toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cambré, S.; Campo, J.; Beirnaert, C.; Verlackt, C.; Cool, P.; Wenseleers, W. pdf  doi
openurl 
  Title Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response Type A1 Journal article
  Year 2015 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 10 Issue 10 Pages 248-252  
  Keywords A1 Journal article; Engineering sciences. Technology; Nanostructured and organic optical and electronic materials (NANOrOPT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Asymmetric dye molecules have unusual optical and electronic properties1, 2, 3. For instance, they show a strong second-order nonlinear optical (NLO) response that has attracted great interest for potential applications in electro-optic modulators for optical telecommunications and in wavelength conversion of lasers2, 3. However, the strong Coulombic interaction between the large dipole moments of these molecules favours a pairwise antiparallel alignment that cancels out the NLO response when incorporated into bulk materials. Here, we show that by including an elongated dipolar dye (p,p′-dimethylaminonitrostilbene, DANS, a prototypical asymmetric dye with a strong NLO response4) inside single-walled carbon nanotubes (SWCNTs)5, 6, an ideal head-to-tail alignment in which all electric dipoles point in the same sense is naturally created. We have applied this concept to synthesize solution-processible DANS-filled SWCNTs that show an extremely large total dipole moment and static hyperpolarizability (β0 = 9,800 × 10−30 e.s.u.), resulting from the coherent alignment of arrays of ∼70 DANS molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350799700016 Publication Date 2015-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 46 Open Access  
  Notes (up) Approved Most recent IF: 38.986; 2015 IF: 34.048  
  Call Number c:irua:125405 Serial 158  
Permanent link to this record
 

 
Author Robin, I.-C.; Aichele, T.; Bougerol, C.; André, R.; Tatarenko, S.; Bellet-Amalric, E.; van Daele, B.; Van Tendeloo, G. pdf  doi
openurl 
  Title CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions Type A1 Journal article
  Year 2007 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 18 Issue 26 Pages 265701,1-11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000247103500012 Publication Date 2007-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 8 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2007 IF: 3.310  
  Call Number UA @ lucian @ c:irua:64756 Serial 303  
Permanent link to this record
 

 
Author Tao, X.Y.; Zhang, X.B.; Cheng, J.-P.; Liu, F.; Li, Y.; Van Tendeloo, G. pdf  doi
openurl 
  Title Controllable synthesis of novel one-dimensional carbon nanomaterials on an alkali-element-modified Cu catalyst Type A1 Journal article
  Year 2006 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 17 Issue 1 Pages 224-226  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000234959200039 Publication Date 2005-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 4 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2006 IF: 3.037  
  Call Number UA @ lucian @ c:irua:56629 Serial 501  
Permanent link to this record
 

 
Author Wang, M.; Chang, K.; Wang, L.G.; Dai, N.; Peeters, F.M. doi  openurl
  Title Crystallographic plane tuning of charge and spin transport in semiconductor quantum wires Type A1 Journal article
  Year 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 20 Issue 36 Pages 365202,1-365202,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the charge and spin transport in quantum wires grown along different crystallographic planes in the presence of the Rashba spinorbit interaction (RSOI) and the Dresselhaus spinorbit interaction (DSOI). We find that changing the crystallographic planes leads to a variation of the anisotropy of the conductance due to a different interplay between the RSOI and DSOI, since the DSOI is induced by bulk inversion asymmetry, which is determined by crystallographic plane. This interplay depends sensitively on the crystallographic planes, and consequently leads to the anisotropic charge and spin transport in quantum wires embedded in different crystallographic planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000269077000003 Publication Date 2009-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 14 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2009 IF: 3.137  
  Call Number UA @ lucian @ c:irua:78933 Serial 588  
Permanent link to this record
 

 
Author Milošević, M.M.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 45 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any AharonovBohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the AharonovBohm effect in semiconductor nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000259922000016 Publication Date 2008-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 11 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:76874 Serial 865  
Permanent link to this record
 

 
Author Schulze, A.; Hantschel, T.; Dathe, A.; Eyben, P.; Ke, X.; Vandervorst, W. pdf  doi
openurl 
  Title Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects Type A1 Journal article
  Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 23 Issue 30 Pages 305707  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The fabrication and integration of low-resistance carbon nanotubes (CNTs) for interconnects in future integrated circuits requires characterization techniques providing structural and electrical information at the nanometer scale. In this paper we present a slice-and-view approach based on electrical atomic force microscopy. Material removal achieved by successive scanning using doped ultra-sharp full-diamond probes, manufactured in-house, enables us to acquire two-dimensional (2D) resistance maps originating from different depths (equivalently different CNT lengths) on CNT-based interconnects. Stacking and interpolating these 2D resistance maps results in a three-dimensional (3D) representation (tomogram). This allows insight from a structural (e.g. size, density, distribution, straightness) and electrical point of view simultaneously. By extracting the resistance evolution over the length of an individual CNT we derive quantitative information about the resistivity and the contact resistance between the CNT and bottom electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000306333500029 Publication Date 2012-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 29 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2012 IF: 3.842  
  Call Number UA @ lucian @ c:irua:100750 Serial 895  
Permanent link to this record
 

