparticles in microscale confined space (e.g. cellular environment) for applications such as optical tweezers, photoporation, etc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985445100001 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1955; 1557-1963 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3; 2023 IF: 2.139  
  Call Number UA @ admin @ c:irua:197380 Serial 8914  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title High Chern number in strained thin films of dilute magnetic topological insulators Type A1 Journal article
  Year (down) 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195119-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The quantum anomalous Hall effect was first observed experimentally by doping the Bi2Se3 materials family with chromium, where 5% doping induces an exchange field of around 0.1 eV. In ultrathin films, a topological phase transition from a normal insulator to a Chern insulator can be induced with an exchange field proportional to the hybridization gap. Subsequent transitions to states with higher Chern numbers require an exchange field larger than the (bulk) band gap, but are prohibited in practice by the detrimental effects of higher doping levels. Here, we show that threshold doping for these phase transitions in thin films is controllable by strain. As a consequence, higher Chern states can be reached with experimentally feasible doping, sufficiently dilute for the topological insulator to remain structurally stable. Such a facilitated realization of higher Chern insulators opens prospects for multichannel quantum computing, higher-capacity circuit interconnects, and energy-efficient electronic devices at elevated temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000995111000003 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197295 Serial 8820  
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G.; Hessel, V.; Rebrov, E. pdf  url
doi  openurl
  Title Challenges in unconventional catalysis Type A1 Journal Article
  Year (down) 2023 Publication Catalysis today Abbreviated Journal  
  Volume 420 Issue Pages 114180  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Catalysis science and technology increased efforts recently to progress beyond conventional “thermal” catalysis and face the challenges of net-zero emissions and electrification of production. Nevertheless, a better gaps and opportunities analysis is necessary. This review analyses four emerging areas of unconventional or less- conventional catalysis which share the common aspect of using directly renewable energy sources: (i) plasma catalysis, (ii) catalysis for flow chemistry and process intensification, (iii) application of electromagnetic (EM) fields to modulate catalytic activity and (iv) nanoscale generation at the catalyst interface of a strong local EM by plasmonic effect. Plasma catalysis has demonstrated synergistic effects, where the outcome is higher than the sum of both processes alone. Still, the underlying mechanisms are complex, and synergy is not always obtained. There is a crucial need for a better understanding to (i) design catalysts tailored to the plasma environment, (ii) design plasma reactors with optimal transport of plasma species to the catalyst surface, and (iii) tune the plasma conditions so they work in optimal synergy with the catalyst. Microfluidic reactors (flow chemistry) is another emerging sector leading to the intensification of catalytic syntheses, particularly in organic chemistry. New unconventional catalysts must be designed to exploit in full the novel possibilities. With a focus on (a) continuous-flow photocatalysis, (b) electrochemical flow catalysis, (c) microwave flow catalysis and (d) ultra­ sound flow activation, a series of examples are discussed, with also indications on scale-up and process indus­ trialisation. The third area discussed regards the effect on catalytic performances of applying oriented EM fields spanning several orders of magnitude. Under well-defined conditions, gas breakdown and, in some cases, plasma formation generates activated gas phase species. The EM field-driven chemical conversion processes depend further on structured electric/magnetic catalysts, which shape the EM field in strength and direction. Different effects influencing chemical conversion have been reported, including reduced activation energy, surface charging, hot spot generation, and selective local heating. The last topic discussed is complementary to the third, focusing on the possibility of tuning the photo- and electro-catalytic properties by creating a strong localised electrical field with a plasmonic effect. The novel possibilities of hot carriers generated by the plasmonic effect are also discussed. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001004623300001 Publication Date 2023-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access OpenAccess  
  Notes The EU ERC Synergy SCOPE project supported this work (project ID 810182) “ Surface-COnfined fast-modulated Plasma for process and Energy intensification in small molecules conversion”. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number PLASMANT @ plasmant @c:irua:196446 Serial 7380  
Permanent link to this record
 

 
Author Mosquera, J.; Wang, D.; Bals, S.; Liz-Marzan, L.M. url  doi
openurl 
  Title Surfactant layers on gold nanorods Type A1 Journal article
  Year (down) 2023 Publication Accounts of chemical research Abbreviated Journal  
  Volume 56 Issue 10 Pages 1204-1212  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold nanorods (Au NRs) are an exceptionally promising tool in nanotechnology due to three key factors: (i) their strong interaction with electromagnetic radiation, stemming from their plasmonic nature, (ii) the ease with which the resonance frequency of their longitudinal plasmon mode can be tuned from the visible to the near-infrared region of the electromagnetic spect r u m based on their aspect ratio, and (iii) their simple and cost-effective preparation through seed-mediated chemical growth. In this synthetic method, surfactants play a critical role in controlling the size, shape, and colloidal stabi l i t y of Au NRs. For example, surfactants can stabilize specific crystallographic facets during the formation of Au NRs, leading to t h e formation of NRs with specific morphologies. The process of surfactant adsorption onto the NR surface may result in various assemblies of surfactant molecules, such as spherical micelles, elongated micelles, or bilayers. Again, the assembly mode is critical toward determining the further availabi l i t y of the Au NR surface to the surrounding medium. Despite its importance and a great deal of research effort, the interaction between Au NPs and surfactants remains insufficiently understood, because the assembly process is influenced by numerous factors, including the chemical nature of the surfactant, the surface morphology of Au NPs, and solution parameters. Therefore, gaining a more comprehensive understanding of these interactions is essential to unlock the full potential of the seed-mediated growth method and the applications of plasmonic NPs. A plethora of characterization techniques have been applied to reach such an understanding , but many open questions remain. In this Account, we review the current knowledge on the interactions between surfactants and Au NRs. We briefly introduce the state-of-the-art methods for synthesizing Au NRs and highlight the crucial role of cationic surfactants during this process. The self-assembly and organization of surfactants on the Au NR surface is then discussed to better understand their role in seed-mediated growth. Subsequently, we provide examples and elucidate how chemical additives can be used to modulate micellar assemblies, in turn allowing for a finer control over the growth of Au NRs, including chiral NRs. Next, we review the main experimental characterization and computational modeling techniques that have been applied to shed light on the arrangement of surfactants on Au NRs and summarize the advantages and disadvantages for each technique. The Account ends with a “Conclusions and Outlook” section, outlining promising future research directions and developments that we consider are sti l l required, mostly related to the application of electron microscopy in liquid and in 3D. Finally, we remark on the potential of exploiting machine learning techniques to predict synthetic routes for NPs with predefined structures and properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986447000001 Publication Date 2023-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 18.3 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) , from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M. and Grants RYC2019-027842-I , PID2020-117885GA-I00 to J.M.) , and by Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (No. 2017B030301007) , National Center for International Research on Green Optoelectronics (No. 2016B01018) , MOE Interna-tional Laboratory for Optical Information Technologies, and the 111 projects. Approved Most recent IF: 18.3; 2023 IF: 20.268  
  Call Number UA @ admin @ c:irua:196768 Serial 8940  
Permanent link to this record
 

 
Author Kumar, M.; Sengupta, A.; Kummamuru, N.B. url  doi
openurl 
  Title Molecular simulations for carbon dioxide capture in silica slit pores Type A3 Journal article
  Year (down) 2023 Publication Materials Today: Proceedings Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords A3 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In present work, we have performed the Grand Canonical Monte Carlo (GCMC) simulations to quantify CO2 capture inside porous silica at high operating temperatures of 673.15 K and 873.15 K; and over a operating pressure range of 500 kPa – 4000 kPa that are methane steam reforming process parameters. Related chemical potential values at these thermodynamic conditions are obtained from the bulk phase simulations in the Canonical ensemble in conjunction with Widom’s insertion technique, where the CO2 has been accurately represented by TraPPE force field. Present structure of the porous silica is a single slit pore geometry of various heights (H = 20 Å, 31.6 Å, 63.2 Å and 126.5 Å), dimensions in which possible vapour-liquid equilibria for generic square well fluids has been reported in literature. Estimation of the pore-fluid interactions show a higher interaction between silica pore and adsorbed CO2 compared to the reported pore-fluid interactions between homogeneous carbon slit pore and adsorbed CO2; thus resulting in an enhancement of adsorption inside silica pores of H = 20 Å and H = 126.5 Å, which are respectively 3.5 times and 1.5 times higher than that in homogeneous carbon slit pores of same dimensions and at 673.15 K and 500 kPa. Estimated local density plots indicate the presence of structured layers due to more molecular packing, which confirms possible liquid-like and vapour-like phase coexistence of the supercritical bulk phase CO2 under confinement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7853 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200944 Serial 9058  
Permanent link to this record
 

 
Author Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; V. Sobolev, A.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; V. Antipov, E. pdf  doi
openurl 
  Title Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries Type A1 Journal article
  Year (down) 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 10 Pages 4015-4025  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5-0.55 Na+ per formula unit, corresponding to the capacity of 120-130 mAh.g(-1). Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with Fe-57 Mossbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the “3 + delta” state owing to the fast electron exchange Fe3+ + Fe4+ <-> Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985970200001 Publication Date 2023-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:197352 Serial 9013  
Permanent link to this record
 

 
Author Truta, F.; Cruz, A.G.; Tertis, M.; Zaleski, C.; Adamu, G.; Allcock, N.S.; Suciu, M.; Stefan, M.-G.; Kiss, B.; Piletska, E.; De Wael, K.; Piletsky, S.A.; Cristea, C. pdf  doi
openurl 
  Title NanoMIPs-based electrochemical sensors for selective detection of amphetamine Type A1 Journal article
  Year (down) 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 191 Issue Pages 108821-10  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A highly sensitive and portable electrochemical sensor based on molecularly imprinted nanoparticles (nanoMIPs) was developed. NanoMIPs were computationally designed for specific recognition of amphetamine, and then synthetized using solid phase synthesis. NanoMIPs were immobilized onto screen-printed carbon electrodes using a composite film comprising chitosan, nanoMIPs, and graphene oxide.Ferrocenylmethyl methacrylate was incorporated in nanoMIPs allowing electrochemical detection. The signal recorded for the electrochemical oxidation of ferrocene has proven to be dependent on the presence of amphetamine interacting with nanMIPs. The sensor was tested successfully with street samples, with high sensitivity and satisfactory recoveries (from 100.9% to 107.6%). These results were validated with UPL-MS/MS. The present technology is suitable for forensic applications in selective determination of amphetamine in street samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001008428600001 Publication Date 2023-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:197397 Serial 8903  
Permanent link to this record
 

 
Author Bekaert, J.; Bringmans, L.; Milošević, M.V. pdf  url
doi  openurl
  Title Ginzburg-Landau surface energy of multiband superconductors : derivation and application to selected systems Type A1 Journal article
  Year (down) 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue 32 Pages 325602-325610  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We determine the energy of an interface between a multiband superconducting and a normal half-space, in presence of an applied magnetic field, based on a multiband Ginzburg-Landau (GL) approach. We obtain that the multiband surface energy is fully determined by the critical temperature, electronic densities of states, and superconducting gap functions associated with the different band condensates. This furthermore yields an expression for the thermodynamic critical magnetic field, in presence of an arbitrary number of contributing bands. Subsequently, we investigate the sign of the surface energy as a function of material parameters, through numerical solution of the GL equations. Here, we consider two distinct cases: (i) standard multiband superconductors with attractive interactions, and (ii) a three-band superconductor with a chiral ground state with phase frustration, arising from repulsive interband interactions. Furthermore, we apply this approach to several prime examples of multiband superconductors, such as metallic hydrogen and MgB2, based on microscopic parameters obtained from first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986281900001 Publication Date 2023-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:196664 Serial 8875  
Permanent link to this record
 

 
Author Alvarado-Alvarado, A.A.; De Bock, A.; Ysebaert, T.; Belmans, B.; Denys, S. pdf  url
doi  openurl
  Title Modeling the hygrothermal behavior of green walls in Comsol Multiphysics® : validation against measurements in a climate chamber Type A1 Journal article
  Year (down) 2023 Publication Building and environment Abbreviated Journal  
  Volume 238 Issue Pages 110377-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings  
  Abstract Green walls (GW) can diminish building's surface temperature through shading, insulation, and evapotranspiration mechanisms. These can be analyzed by computer models that account for heat and mass transfer phenomena. However, most previous models were one-dimensional thermal simulations in which boundary conditions (BC), like convective moisture transport, were not or only partly considered. The present work proposes a more comprehensive way to predict GW's hygrothermal behavior by integrating a 3D multiphysics model that couples heat and moisture transport in Comsol Multiphysics®. The air cavity that usually separates the GW from the building was also considered. Heat sink terms were added to represent plants' transpiration and substrates' evaporation, considering the leaf area density (LAD) and substrate's water saturation (Sr). The model was validated against experiments where four green wall-test panels (GW-TPs) were evaluated in a climate chamber under steady-state conditions. This provides a much sounder approach for validation than what currently exists (r = 0.97; RMSE = 0.33 °C). The four GW-TPs decreased the masonry's surface temperature in the range of 0.89–1.14 °C (0.97 ± 0.11 SD °C). The average contribution of the evapotranspiration effect was 30%, whereas the contribution of the air cavity was 60.7 ± 0.09%. The temperature at the substrate's rear was reduced on average by 0.57 ± 0.15 SD °C. When solar radiation was considered as a BC, the GW-TPs decreased the building's surface temperature by 10 °C. Lastly, high values of LAD and Sr translated into increased temperature reduction values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001001412600001 Publication Date 2023-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4; 2023 IF: 4.053  
  Call Number UA @ admin @ c:irua:196467 Serial 8899  
Permanent link to this record
 

 
Author Johnson, G.; Yang, M.Y.; Liu, C.; Zhou, H.; Zuo, X.; Dickie, D.A.; Wang, S.; Gao, W.; Anaclet, B.; Perras, F.A.; Ma, F.; Zeng, C.; Wang, D.; Bals, S.; Dai, S.; Xu, Z.; Liu, G.; Goddard III, W.A.; Zhang, S. doi  openurl
  Title Nanocluster superstructures assembled via surface ligand switching at high temperature Type A1 Journal article
  Year (down) 2023 Publication Nature synthesis Abbreviated Journal  
  Volume 2 Issue 9 Pages 828-837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superstructures with nanoscale building blocks, when coupled with precise control of the constituent units, open opportunities in rationally designing and manufacturing desired functional materials. Yet, synthetic strategies for the large-scale production of superstructures are scarce. We report a scalable and generalized approach to synthesizing superstructures assembled from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters alongside a detailed description of the self-assembly mechanism. Combining operando small-angle X-ray scattering, ex situ molecular and structural characterizations, and molecular dynamics simulations indicates that a high-temperature ligand-switching mechanism, from oleate to benzoate, governs the formation of the nanocluster assembly. The chemical tuning of surface ligands controls superstructure disassembly and reassembly, and furthermore, enables the synthesis of multicomponent superstructures. This synthetic approach, and the accurate mechanistic understanding, are promising for the preparation of superstructures for use in electronics, plasmonics, magnetics and catalysis. Synthesizing superstructures with precisely controlled nanoscale building blocks is challenging. Here the assembly of superstructures is reported from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters and their multicomponent combinations. A high-temperature ligand-switching mechanism controls the self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001124824000001 Publication Date 2023-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202180 Serial 9060  
Permanent link to this record
 

 
Author Tsonev, I.; Boothroyd, J.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Simulation of glow and arc discharges in nitrogen: effects of the cathode emission mechanisms Type A1 Journal Article
  Year (down) 2023 Publication PLASMA SOURCES SCIENCE & TECHNOLOGY Abbreviated Journal  
  Volume 32 Issue 5 Pages 054002  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Experimental evidence in the literature has shown that low-current direct current nitrogen discharges can exist in both glow and arc regimes at atmospheric pressure. However, modelling investigations of the positive column that include the influence of the cathode phenomena are scarce. In this work we developed a 2D axisymmetric model of a plasma discharge in flowing nitrogen gas, studying the influence of the two cathode emission mechanisms—thermionic field emission and secondary electron emission—on the cathode region and the positive column. We show for an inlet gas flow velocity of 1 m s<sup>−1</sup>in the current range of 80–160 mA, that the electron emission mechanism from the cathode greatly affects the size and temperature of the cathode region, but does not significantly influence the discharge column at atmospheric pressure. We also demonstrate that in the discharge column the electron density balance is local and the electron production and destruction is dominated by volume processes. With increasing flow velocity, the discharge contraction is enhanced due to the increased convective heat loss. The cross sectional area of the conductive region is strongly dependent on the gas velocity and heat conductivity of the gas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000987841800001 Publication Date 2023-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes This research is financially supported by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 965546. Approved Most recent IF: 3.8; 2023 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:196972 Serial 8788  
Permanent link to this record
 

 
Author Shi, P.; Chen, L.; Quinn, B.K.; Yu, K.; Miao, Q.; Guo, X.; Lian, M.; Gielis, J.; Niklas, K.J. pdf  url
doi  openurl
  Title A simple way to calculate the volume and surface area of avian eggs Type A1 Journal article
  Year (down) 2023 Publication Annals of the New York Academy of Sciences Abbreviated Journal  
  Volume 1524 Issue 1 Pages 118-131  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Egg geometry can be described using Preston's equation, which has seldom been used to calculate egg volume (V) and surface area (S) to explore S versus V scaling relationships. Herein, we provide an explicit re-expression of Preston's equation (designated as EPE) to calculate V and S, assuming that an egg is a solid of revolution. The side (longitudinal) profiles of 2221 eggs of six avian species were digitized, and the EPE was used to describe each egg profile. The volumes of 486 eggs from two avian species predicted by the EPE were compared with those obtained using water displacement in graduated cylinders. There was no significant difference in V using the two methods, which verified the utility of the EPE and the hypothesis that eggs are solids of revolution. The data also indicated that V is proportional to the product of egg length (L) and maximum width (W) squared. A 2/3-power scaling relationship between S and V for each species was observed, that is, S is proportional to (LW2)(2/3). These results can be extended to describe the shapes of the eggs of other species to study the evolution of avian (and perhaps reptilian) eggs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000975679400001 Publication Date 2023-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2; 2023 IF: 4.706  
  Call Number UA @ admin @ c:irua:196724 Serial 8827  
Permanent link to this record
 

 
Author Sargin, G.O.; Sarikurt, S.; Sevincli, H.; Sevik, C. pdf  url
doi  openurl
  Title The peculiar potential of transition metal dichalcogenides for thermoelectric applications : a perspective on future computational research Type A1 Journal article
  Year (down) 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 133 Issue 15 Pages 150902-150937  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The peculiar potential transition metal dichalcogenides in regard to sensor and device applications have been exhibited by both experimental and theoretical studies. The use of these materials, thermodynamically stable even at elevated temperatures, particularly in nano- and optoelectronic technology, is about to come true. On the other hand, the distinct electronic and thermal transport properties possessing unique coherency, which may result in higher thermoelectric efficiency, have also been reported. However, exploiting this potential in terms of power generation and cooling applications requires a deeper understanding of these materials in this regard. This perspective study, concentrated with this intention, summarizes thermoelectric research based on transition metal dichalcogenides from a broad perspective and also provides a general evaluation of future theoretical investigations inevitable to shed more light on the physics of electronic and thermal transport in these materials and to lead future experimental research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079329000001 Publication Date 2023-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200351 Serial 9105  
Permanent link to this record
 

 
Author Foltyn, M.; Norowski, K.; Wyszynski, M.J.; De Arruda, A.S.; Milošević, M.V.; Zgirski, M. doi  openurl
  Title Probing confined vortices with a superconducting nanobridge Type A1 Journal article
  Year (down) 2023 Publication Physical review applied Abbreviated Journal  
  Volume 19 Issue 4 Pages 044073-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We realize a superconducting nanodevice in which vortex traps in the form of an aluminum square are integrated with a Dayem nanobridge. We perform field cooling of the traps arriving to different vortex configurations, dependent on the applied magnetic field, to demonstrate that the switching current of the bridge is highly sensitive to the presence and location of vortices in the trap. Our measurements exhibit unprecedented precision and ability to detect the first and successive vortex entries into all fabricated traps, from few hundred nm to 2 mu m in size. The experimental results are corroborated by Ginzburg-Landau simulations, which reveal the subtle yet crucial changes in the density of the superconducting condensate in the vicinity of the bridge with every additional vortex entry and relocation inside the trap. An ease of integration and simplicity make our design a convenient platform for studying dynamics of vortices in strongly confining geometries, involving a promise to manipulate vortex states electronically with simultaneous in situ control and monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000980861100007 Publication Date 2023-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:197356 Serial 8918  
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E. pdf  url
doi  openurl
  Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
  Year (down) 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 410 Issue Pages 137278-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991013600001 Publication Date 2023-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:196227 Serial 7770  
Permanent link to this record
 

 
Author Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. doi  openurl
  Title Gaussian approximation potentials for accurate thermal properties of two-dimensional materials Type A1 Journal article
  Year (down) 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 19 Pages 8772-8780  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000976615200001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196722 Serial 8873  
Permanent link to this record
 

 
Author Zhang, H.; Jin, Q.; Hu, T.; Liu, X.; Zhang, Z.; Hu, C.; Zhou, Y.; Han, Y.; Wang, X. url  doi
openurl 
  Title Electron-irradiation-facilitated production of chemically homogenized nanotwins in nanolaminated carbides Type A1 Journal article
  Year (down) 2023 Publication Journal of Advanced Ceramics Abbreviated Journal  
  Volume 12 Issue 6 Pages 1288-1297  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Twin boundaries have been exploited to stabilize ultrafine grains and improve mechanical properties of nanomaterials. The production of the twin boundaries and nanotwins is however prohibitively challenging in carbide ceramics. Using a scanning transmission electron microscope as a unique platform for atomic-scale structure engineering, we demonstrate that twin platelets could be produced in carbides by engineering antisite defects. The antisite defects at metal sites in various layered ternary carbides are collectively and controllably generated, and the metal elements are homogenized by electron irradiation, which transforms a twin-like lamellae into nanotwin platelets. Accompanying chemical homogenization, alpha-Ti3AlC2 transforms to unconventional beta-Ti3AlC2. The chemical homogeneity and the width of the twin platelets can be tuned by dose and energy of bombarding electrons. Chemically homogenized nanotwins can boost hardness by similar to 45%. Our results provide a new way to produce ultrathin (< 5 nm) nanotwin platelets in scientifically and technologically important carbide materials and showcase feasibility of defect engineering by an angstrom-sized electron probe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001004930200012 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2226-4108; 2227-8508 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 16.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 16.9; 2023 IF: 1.198  
  Call Number UA @ admin @ c:irua:197470 Serial 8860  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr. pdf  url
doi  openurl
  Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal Article
  Year (down) 2023 Publication FlatChem Abbreviated Journal FlatChem  
  Volume 39 Issue Pages 100506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000990342500001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813  
Permanent link to this record
 

 
Author Detamornrat, U.; Parrilla, M.; Domínguez-Robles, J.; Anjani, Q.K.; Larrañeta, E.; De Wael, K.; Donnelly, R.F. url  doi
openurl 
  Title Transdermal on-demand drug delivery based on an iontophoretic hollow microneedle array system Type A1 Journal article
  Year (down) 2023 Publication Lab on a chip Abbreviated Journal  
  Volume 23 Issue 9 Pages 2304-2315  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Transdermal drug delivery has emerged as an alternative administration route for therapeutic drugs, overcoming current issues in oral and parenteral administration. However, this technology is hindered by the low permeability of the stratum corneum of the skin. In this work, we develop a synergic combination of two enhancing technologies to contribute to an improved and on-demand drug delivery through an iontophoretic system coupled with hollow microneedles (HMNs). For the first time, a polymeric HMN array coupled with integrated iontophoresis for the delivery of charged molecules and macromolecules (e.g. proteins) is devised. To prove the concept, methylene blue, fluorescein sodium, lidocaine hydrochloride, and bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) were first tested in an in vitro setup using 1.5% agarose gel model. Subsequently, the ex vivo drug permeation study using a Franz diffusion cell was conducted, exhibiting a 61-fold, 43-fold, 54-fold, and 17-fold increment of the permeation of methylene blue, fluorescein sodium, lidocaine hydrochloride, and BSA-FITC, respectively, during the application of 1 mA cm(-2) current for 6 h. Moreover, the total amount of drug delivered (i.e. in the skin and receptor compartment) was analysed to untangle the different delivery profiles according to the types of molecule. Finally, the integration of the anode and cathode into an iontophoretic hollow microneedle array system (IHMAS) offers the full miniaturisation of the concept. Overall, the IHMAS device provides a versatile wearable technology for transdermal on-demand drug delivery that can improve the administration of personalised doses, and potentially enhance precision medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000971513000001 Publication Date 2023-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1473-0197 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.1; 2023 IF: 6.045  
  Call Number UA @ admin @ c:irua:195781 Serial 8946  
Permanent link to this record
 

 
Author Ortega Saez, N.; Arno, R.; Marchetti, A.; Cauberghs, S.; Janssens, K.; Van der Snickt, G.; Al-Emam, E. url  doi
openurl 
  Title Towards a novel strategy for soot removal from water-soluble materials : the synergetic effect of hydrogels and cyclomethicone on gelatine emulsion-based photographs Type A1 Journal article
  Year (down) 2023 Publication Heritage science Abbreviated Journal  
  Volume 11 Issue 1 Pages 78-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Gels are a popular cleaning method for paper conservators and a lot of research has been done concerning gel cleaning of paper objects over the last 15 years. Despite the close interconnection between the conservation fields of paper and photographic material, research on using gels for cleaning photographs is very scarce. However, gels can provide an excellent cleaning method for photographic material. Cleaning silver gelatine prints with aqueous solvents is very complex due to the hydrophilic properties and fragility of the gelatine layer which makes mechanical cleaning difficult. The properties of gels ensure better control over the flow and evaporation of the solvent, facilitating the cleaning process. This study is the first insight into the viability of using gellan gum gel and polyvinyl acetate-borax (PVAc-borax) gel to clean contaminants from the surface of silver gelatine photographs. It is based on self-made samples that were artificially aged and contaminated with soot. Water, ethanol (EtOH), and Kodak Photo-flo were studied as solvents to remove the soot from the silver gelatine-based prints. These solvents were loaded into the aforementioned gels and applied to the samples in two different methods. These gel cleaning methods were subsequently compared with traditional cleaning methods. In addition, the usage of cyclomethicone D4 as a protective mask for the gelatine layer was studied. Measuring methods used to evaluate the cleaning were visual comparison, microscopic observation, and densitometry. ATR-FTIR measurements were also conducted to investigate potential side-effects of the cleaning methods on the prints, such as unwanted chemical transformations or the presence of gel residues after the treatments. Most of the gel cleaning methods within this study proved to be inadequate, with the exception of the gellan gum gel loaded with 30% EtOH. It was used as a granulated gel applied mechanically on a print saturated with cyclomethicone (octamethylcyclotetrasiloxane D4). Cyclomethicone proved to be a very effective protective barrier for the water-sensitive gelatine layer with minimal reduction in cleaning effectiveness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000970139500001 Publication Date 2023-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.5; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:196445 Serial 8945  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
  Year (down) 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume Issue Pages 142953-29  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986051300001 Publication Date 2023-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:195603 Serial 7264  
Permanent link to this record
 

 
Author Linard, F.J.A.; Moura, V.N.; Covaci, L.; Milošević, M.V.; Chaves, A. url  doi
openurl 
  Title Wave-packet scattering at a normal-superconductor interface in two-dimensional materials : a generalized theoretical approach Type A1 Journal article
  Year (down) 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 16 Pages 165306-165309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A wave-packet time evolution method, based on the split-operator technique, is developed to investigate the scattering of quasiparticles at a normal-superconductor interface of arbitrary profile and shape. As a practical application, we consider a system where low-energy electrons can be described as Dirac particles, which is the case for most two-dimensional materials, such as graphene and transition-metal dichalcogenides. However, the method is easily adapted for other cases such as electrons in few-layer black phosphorus or any Schrodinger quasiparticles within the effective mass approximation in semiconductors. We employ the method to revisit Andreev reflection in mono-, bi-, and trilayer graphene, where specular-and retro-reflection cases are observed for electrons scattered by a steplike superconducting region. The effect of opening a zero-gap channel across the superconducting region on the electron and hole scattering is also addressed, as an example of the versatility of the technique proposed here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000974675700006 Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:196709 Serial 8954  
Permanent link to this record
 

 
Author Broers, F.T.H.; Janssens, K.; Weker, J.N.; Webb, S.M.; Mehta, A.; Meirer, F.; Keune, K. url  doi
openurl 
  Title Two pathways for the degradation of orpiment pigment (As₂S₃) found in paintings Type A1 Journal article
  Year (down) 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 16 Pages 8847-8859  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Paintings are complex objects containing many different chemical compounds that can react over time. The degradation of arsenic sulfide pigments causes optical changes in paintings. The main degradation product was thought to be white arsenolite (As2O3), but previous research also showed the abundant presence of As(V) species. In this study, we investigate the influence of the presence of a medium on the degradation mechanism of orpiment (As2S3) using synchrotron radiation (SR)-based tomographic transmission X-ray microscopy, SR-based micro-X-ray fluorescence, and Xray absorption near edge structure spectroscopy. Upon direct illumination of dry orpiment powder using UV-visible light, only the formation of As2O3 was observed. When As2S3 was surrounded by a medium and illuminated, As2O3 was only observed in the area directly exposed to light, while As(V) degradation species were found elsewhere in the medium. Without accelerated artificial light aging, As(V)(aq) species are formed and migrate throughout the medium within weeks after preparation. In both scenarios, the As(V) species form via intermediate As(III)(aq) species and the presence of a medium is necessary. As(V)(aq) species can react with available cations to form insoluble metal arsenates, which induces stress within the paint layers (leading to, e.g., cracks and delamination) or can lead to a visual change of the image of the painting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000974346900001 Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15; 2023 IF: 13.858  
  Call Number UA @ admin @ c:irua:196762 Serial 8948  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J.; Niinemets, Ü.; Schrader, J. url  doi
isbn  openurl
  Title Leaf functional traits : ecological and evolutionary implications Type ME3 Book as editor
  Year (down) 2023 Publication Abbreviated Journal  
  Volume Issue Pages 185 p.  
  Keywords ME3 Book as editor; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-2-8325-2086-4; 1664-8714 Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198002 Serial 8894  
Permanent link to this record
 

 
Author Wittner, N.; Gergely, S.; Slezsák, J.; Broos, W.; Vlaeminck, S.E.; Cornet, I. pdf  url
doi  openurl
  Title Follow-up of solid-state fungal wood pretreatment by a novel near-infrared spectroscopy-based lignin calibration model Type A1 Journal article
  Year (down) 2023 Publication Journal of microbiological methods Abbreviated Journal  
  Volume 208 Issue Pages 106725-106727  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Lignin removal plays a crucial role in the efficient bioconversion of lignocellulose to fermentable sugars. As a delignification process, fungal pretreatment has gained great interest due to its environmental friendliness and low energy consumption. In our previous study, a positive linear correlation between acid-insoluble lignin degradation and the achievable enzymatic saccharification yield has been found, hereby highlighting the importance of the close follow-up of lignin degradation during the solid-state fungal pretreatment process. However, the standard quantification of lignin, which relies on the two-step acid hydrolysis of the biomass, is highly laborious and time-consuming. Vibrational spectroscopy has been proven as a fast and easy alternative; however, it has not been extensively researched on lignocellulose subjected to solid-state fungal pretreatment. Therefore, the present study examined the suitability of near-infrared spectroscopy (NIR) for the rapid and easy assessment of lignin content in poplar wood pretreated with Phanerochaete chrysosporium. Furthermore, the predictive power of the obtained calibration model and the recently published ATR-FTIR spectroscopy-based model were compared for the first time using the same fungus-treated wood data set. PLSR was used to correlate the NIR spectra to the acid-insoluble lignin contents (19.9%-27.1%) of pretreated wood. After normalization and second derivation, a PLSR model with a good coefficient of determination (RCV2 = 0.89) and a low root mean square error (RMSECV = 0.55%) were obtained despite the heterogeneous nature of the fungal solid-state fermentation. The performance of this PLSR model was comparably good to the one obtained by ATR-FTIR (RCV2 = 0.87) while it required more extensive spectral pre-processing. In conclusion, both methods will be highly useful for the high-throughput and user-friendly monitoring of lignin degradation in a solid-state fungal pretreatment-based biorefinery concept.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000983287400001 Publication Date 2023-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-7012 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:195814 Serial 9038  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: