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Abstract 23 

Lignin removal plays a crucial role in the efficient bioconversion of lignocellulose to 24 

fermentable sugars. As a delignification process, fungal pretreatment has gained great 25 

interest due to its environmental friendliness and low energy consumption. In our 26 

previous study, a positive linear correlation between acid-insoluble lignin degradation 27 

and the achievable enzymatic saccharification yield has been found, hereby highlighting 28 

the importance of the close follow-up of lignin degradation during the solid-state fungal 29 

pretreatment process. 30 

However, the standard quantification of lignin, which relies on the two-step acid 31 

hydrolysis of the biomass, is highly laborious and time-consuming. Vibrational 32 

spectroscopy has been proven as a fast and easy alternative; however, it has not been 33 

extensively researched on lignocellulose subjected to solid-state fungal pretreatment. 34 

Therefore, the present study examined the suitability of near-infrared (NIR) spectroscopy 35 

for the rapid and easy assessment of lignin content in poplar wood pretreated with 36 

Phanerochaete chrysosporium. Furthermore, the predictive power of the obtained 37 

calibration model and the recently published Attenuated Total Reflection Fourier 38 

Transform Infrared (ATR-FTIR) spectroscopy-based model was compared for the first 39 

time using the same fungus-treated wood data set. 40 

Partial least squares regression (PLSR) was used to correlate the NIR spectra to the acid-41 

insoluble lignin contents (19.9%–27.1%) of pretreated wood. After normalization and 42 

second derivation, a PLSR model with a good coefficient of determination (𝑅𝐶𝑉2  = 0.89) 43 

and a low root mean square error (𝑅𝑀𝑆𝐸𝐶𝑉  = 0.55%) were obtained despite the 44 

heterogeneous nature of the fungal solid-state fermentation. The performance of this 45 

PLSR model was comparably good to the one obtained by ATR-FTIR (𝑅𝐶𝑉2  = 0.87) while 46 
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it required more extensive spectral preprocessing. In conclusion, both methods will be 47 

highly useful for the high-throughput and user-friendly monitoring of lignin degradation 48 

in a solid-state fungal pretreatment-based biorefinery concept. 49 

Keywords 50 

Biobased economy; Delignification; Phanerochaete chrysosporium; Solid-state 51 

fermentation; White-rot fungi 52 

1 Introduction 53 

Lignocellulosic biomass derived from plant cell walls is one of the most promising 54 

renewable feedstocks for the production of biofuels and biochemicals. However, the 55 

genuine recalcitrance of lignocellulose and, consequently, the need to disrupt the cell wall 56 

structure to facile access to cellulose and hemicellulose leads to an expensive and 57 

challenging conversion process. The presence of lignin in the biomass largely hinders the 58 

conversion of carbohydrates to fermentable sugars, both by acting as a physical barrier 59 

and binding non-productively to cellulase enzymes during enzymatic saccharification 60 

(Rahikainen et al., 2013; Yoo et al., 2020). Pretreatment is a crucial step in improving the 61 

efficiency of enzymatic saccharification by removing lignin and reducing the 62 

recalcitrance of lignocellulose. Many pretreatment techniques, including alkali, sulfite, 63 

organosolv, ionic liquids, deep eutectic solvents, and fungal pretreatment have been 64 

evaluated to decrease the lignin content of the biomass prior to enzymatic 65 

saccharification. Fungal pretreatment, which mainly uses white-rot fungi for the 66 

degradation of lignin, has been widely investigated due to its advantages, such as 67 

environmental friendliness, low chemical addition, and lack of the production of 68 

inhibiting by-products (Sindhu et al., 2016). Sufficient delignification during fungal 69 

pretreatment was proven to greatly improve the conversion of carbohydrates into 70 
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fermentable sugars. Moreover, studies reported a positive linear correlation between 71 

lignin degradation and the obtained enzymatic saccharification yield, highlighting the 72 

significance of delignification and its monitoring during the fungal pretreatment process 73 

(Nazarpour et al., 2013; Wittner et al., 2021). 74 

The most widely used method for quantifying lignin in lignocellulose is based on the two-75 

step acid hydrolysis of the biomass (NREL) (Sluiter et al., 2008a). However, this method 76 

suffers from the disadvantages of the highly laborious, time-consuming (> 3 h) and 77 

destructive procedure and the relatively large sample size (300 mg). These disadvantages 78 

can be effectively circumvented by techniques based on infrared spectroscopy. Recently, 79 

the study of Wittner et al. demonstrated that Attenuated Total Reflection Fourier 80 

Transform Infrared (ATR-FTIR) spectroscopy in the mid-infrared (MIR) region, coupled 81 

with partial least squares regression (PLSR) has a high potential to be a fast and accurate 82 

analytical tool for predicting lignin content in fungus-treated poplar wood (Wittner et al., 83 

2023). Fackler et al. used both Fourier Transform MIR spectroscopy in transmission 84 

mode and Fourier Transform near-infrared (FT-NIR) reflectance spectroscopy to 85 

determine lignin content in beech wood before and after fungal decay (Fackler et al., 86 

2007). In their study, the fungal decay of wood was performed in Petri dishes by placing 87 

the inoculated beech veneers in water agar and incubating them for up to 10 weeks. 88 

However, their application was not aimed at fungal pretreatment and delignification, as 89 

in our study. On the contrary, mainly an increase in lignin content was observed, showing 90 

that cellulose and hemicellulose compounds were consumed instead. Moreover, NIR 91 

spectroscopy has not yet been used for lignin calibration using fungus-treated wood 92 

samples obtained by solid-state fermentation (SSF), i.e. in an industry-relevant fungal 93 

pretreatment environment (Pandey, 2003; Wan and Li, 2012). 94 
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Additionally, the predictive performances of the above-mentioned NIR and ATR-FTIR 95 

spectroscopy-based calibration models have not yet been compared based on the same 96 

fungus-treated sample set. 97 

Therefore, this study has aimed to achieve the following main research goals. (1) 98 

Developing a fast and easy NIR spectroscopy-based lignin determination method using 99 

fungus-treated wood samples obtained at optimized solid-state fermentation conditions, 100 

hereby opening a new door to the practical implementation of the NIR spectroscopy-101 

based lignin quantification. (2) Investigating the effect of the presence of lignin-degrading 102 

enzymes and the fungus itself on the NIR spectra by comparing washed and non-washed 103 

pretreated wood samples. (3) Evaluating the use of different spectral preprocessing 104 

methods to obtain a PLSR model with a high coefficient of determination and low error 105 

for reliable lignin prediction. (4) Comparing the predictive power of the NIR and ATR-106 

FTIR spectroscopy-based calibration models using the same fungus-treated samples to 107 

provide important information regarding the right choice of IR instrumentation, spectral 108 

data processing and modelling. 109 

Materials and Methods 110 

 111 

Poplar wood sawdust was obtained from Sawmill Caluwaerts Willy (Holsbeek, BE). 112 

Sieve analysis was used to determine the particle size distribution of the wood particles. 113 

86.1% w/w of the poplar wood pellets were collected between the 2 mm and 0.075 mm 114 

screens. The white-rot fungus Phanerochaete chrysosporium MUCL 19343 was used for 115 

the solid-state fungal pretreatment studies. A spore suspension of 5⋅106 spores/mL was 116 

freshly prepared in distilled water from 5 days old cultures grown on potato dextrose agar 117 

plates at 39°C. 118 
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 119 

In order to obtain fungus-treated wood samples with a sufficient range of variability in 120 

AIL content for lignin calibration, the solid-state fermentation (SSF) experiments were 121 

carried out at different fermentation conditions as described in the study of Wittner et al. 122 

(Wittner et al., 2023). In brief, the fermentations were different in the applied substrate 123 

sterilization (none or autoclaving at 121°C for 20 min), duration of fermentation (up to 124 

28 days), medium composition (complex or simple) and fermentation set-up (rolling 125 

bottles or trays). 126 

The complex medium was composed of 3 g/L NaNO3, 20 g/L glucose, 0.5 g/L KCl, 0.5 127 

g/L MgSO4⋅7H2O, 0.5 g/L FeSO4⋅7H2O, 1 g/L KH2PO4, 0.34 g/L veratryl alcohol, 0.1% 128 

v/v Tween 80, 3.69 mM CuSO4 and 1.41 mM MnSO4 (Keller et al., 2003; Wittner et al., 129 

2021). The simplified media consisted of 3.69 mM CuSO4, 1.41 mM MnSO4 with or 130 

without 20 g/L glucose and/or 3 g/L NaNO3. The Schott bottles (100 mL) contained 3.67 131 

g dry weight (DW) poplar wood, 2 mL sterile media, 3.7 mL spore suspension (5·106 132 

spores/g DW wood) and distilled water, creating a moisture content of 75% w/w on a wet 133 

basis. The media and the poplar wood were sterilized separately by autoclavation at 134 

121°C for 20 min. The SSF bottles were rolled on a bottle roller (88881004 Bottle/Tube 135 

Roller, Thermo Scientific™) at 4 rpm and incubated (TC 255 S, Tintometer Inc.) at 37°C 136 

for up to 4 weeks. Tray fermentations of non-sterilized poplar wood were carried out at 137 

37°C for 4 weeks in 500 mL glass dishes containing 2 mL medium, 2.8 g DW untreated 138 

non-sterilized wood, 0.9 g DW pretreated wood as inoculum and distilled water resulting 139 

in the moisture content of 75% (Wittner et al., 2023). At the end of the fermentation, the 140 

pretreated wood was analyzed for its acid-insoluble lignin (AIL) content by the 141 

conventional two-step acid hydrolysis (Sluiter et al., 2008b) as a reference method and 142 
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by near-infrared spectroscopy. Table S1 shows the applied medium conditions with the 143 

corresponding AIL content for each pretreated wood sample. 144 

 145 

1.3.1 Removal of water-soluble substances 146 

Prior to the lignin determination, the pretreated wood samples were thoroughly washed 147 

to remove the lignocellulolytic enzymes and partially the fungus itself. The washing was 148 

carried out as described in the study by Wittner et al. (Wittner et al., 2023). Briefly, the 149 

biomass was shaken with 50 mM acetate buffer (pH 4.5) at 400 rpm for 20 min, applying 150 

a solid-to-liquid ratio of 1:80, followed by centrifugation (Sigma 3-16KL) for 15 min at 151 

4500 rpm and 4°C. After removing the supernatant, the washing was repeated once with 152 

acetate buffer and twice with distilled water to remove the traces of acetic acid. The rinsed 153 

solid was freeze-dried (ALPHA 1-2 LDplus, Martin Christ Gefriertrocknungsanlagen 154 

GmbH) to a constant weight and used for lignin and infrared analysis. 155 

1.3.2 Lignin quantification 156 

The poplar wood samples, before and after fungal pretreatments, were analyzed for their 157 

acid-insoluble content by the standard NREL protocol (NREL/TP-510-42618) (Sluiter et 158 

al., 2008b). Briefly, the AIL content of the samples was measured gravimetrically after a 159 

two-step acid hydrolysis with sulfuric acid. 160 

1.3.3 Milling 161 

Prior to near-infrared (NIR) analysis, the washed and freeze-dried (Alpha 1-2 LDplus, 162 

Martin Christ Gefriertrocknungsanlagen GmbH) wood samples were ground using the 163 

method of Cornet et al., with slight modifications (Cornet et al., 2018). The wood samples 164 

(200 mg) were placed in a grinding jar (25 mL) containing four 10 mm and one 15 mm 165 

stainless steel grinding balls. The jar was cooled down by immersion in liquid nitrogen 166 
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for 30 seconds, and ball milling was carried out in a mixer mill (MM 200, Retsch GmbH) 167 

for 4 min at 25 Hz. 168 

1.3.3.1 NIR analysis 169 

The milled, freeze-dried wood samples were placed in a powder mini sample holder 170 

having a quartz window and an inner ring with a diameter of 6 mm (Foss NIRSystems 171 

Inc.) and closed with a disposable sample cup lid (Foss NIRSystems Inc.). The samples 172 

were measured in diffuse reflectance mode using a NIR Systems 6500 spectrophotometer 173 

(Foss NIRSystems Inc.) equipped with an internal ceramic reference and four PbS 174 

detectors. Spectral data were collected between 1100 and 2498 nm at a data interval of 2 175 

nm with 32 scans. Spectra were recorded using Vision 3.20 software (Foss NIRSystems, 176 

Inc.). 177 

1.3.4 Spectral data processing and multivariate analysis 178 

All NIR spectra were processed using The Unscrambler® X 10.4 (CAMO Software AS.) 179 

and Microsoft® Excel® 2019 (Microsoft Corp.) software. Standard normal variate (SNV) 180 

preprocessing was applied to reduce baseline shift (Manfredi et al., 2018). After SNV, 181 

principal component analysis (PCA) was carried out on the washed and non-washed wood 182 

samples for dimensionality reduction and to identify outlier samples (Sarkar et al., 2017). 183 

Since the fungal delignification starts progressively increasing after 14 days of SSF 184 

(Wittner et al., 2021), the fermentations carried out longer than 20 days (SSF23–SSF44 185 

in Table S1), were used for the PCA analysis to obtain a good differentiation between the 186 

two sample groups (i.e., washed and non-washed). Partial least squares regression (PLSR) 187 

models were developed using the acid-insoluble lignin content of the washed SSF 188 

samples as reference data (Table S1). PLSR models were built using different spectral 189 

pretreatment methods, including the SNV and the second derivative methods of gap-190 

segment (G-S) (also known as Norris-Williams derivative) and Savitzky-Golay (SG) 191 
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derivative (Rinnan et al., 2009). The gap-segment algorithm generally performs first a 192 

smoothing under a given segment size, followed by a derivative of a given order under a 193 

given gap size (Kartakoullis et al., 2019). In this study, the use of different segment sizes 194 

(1–15 points) at the constant gap size of 1 point was evaluated. The SG algorithm fits 195 

polynomials to the spectrum within windows around each point in the spectrum, and these 196 

polynomials are then used to smooth the obtained data and subsequently differentiate 197 

them (Savitzky and Golay, 1964). Smoothing windows varying from 3 to 15 points were 198 

evaluated in this study. Polynomial smoothing involves fitting an odd number of 199 

sequential spectral data points to a polynomial and calculating the centre point of the 200 

resulting polynomial (McClure, 2008). When using a window that is too wide, peaks and 201 

valleys become rounded off, while a narrow window amplifies the noise present in the 202 

original spectrum through the derivative calculation (Næs et al., 2002). However, Shenk 203 

and Westerhaus suggest that the best mathematical treatment can only be attained by trial 204 

and error (Shenk and Westerhaus, 1994). 205 

PLSR models were validated using a leave-one-out (i.e. full) cross-validation (CV) to 206 

find the best-fitting model that has an optimal combination of the highest coefficient of 207 

determination (𝑅𝐶𝑉2 ) and the lowest root mean square error of cross-validation (𝑅𝑀𝑆𝐸𝐶𝑉 ) 208 

with the lowest number of PLSR terms used. 209 

2 Results and Discussion 210 

 211 

The NIR spectra of the untreated and pretreated wood with or without washing were 212 

compared. The corresponding raw and standard normal variate (SNV) treated second 213 

derivative NIR spectra are presented in Fig. 1. SNV is applied to reduce baseline shift 214 

caused by light scattering and variable spectral path (Manfredi et al., 2018). Second 215 
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derivative spectra have a negative peak that matches exactly the absorption maximum 216 

(positive peak) of an absorbance band in log 1/R, and these negative peaks are used to 217 

detect chemical changes among samples. Second derivative spectra provide more 218 

resolved absorption bands and hereby easier band assignments (Czarnecki, 2015) and, 219 

therefore, were used in this study for the detailed investigation of spectral changes. 220 

 221 

Fig. 1. Raw (a) and Savitzky-Golay second derivative (D2, 11 smoothing points) of 222 

SNV-treated NIR spectra (b)  of (—) untreated poplar wood and pretreated poplar wood 223 

(—) with and (—) without washing 224 

 225 
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In the second derivative of SNV-treated spectra, the main changes in the peak intensities 226 

after fungal treatment were observed at the lignin-related spectral regions of 1440 nm (1st 227 

overtone of C–H stretch and C–H deformation), 1670 nm (1st overtone of aromatic C–H 228 

stretch) and 2267 nm (O–H and C–O stretch in lignin), and also at the carbohydrate-229 

dominated regions of 2080 nm (O–H stretch and C–H deformation of semi-crystalline or 230 

crystalline regions in cellulose) and 2332 nm (C–H stretch and C–H deformation) 231 

(Schwanninger et al., 2011; Yang et al., 2015). The intensity of the lignin-associated 232 

peaks decreased after fungal pretreatment, confirming the degradation of lignin moieties. 233 

However, the non-washed SSF samples showed a smaller decrease in the lignin-related 234 

band intensities than the washed pretreated samples, indicating a spectral interference 235 

probably caused by the ligninolytic enzymes and the white-rot fungus, both present in the 236 

non-washed sample. The removal of these interfering compounds through washing was 237 

confirmed by Bradford protein assay and fungal biomass measurement in the work of 238 

Wittner et al. (Wittner et al., 2023). In that study, the same sample set as the one used in 239 

this research was measured by ATR-FTIR, and principal component analysis (PCA) was 240 

applied to the SNV-treated spectral data (Wittner et al., 2023). The PCA analysis provided 241 

a distinct sample group for the washed and non-washed samples. This good 242 

differentiation was obtained due to the increased band intensities measured in the non-243 

washed samples in the spectral range of 1700–1500 cm−1, assigned to Amide I and Amide 244 

II vibrations originating from the lignin-degrading enzymes and the fungus itself. In 245 

comparison, in the NIR spectra, the main influence of the washing was observed at 2267 246 

nm, i.e. at the spectral region, which can also be assigned to proteins besides lignin 247 

(Cozzolino, 2021; Shenk et al., 2008) However, unlike in the work of Wittner et al., in 248 

this study, no good differentiation could be seen between these sample groups (data not 249 
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shown). This can be explained by the increased surface sensitivity and lower optical 250 

penetration depth (up to a few micrometres) of ATR-FTIR spectroscopy compared to NIR 251 

reflectance spectroscopy (up to a few millimetres) (Cogulet et al., 2016; Lu et al., 2017; 252 

Schwanninger et al., 2011). Therefore, ATR-FTIR might be more sensitive to the 253 

presence of the ligninolytic enzymes, which cannot penetrate the wood cell wall due to 254 

their large size and therefore are deposited on the cell wall surface (Kumar and Chandra, 255 

2020). 256 

 257 

PLSR was performed to correlate the near-infrared spectra to the acid-insoluble lignin 258 

content of 44 wood samples, including the raw feedstock and 43 pretreated wood samples, 259 

each obtained via an individual solid-state fermentation (SSF) (Table S1). The acid-260 

insoluble lignin contents of these samples ranged from 19.9% to 27.1%. The PLSR 261 

models were constructed using leave-one-out cross-validation. In comparison with the 262 

utilization of the raw spectra (𝑅𝐶𝑉2  = 0.79, 𝑅𝑀𝑆𝐸𝐶𝑉 = 0.79%), SNV improved the PLSR 263 

model, which was shown by a higher 𝑅𝐶𝑉2  of 0.82 and a lower 𝑅𝑀𝑆𝐸𝐶𝑉  of 0.73% with the 264 

same number of PLSR factors (7) (Table 1). In comparison, a higher coefficient of 265 

determination (𝑅𝐶𝑉2  = 0.87) and a lower error (𝑅𝑀𝑆𝐸𝐶𝑉 = 0.60%) were obtained with 266 

ATR-FTIR using only 4 PLSR factors and SNV as a preprocessing technique (Wittner et 267 

al., 2023). 268 

 269 

Table 1. Results of NIR spectroscopy-based PLSR models for lignin quantification 270 

#PLSR 
model 

Treatment NF a 𝑅𝐶2 b 
𝑅𝑀𝑆𝐸𝐶  c 

[%] 𝑅𝐶𝑉2  d 
𝑅𝑀𝑆𝐸𝐶𝑉  e 

[%] 
PLSR1 raw spectra 7 0.88 0.58 0.79 0.79 
PLSR2 SNV 7 0.91 0.51 0.82 0.73 
PLSR3 G1-S1 7 1.00 0.08 0.52 1.18 
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PLSR4 G1-S3 6 0.96 0.33 0.88 0.60 
PLSR5 G1-S5 6 0.94 0.40 0.88 0.60 
PLSR6 G1-S7 6 0.93 0.43 0.86 0.63 
PLSR7 G1-S9 6 0.93 0.45 0.86 0.64 
PLSR8 G1-S11 6 0.92 0.48 0.85 0.67 
PLSR9 G1-S13 6 0.91 0.51 0.84 0.68 
PLSR10 G1-S15 6 0.90 0.52 0.84 0.68 
PLSR11 SG3 4 0.96 0.34 0.19 1.53 
PLSR12 SG5 7 1.00 0.08 0.63 1.03 
PLSR13 SG7 6 0.98 0.26 0.82 0.72 
PLSR14 SG9 6 0.97 0.31 0.87 0.61 
PLSR15 SG11 6 0.96 0.34 0.88 0.59 
PLSR16 SG13 7 0.88 0.58 0.79 0.79 
PLSR17 SG15 6 0.94 0.40 0.87 0.60 
PLSR18 SNV + G1-S1 4 0.97 0.29 0.50 1.21 
PLSR19 SNV + G1-S3 5 0.96 0.35 0.89 0.56 
PLSR20 SNV + G1-S5 5 0.93 0.43 0.89 0.58 
PLSR21 SNV + G1-S7 5 0.92 0.47 0.87 0.61 
PLSR22 SNV + GS-S9 5 0.91 0.50 0.86 0.63 
PLSR23 SNV + GS-S11 5 0.90 0.53 0.85 0.66 
PLSR24 SNV + GS-S13 6 0.91 0.49 0.85 0.65 
PLSR25 SNV + GS-S15 6 0.91 0.50 0.85 0.66 
PLSR26 SNV + SG3 3 0.90 0.54 0.19 1.53 
PLSR27 SNV + SG5 4 0.98 0.26 0.60 1.07 
PLSR28 SNV + SG7 5 0.98 0.24 0.85 0.66 
PLSR29 SNV + SG9 5 0.96 0.32 0.89 0.56 
PLSR30* SNV + SG11 5 0.95 0.37 0.89 0.55 
PLSR31 SNV + SG13 5 0.94 0.41 0.89 0.56 
PLSR32 SNV + SG15 5 0.93 0.43 0.88 0.58 

 271 

* Spectral pretreatment for which the standardized regression coefficients are shown (Fig. 3). 272 

a NF: Number of factors; b 𝑅𝐶2: Coefficient of determination of calibration; c 𝑅𝑀𝑆𝐸𝐶 : Root mean 273 

square error of calibration; d 𝑅𝐶𝑉2 : Coefficient of determination of cross-validation; e 𝑅𝑀𝑆𝐸𝐶𝑉 : 274 

Root mean square error of cross-validation. 275 

 276 

In order to further improve the NIR spectroscopy-based method, the two most common 277 

second derivative methods, i.e. the gap-segment (G-S) derivative and Savitzky-Golay 278 

(SG) derivative, were tested with or without combining with SNV (Rinnan et al., 2009). 279 

Each method (i.e. G-S and SG derivative) requires some trade-off between the amount of 280 
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sharpening and the creation of artefacts and usually involves some smoothing of the 281 

spectra (Hruschka, 2008). The second derivative helps resolve the broad, overlapping 282 

bands and peak shoulders and accentuates low-intensity peaks in the NIR region. 283 

By using a second derivation, the predictive ability of the PLSR model was efficiently 284 

improved. Furthermore, the subsequent use of SNV and second derivation resulted in the 285 

best-performing models (Table 1). In the case of the G-S method, the segment size 286 

influenced the predictive performance of the model (Table 1). The optimum segment size 287 

was 3 points (PLSR19 in Table 1), corresponding to a high determination coefficient of 288 

0.89 and a low 𝑅𝑀𝑆𝐸𝐶𝑉  value of 0.56% using 5 PLSR factors. The utilization of SG 289 

second derivative provided similarly good results, i.e. an 𝑅𝐶𝑉2  of 0.89 and an 𝑅𝑀𝑆𝐸𝐶𝑉  of 290 

0.55% using 5 factors and the optimal smoothing window of 11 points (PLSR30) (Fig. 291 

2). The weighted regression coefficients corresponding to this PLSR model (PLSR30), 292 

with the highest coefficient obtained at the lignin-specific wavelength of 2267 nm (O–H 293 

and C–O stretching (Schwanninger et al., 2011)), are presented in Fig. 3. Changing the 294 

size of the smoothing window had no effect on the location (2267 nm) of the maximum 295 

regression coefficient except when using small smoothing windows, i.e. 1 point segment 296 

size with G-S method and less than 7 points smoothing window with SG method (Table 297 

S2).  298 

 299 
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 300 

Fig. 2. The predicted vs. reference acid-insoluble lignin (AIL) values of () calibration 301 

and () validation based PLSR30 model in Table 1 302 

 303 
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 304 

Fig. 3. Regression coefficients of the PLSR30 model (Table 1) for acid-insoluble lignin 305 

determination 306 

 307 

In comparison to the best-performing PLSR model (PLSR30) obtained in this study, the 308 

work of Fackler et al. on the fungal decay of beech wood veneers presented a slightly 309 

higher coefficient of determination (𝑅𝐶𝑉2  of 0.91) but also a higher error (𝑅𝑀𝑆𝐸𝐶𝑉  = 310 

0.71%) using a higher number of PLSR factors (6) for the NIR spectroscopy-based 311 

prediction of lignin in the extracted milled wood samples (Fackler et al., 2007). 312 

Additionally, when the model performance of PLSR30 is compared to the ATR-FTIR 313 

spectroscopy-based method (𝑅𝐶𝑉2  = 0.87, 𝑅𝑀𝑆𝐸𝐶𝑉  = 0.60%, 4 PLSR factors (Wittner et 314 

al., 2023)), PLSR30 provided a higher coefficient of determination (𝑅𝐶𝑉2  = 0.89) and a 315 

lower error (𝑅𝑀𝑆𝐸𝐶𝑉  = 0.55%), using 5 PLSR factors. However, NIR spectroscopy 316 

required more complex spectral pretreatment, i.e. the combination of SNV and second 317 
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derivation instead of SNV alone, in order to achieve a coefficient of determination 318 

similarly high to the ATR-FTIR method. 319 

In conclusion, both NIR spectroscopy and ATR-FTIR spectroscopy showed really good 320 

predictive abilities considering the heterogeneous nature of the fungal solid-state 321 

fermentation, the different fermentation conditions and the complication of the reference 322 

acid-hydrolysis-based method while both are fast, easy and non-destructive methods. 323 

3 Conclusions 324 

In this study, measuring samples with NIR combined with PLSR succeeded in providing 325 

a reliable prediction of acid-insoluble lignin content in poplar wood pretreated by P. 326 

chrysosporium during solid-state fermentation. High correlations (𝑅𝐶𝑉2  = 0.89) between 327 

predicted and measured values were obtained with a low error (𝑅𝑀𝑆𝐸𝐶𝑉  = 0.55%) using 328 

5 PLSR components. The performance of this PLSR model was comparable to the one 329 

obtained by ATR-FTIR (𝑅𝐶𝑉2  = 0.87, 𝑅𝑀𝑆𝐸𝐶𝑉  = 0.60%, 4 PLSR factors), while it required 330 

the combined application of SNV and second derivation instead of SNV alone. In 331 

conclusion, both methods are highly suitable for the use as fast and easy lignin 332 

quantification in fungus-treated biomass in a wood-based biorefinery concept. 333 

Appendix A. Supplementary data 334 

E-supplementary data of this work can be found in the online version of the paper. 335 
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