 
Author Orlinskii, S.B.; Bogomolov, R.S.; Kiyamova, A.M.; Yavkin, B.V.; Mamin, G.M.; Turner, S.; Van Tendeloo, G.; Shiryaev, A.A.; Vlasov, I.I.; Shenderova, O. pdf  doi
openurl 
  Title Identification of substitutional nitrogen and surface paramagnetic centers in nanodiamond of dynamic synthesis by electron paramagnetic resonance Type A1 Journal article
  Year 2011 Publication Nanoscience and nanotechnology letters Abbreviated Journal Nanosci Nanotech Let  
  Volume 3 Issue 1 Pages 63-67  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Production of nanodiamond particles containing substitutional nitrogen is important for a wide variety of advanced applications. In the current work nanodiamond particles synthesized from a mixture of graphite and hexogen were analyzed to determine the presence of substitutional nitrogen using pulsed electron paramagnetic resonance (EPR) spectroscopy. Nitrogen paramagnetic centers in the amount of 1.2 ppm have been identified. The spin relaxation characteristics for both nitrogen and surface defects are also reported. A new approach for efficient depletion of the strong non-nitrogen EPR signal in nanodiamond material by immersing nanodiamond particles into ice matrix is suggested. This approach allows an essential decrease of the spin relaxation time of the dominant non-nitrogen defects, while preserving the substitutional nitrogen spin relaxation time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293211200012 Publication Date 2011-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1941-4900;1941-4919; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.889 Times cited 14 Open Access  
  Notes (up) Approved Most recent IF: 1.889; 2011 IF: 0.528  
  Call Number UA @ lucian @ c:irua:91943 Serial 1548  
Permanent link to this record
 

 
Author Trofimova, E.Y.; Kurdyukov, D.A.; Yakovlev, S.A.; Kirilenko, D.A.; Kukushkina, Y.A.; Nashchekin, A.V.; Sitnikova, A.A.; Yagovkina, M.A.; Golubev, V.G. pdf  doi
openurl 
  Title Monodisperse spherical mesoporous silica particles : fast synthesis procedure and fabrication of photonic-crystal films Type A1 Journal article
  Year 2013 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 24 Issue 15 Pages 155601-155611  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A procedure for the synthesis of monodisperse spherical mesoporous silica particles (MSMSPs) via the controlled coagulation of silica/surfactant clusters into spherical aggregates with mean diameters of 250-1500 nm has been developed. The synthesis is fast (taking less than 1 h) because identical clusters are simultaneously formed in the reaction mixture. The results of microscopic, x-ray diffraction, adsorption and optical measurements allowed us to conclude that the clusters are similar to 15 nm in size and have hexagonally packed cylindrical pore channels. The channel diameters in MSMSPs obtained with cethyltrimethylammonium bromide and decyltrimethylammonium bromide as structure-directing agents were 3.1 +/- 0.15 and 2.3 +/- 0.12 nm, respectively. The specific surface area and the pore volume of MSMSP were, depending on synthesis conditions, 480-1095 m(2) g(-1) and 0.50-0.65 cm(3) g(-1). The MSMSP were used to grow opal-like photonic-crystal films possessing a hierarchical macro-mesoporous structure, with pores within and between the particles. A selective filling of mesopore channels with glycerol, based on the difference between the capillary pressures in macro- and mesopores, was demonstrated. It is shown that this approach makes it possible to control the photonic bandgap position in mesoporous opal films by varying the degree of mesopore filling with glycerol. Online supplementary data available from stacks.iop.org/Nano/24/155601/mmedia  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000316988700009 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 49 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2013 IF: 3.672  
  Call Number UA @ lucian @ c:irua:108462 Serial 2191  
Permanent link to this record
 

 
Author de Witte, K.; Cool, P.; de Witte, I.; Ruys, L.; Rao, J.; Van Tendeloo, G.; Vansant, E.F. doi  openurl
  Title Multistep loading of titania nanoparticles in the mesopores of SBA-15 for enhanced photocatalytic activity Type A1 Journal article
  Year 2007 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno  
  Volume 7 Issue 7 Pages 2511-2515  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000246347700042 Publication Date 2007-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4880;0000-0000; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.483 Times cited 13 Open Access  
  Notes (up) Approved Most recent IF: 1.483; 2007 IF: 1.987  
  Call Number UA @ lucian @ c:irua:64773 Serial 2240  
Permanent link to this record
 

 
Author Zhang, Z.Z.; Wu, Z.H.; Chang, K.; Peeters, F.M. doi  openurl
  Title Resonant tunneling through S- and U-shaped graphene nanoribbons Type A1 Journal article
  Year 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 20 Issue 41 Pages 415203,1-415203,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000269930100007 Publication Date 2009-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 32 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2009 IF: 3.137  
  Call Number UA @ lucian @ c:irua:79311 Serial 2893  
Permanent link to this record
 

 
Author Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Hörmann, U.; Van Tendeloo, G.; Mlayah, A.; Murray, D.B.; Saviot, L.; Zhou, Y.; Hong, M.H.; Luk'yanchuk, B.S. doi  openurl
  Title Surface enhanced Raman scattering of silver sensitized cobalt nanoparticles in metaldielectric nanocomposites Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 37 Pages 375701,1-375701,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the preparation of a new type of nanocomposite containing cobalt and silver nanoparticles organized in parallel layers with a well controlled separation. This arrangement allows the observation of an enhanced low-frequency Raman signal at the vibration frequency of cobalt nanoparticles excited through the surface plasmons of silver nanoparticles. Numerical simulations of the electric field confirm the emergence of hot spots when the separation between silver and cobalt nanoparticles is small enough.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000258385600018 Publication Date 2008-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 11 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:81873 Serial 3396  
Permanent link to this record
 

 
Author Mordvinova, N.; Emelin, P.; Vinokurov, A.; Dorofeev, S.; Abakumov, A.; Kuznetsova, T. url  doi
openurl 
  Title Surface processes during purification of InP quantum dots Type A1 Journal article
  Year 2014 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 5 Issue Pages 1220-1225  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)(3) during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of post-synthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339912400002 Publication Date 2014-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 5 Open Access  
  Notes (up) Approved Most recent IF: 3.127; 2014 IF: 2.670  
  Call Number UA @ lucian @ c:irua:118748 Serial 3397  
Permanent link to this record
 

 
Author Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; Van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. doi  openurl
  Title Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 30 Pages 305604,1-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000256838400014 Publication Date 2008-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 309 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:70224 Serial 3455  
Permanent link to this record
 

 
Author Bittencourt, C.; Krüger, P.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Ewels, C.; Umek, P.; Guttmann, P. pdf  url
doi  openurl
  Title Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations Type A1 Journal article
  Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 3 Issue Pages 789-797  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS-TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/Delta E = 104 and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS-TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000311482400001 Publication Date 2012-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 13 Open Access  
  Notes (up) Approved Most recent IF: 3.127; 2012 IF: 2.374  
  Call Number UA @ lucian @ c:irua:105140 Serial 3684  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. doi  openurl
  Title Transport of magnetic edge states in a quantum wire exposed to a non-homogeneous magnetic field Type A1 Journal article
  Year 2001 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 12 Issue Pages 570-576  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000173305300041 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 5 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2001 IF: 1.621  
  Call Number UA @ lucian @ c:irua:37276 Serial 3727  
Permanent link to this record
 

 
Author Talgorn, E.; Gao, Y.; Aerts, M.; Kunneman, L.T.; Schins, J.M.; Savenije, T.J.; van Huis, M.A.; van der Zant, H.S.J.; Houtepen, A.J.; Siebbeles, L.D.A. doi  openurl
  Title Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids Type A1 Journal article
  Year 2011 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 6 Issue 11 Pages 733-739  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electronhole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296737300012 Publication Date 2011-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 129 Open Access  
  Notes (up) Approved Most recent IF: 38.986; 2011 IF: 27.270  
  Call Number UA @ lucian @ c:irua:93296 Serial 3813  
Permanent link to this record
 

 
Author Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P.; pdf  url
doi  openurl
  Title VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor Type A1 Journal article
  Year 2015 Publication Nanomedicine: nanotechnology, biology and medicine Abbreviated Journal Nanomed-Nanotechnol  
  Volume 11 Issue 11 Pages 825-833  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (MRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with D-eff of 53 +/- 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma C6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. (C) 2015 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000354559600004 Publication Date 2015-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9634; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.72 Times cited 62 Open Access  
  Notes (up) Approved Most recent IF: 5.72; 2015 IF: 6.155  
  Call Number c:irua:126351 Serial 3838  
Permanent link to this record
 

 
Author Bittencourt, C.; Hitchock, A.P.; Ke, X.; Van Tendeloo, G.; Ewels, C.P.; Guttmann, P. pdf  url
doi  openurl
  Title X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge Type A1 Journal article
  Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 3 Issue Pages 345-350  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303243400001 Publication Date 2012-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 15 Open Access  
  Notes (up) Approved Most recent IF: 3.127; 2012 IF: 2.374  
  Call Number UA @ lucian @ c:irua:97703 Serial 3924  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Delabie, A.; Caymax, M.; Neyts, E.C.; Radu, I.; Huyghebaert, C.; De Gendt, S. pdf  url
doi  openurl
  Title Two-dimensional WS2 nanoribbon deposition by conversion of pre-patterned amorphous silicon Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue 28 Pages 04LT01  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a method for area selective deposition of 2D WS2 nanoribbons with tunable thickness on a dielectric substrate. The process is based on a complete conversion of a prepatterned, H-terminated Si layer to metallic W by WF6, followed by in situ sulfidation by H2S. The reaction process, performed at 450 degrees C, yields nanoribbons with lateral dimension down to 20 nm and with random basal plane orientation. The thickness of the nanoribbons is accurately controlled by the thickness of the pre-deposited Si layer. Upon rapid thermal annealing at 900 degrees C under inert gas, the WS2 basal planes align parallel to the substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000391445100001 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 13 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:140382 Serial 4471  
Permanent link to this record
 

 
Author Woo, S.Y.; Gauquelin, N.; Nguyen, H.P.T.; Mi, Z.; Botton, G.A. pdf  doi
openurl 
  Title Interplay of strain and indium incorporation in InGaN/GaN dot-in-a-wire nanostructures by scanning transmission electron microscopy Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 26 Issue 26 Pages 344002  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interplay between strain and composition is at the basis of heterostructure design to engineer new properties. The influence of the strain distribution on the incorporation of indium during the formation of multiple InGaN/GaN quantum dots (QDs) in nanowire (NW) heterostructures has been investigated, using the combined techniques of geometric phase analysis of atomic-resolution images and quantitative elemental mapping from core-loss electron energy-loss spectroscopy within scanning transmission electron microscopy. The variation in In-content between successive QDs within individual NWs shows a dependence on the magnitude of compressive strain along the growth direction within the underlying GaN barrier layer, which affects the incorporation of In-atoms to minimize the local effective strain energy. Observations suggest that the interfacial misfit between InGaN/GaN within the embedded QDs is mitigated by strain partitioning into both materials, and results in normal stresses inflicted by the presence of the surrounding GaN shell. These experimental measurements are linked to the local piezoelectric polarization fields for individual QDs, and are discussed in terms of the photoluminescence from an ensemble of NWs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000359079500003 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 19 Open Access  
  Notes (up) Approved Most recent IF: 3.44; 2015 IF: 3.821  
  Call Number UA @ lucian @ c:irua:136278 Serial 4504  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Shojaei, F.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  url
doi  openurl
  Title Two-dimensional carbon nitride C₆N nanosheet with egg-comb-like structure and electronic properties of a semimetal Type A1 Journal article
  Year 2021 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 32 Issue 21 Pages 215702  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this study, the structural, electronic and optical properties of theoretically predicted C6N monolayer structure are investigated by means of Density Functional Theory-based First-Principles Calculations. Phonon band dispersion calculations and molecular dynamics simulations reveal the dynamical and thermal stability of the C6N single-layer structure. We found out that the C6N monolayer has large negative in-plane Poisson's ratios along both X and Y direction and the both values are almost four times that of the famous-pentagraphene. The electronic structure shows that C6N monolayer is a semi-metal and has a Dirac-point in the BZ. The optical analysis using the random phase approximation method constructed over HSE06 illustrates that the first peak of absorption coefficient of the C6N monolayer along all polarizations is located in the IR range of spectrum, while the second absorption peak occurs in the visible range, which suggests its potential applications in optical and electronic devices. Interestingly, optically anisotropic character of this system is highly desirable for the design of polarization-sensitive photodetectors. Thermoelectric properties such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity and power factor are investigated as a function of carrier doping at temperatures 300, 400, and 500 K. In general, we predict that the C6N monolayer could be a new platform for study of novel physical properties in two-dimensional semi-metal materials, which may provide new opportunities to realize high-speed low-dissipation devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000624531500001 Publication Date 2020-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.44  
  Call Number UA @ admin @ c:irua:176648 Serial 6740  
Permanent link to this record
 

 
Author Osca, J.; Moors, K.; Sorée, B.; Serra, L. pdf  doi
openurl 
  Title Fabry-Perot interferometry with gate-tunable 3D topological insulator nanowires Type A1 Journal article
  Year 2021 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 32 Issue 43 Pages 435002  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Three-dimensional topological insulator (3D TI) nanowires display remarkable magnetotransport properties that can be attributed to their spin-momentum-locked surface states such as quasiballistic transport and Aharonov-Bohm oscillations. Here, we focus on the transport properties of a 3D TI nanowire with a gated section that forms an electronic Fabry-Perot (FP) interferometer that can be tuned to act as a surface-state filter or energy barrier. By tuning the carrier density and length of the gated section of the wire, the interference pattern can be controlled and the nanowire can become fully transparent for certain topological surface-state input modes while completely filtering out others. We also consider the interplay of FP interference with an external magnetic field, with which Klein tunneling can be induced, and transverse asymmetry of the gated section, e.g. due to a top-gated structure, which displays an interesting analogy with Rashba nanowires. Due to its rich conductance phenomenology, we propose a 3D TI nanowire with gated section as an ideal setup for a detailed transport-based characterization of 3D TI nanowire surface states near the Dirac point, which could be useful towards realizing 3D TI nanowire-based topological superconductivity and Majorana bound states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682173800001 Publication Date 2021-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 3.44  
  Call Number UA @ admin @ c:irua:180487 Serial 6990  
Permanent link to this record
 

 
Author Miranda, L.P.; da Costa, D.R.; Peeters, F.M.; Costa Filho, R.N. pdf  url
doi  openurl
  Title Vacancy clustering effect on the electronic and transport properties of bilayer graphene nanoribbons Type A1 Journal article
  Year 2023 Publication Nanotechnology Abbreviated Journal  
  Volume 34 Issue 5 Pages 055706-55710  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Experimental realizations of two-dimensional materials are hardly free of structural defects such as e.g. vacancies, which, in turn, modify drastically its pristine physical defect-free properties. In this work, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evident vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of the inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000886630000001 Publication Date 2022-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.5; 2023 IF: 3.44  
  Call Number UA @ admin @ c:irua:192030 Serial 7350  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue 6 Pages 1541-1557  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357977300001 Publication Date 2015-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 10 Open Access  
  Notes (up) 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126857 Serial 2682  
Permanent link to this record
 

 
Author Vidick, D.; Ke, X.; Devillers, M.; Poleunis, C.; Delcorte, A.; Moggi, P.; Van Tendeloo, G.; Hermans, S. pdf  url
doi  openurl
  Title Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue 6 Pages 1287-1297  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru-Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1-3 nm) bimetal Ru-Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355908400001 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 7 Open Access  
  Notes (up) 246791 Countatoms; 262348 Esmi Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126431 Serial 1420  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM Type A1 Journal article
  Year 2013 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 4 Issue Pages 77-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314499700001 Publication Date 2013-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 12 Open Access  
  Notes (up) 262348 ESMI; 246791 COUNTATOMS; FWO G002410N; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 3.127; 2013 IF: 2.332  
  Call Number UA @ lucian @ c:irua:106187 Serial 1848  
Permanent link to this record
 

 
Author Scuracchio, P.; Dobry, A.; Costamagna, S.; Peeters, F.M. pdf  doi
openurl 
  Title Tuning the polarized quantum phonon transmission in graphene nanoribbons Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 26 Issue 26 Pages 305401  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We propose systems that allow a tuning of the phonon transmission function T(omega) in graphene nanoribbons by using C-13 isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies omega(nu) which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000358675900010 Publication Date 2015-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 5 Open Access  
  Notes (up) ; Discussions with C E Repetto, C R Stia and K H Michel are gratefully acknowledged. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and PIP 11220090100392 of CONICET (Argentina). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.44; 2015 IF: 3.821  
  Call Number c:irua:127186 Serial 3759  
Permanent link to this record
 

 
Author Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W. pdf  url
doi  openurl
  Title Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning Type A1 Journal article
  Year 2020 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 31 Issue 44 Pages 445702  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561424400001 Publication Date 2020-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited 13 Open Access OpenAccess  
  Notes (up) ; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; Approved Most recent IF: 3.5; 2020 IF: 3.44  
  Call Number UA @ admin @ c:irua:171119 Serial 6649  
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M. pdf  doi
openurl 
  Title Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 335601  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000383780500012 Publication Date 2016-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 2 Open Access  
  Notes (up) ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:137155 Serial 4363  
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 12 Issue 11 Pages 1045-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414531800011 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 65 Open Access  
  Notes (up) ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:147406 Serial 4902  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: