toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title Strain engineered linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 24 Pages 243102  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the linear dichroism and the Faraday rotation of strained few-layer phosphorene, where strain is applied uniaxially along the armchair or zigzag direction of the phosphorene lattice. We calculate the optical conductivity tensor of uniaxially strained few-layer phosphorene by means of the Kubo formula within the tight-binding approach. We show that the linear dichroism and the Faraday rotation of few-layer phosphorene can be significantly modulated by the applied strain. The modulation depends strongly on both the magnitude and direction of strain and becomes more pronounced with increasing number of phosphorene layers. Our results are relevant for mechano-optoelectronic applications based on optical absorption and Hall effects in strained few-layer phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000472599100029 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 11 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:161327 Serial 5428  
Permanent link to this record
 

 
Author Zarenia, M.; Conti, S.; Peeters, F.M.; Neilson, D. pdf  doi
openurl 
  Title Coulomb drag in strongly coupled quantum wells : temperature dependence of the many-body correlations Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 115 Issue 20 Pages 202105  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of the temperature dependence of many-body correlations on hole-hole Coulomb drag in strongly coupled GaAs/GaAlAs double quantum wells. For arbitrary temperatures, we obtained the correlations using the classical-map hypernetted-chain approach. We compare the temperature dependence of the resulting drag resistivities rho D(T) at different densities with rho D(T) calculated assuming correlations fixed at zero temperature. Comparing the results with those when correlations are completely neglected, we confirm that correlations significantly increase the drag. We find that the drag becomes sensitive to the temperature dependence of T greater than or similar to 2TF, twice the Fermi temperature. Our results show excellent agreement with available experimental data. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000498619400007 Publication Date 2019-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 1 Open Access  
  Notes Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:165135 Serial 6291  
Permanent link to this record
 

 
Author Vanherck, J.; Bacaksiz, C.; Sorée, B.; Milošević, M.V.; Magnus, W. pdf  doi
openurl 
  Title 2D ferromagnetism at finite temperatures under quantum scrutiny Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue 5 Pages 052401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent years have seen a tremendous rise of two-dimensional (2D) magnetic materials, several of which were verified experimentally. However, most of the theoretical predictions to date rely on ab initio methods, at zero temperature and fluctuation-free, while one certainly expects detrimental quantum fluctuations at finite temperatures. Here, we present the solution of the quantum Heisenberg model for honeycomb/hexagonal lattices with anisotropic exchange interaction up to third nearest neighbors and in an applied field in arbitrary direction, which answers the question whether long-range magnetization can indeed survive in the ultrathin limit of materials, up to which temperature, and what the characteristic excitation (magnon) frequencies are, all essential to envisaged applications of magnetic 2D materials. We find that long-range magnetic order persists at finite temperature for materials with overall easy-axis anisotropy. We validate the calculations on the examples of monolayers CrI3, CrBr3, and MnSe2. Moreover, we provide an easy-to-use tool to calculate Curie temperatures of new 2D computational materials.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000559330100001 Publication Date 2020-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 8 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) and the special research funds of the University of Antwerp (BOF-UA). ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:171176 Serial 6445  
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Chen, X.; Li, J.; Sanyal, B.; Peeters, F.M. pdf  doi
openurl 
  Title Monolayer 1T-LaN₂ : Dirac spin-gapless semiconductor of p-state and Chern insulator with a high Chern number Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue 14 Pages 143101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional transition-metal dinitrides have attracted considerable attention in recent years due to their rich magnetic properties. Here, we focus on rare-earth-metal elements and propose a monolayer of lanthanum dinitride with a 1T structural phase, 1T-LaN2. Using first-principles calculations, we systematically investigated the structure, stability, magnetism, and band structure of this material. It is a flexible and stable monolayer exhibiting a low lattice thermal conductivity, which is promising for future thermoelectric devices. The monolayer shows the ferromagnetic ground state with a spin-polarized band structure. Two linear spin-polarized bands cross at the Fermi level forming a Dirac point, which is formed by the p atomic orbitals of the N atoms, indicating that monolayer 1T-LaN2 is a Dirac spin-gapless semiconductor of p-state. When the spin-orbit coupling is taken into account, a large nontrivial indirect bandgap (86/354meV) can be opened at the Dirac point, and three chiral edge states are obtained, corresponding to a high Chern number of C=3, implying that monolayer 1T-LaN2 is a Chern insulator. Importantly, this kind of band structure is expected to occur in more monolayers of rare-earth-metal dinitride with a 1T structural phase.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000578551800001 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 13 Open Access  
  Notes ; This work was supported by the Natural Science Foundation of Hebei Province (Grant No. A2020202031), the FLAG-ERA project TRANS2DTMD, the Swedish Research Council project grant (No. 2016-05366), and the Swedish Research Links program grant (No. 2017-05447). The resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government, and Swedish National Infrastructure for Computing (SNIC). A portion of this research (Xiangru Kong) was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Xin Chen thanks the China scholarship council for financial support from the China Scholarship Council (CSC, No. 201606220031). ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:172674 Serial 6564  
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Li, L.L.; Huang, F.; Xu, W.; Peeters, F.M. pdf  doi
openurl 
  Title Substrate dependent terahertz response of monolayer WS₂ Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 116 Issue 20 Pages 1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate experimentally the terahertz (THz) optoelectronic properties of monolayer (ML) tungsten disulfide (WS2) placed on different substrates using THz time-domain spectroscopy (TDS). We find that the THz optical response of n-type ML WS2 depends sensitively on the choice of the substrate. This dependence is found to be a consequence of substrate induced charge transfer, extra scattering centers, and electronic localization. Through fitting the experimental results with the Drude-Smith formula, we can determine the key sample parameters (e.g., the electronic relaxation time, electron density, and electronic localization factor) of ML WS2 on different substrates. The temperature dependence of these parameters is examined. Our results show that the THz TDS technique is an efficient non-contact method that can be utilized to characterize and investigate the optoelectronic properties of nano-devices based on ML WS2.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000536282300001 Publication Date 2020-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 10 Open Access  
  Notes ; This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018GF09) and by the National Natural Science foundation of China (Nos. U1930116 and 11574319). ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:170255 Serial 6620  
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Liang, L.; Peeters, F.M.; Liu, X.-J. pdf  doi
openurl 
  Title The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX₂ (X=Cl, Br, I) monolayers Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 116 Issue 19 Pages 192404-192405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using Floquet-Bloch theory, we propose to realize chiral topological phases in two-dimensional (2D) hexagonal FeX2 (X=Cl, Br, I) monolayers under irradiation of circularly polarized light. Such 2D FeX2 monolayers are predicted to be dynamically stable and exhibit both ferromagnetic and semiconducting properties. To capture the full topological physics of the magnetic semiconductor under periodic driving, we adopt ab initio Wannier-based tight-binding methods for the Floquet-Bloch bands, with the light-induced bandgap closings and openings being obtained as the light field strength increases. The calculations of slabs with open boundaries show the existence of chiral edge states. Interestingly, the topological transitions with branches of chiral edge states changing from zero to one and from one to two by tuning the light amplitude are obtained, showing that the topological Floquet phase of high Chern number can be induced in the present Floquet-Bloch systems. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000533500900001 Publication Date 2020-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 13 Open Access  
  Notes ; This work was supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), the National Natural Science Foundation of China (NSFC) (Nos. 11574008, 11761161003, 11825401, and 11921005), the Strategic Priority Research Program of Chinese Academy of Science (Grant No. XDB28000000), the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA Project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-Department EWI-and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. This research also used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. X.K. and L.L. also acknowledge the work conducted at the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy Office of Science User Facility. ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:169496 Serial 6623  
Permanent link to this record
 

 
Author Guo, J.; Clima, S.; Pourtois, G.; Van Houdt, J. doi  openurl
  Title Identifying alternative ferroelectric materials beyond Hf(Zr)O-₂ Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue 26 Pages 262903  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A database-driven approach combined with ab initio density functional theory (DFT) simulations is used to identify and simulate alternative ferroelectric materials beyond Hf(Zr)O-2. The database-driven screening method identifies a class of wurtzite ferroelectric materials. DFT simulations of wurtzite magnesium chalcogenides, including MgS, MgSe, and MgTe, show their potential to achieve improved ferroelectric (FE) stability, simple atomistic unit cell structure, and large FE polarization. Strain engineering can effectively modulate the FE switching barrier height for facilitating FE switching. The effect of the piezoelectric property on the FE switching barrier heights is also examined.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000608049700003 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access  
  Notes Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:176053 Serial 6766  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Faraji, M.; Yagmurcukardes, M.; Fadlallah, M.M.; Jappor, H.R.; Ghergherehchi, M.; Feghhi, S.A.H. doi  openurl
  Title A Dirac-semimetal two-dimensional BeN4 : thickness-dependent electronic and optical properties Type A1 Journal article
  Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 118 Issue 20 Pages 203103  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent experimental realization of a two-dimensional (2D) BeN4 monolayer, in this study we investigate the structural, dynamical, electronic, and optical properties of a monolayer and few-layer BeN4 using first-principles calculations. The calculated phonon band dispersion reveals the dynamical stability of a free-standing BeN4 layer, while the cohesive energy indicates the energetic feasibility of the material. Electronic band dispersions show that monolayer BeN4 is a semi-metal whose conduction and valence bands touch each other at the Sigma point. Our results reveal that increasing the layer number from single to six-layers tunes the electronic nature of BeN4. While monolayer and bilayer structures display a semi-metallic behavior, structures thicker than that of three-layers exhibit a metallic nature. Moreover, the optical parameters calculated for monolayer and bilayer structures reveal that the bilayer can absorb visible light in the ultraviolet and visible regions better than the monolayer structure. Our study investigates the electronic properties of Dirac-semimetal BeN4 that can be an important candidate for applications in nanoelectronic and optoelectronic. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000691329900002 Publication Date 2021-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:181725 Serial 6980  
Permanent link to this record
 

 
Author Bafekry, A.; Sarsari, I.A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Nguyen, V.; Ghergherehchi, M. url  doi
openurl 
  Title Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures Type A1 Journal article
  Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 118 Issue 14 Pages 143102  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this Letter, we explore the lattice, dynamical stability, and electronic and magnetic properties of FeTe bulk and FeX (X=S, Se, Te) monolayers using the density functional calculations. The phonon dispersion relation, elastic stability criteria, and cohesive energy results show the stability of studied FeX monolayers. The mechanical properties reveal that all FeX monolayers have a brittle nature. Furthermore, these structures are stable as we move down the 6A group in the periodic table, i.e., from S, Se, and Te. The stability and work function decrease as the electronegativity decreases. The spin-polarized electronic structures demonstrate that the FeTe monolayer has a total magnetization of 3.8 mu (B), which is smaller than the magnetization of FeTe bulk (4.7 mu (B)). However, FeSe and FeS are nonmagnetic monolayers. The FeTe monolayer can be a good candidate material for spin filter applications due to its electronic and magnetic properties. This study highlights the bright prospect for the application of FeX monolayers in electronic structures.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000637703700001 Publication Date 2021-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:177731 Serial 6985  
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L. url  doi
openurl 
  Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 121 Issue 11 Pages 112405-112407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000863219400003 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4  
  Call Number UA @ admin @ c:irua:191541 Serial 7223  
Permanent link to this record
 

 
Author Duflou, R.; Ciubotaru, F.; Vaysset, A.; Heyns, M.; Sorée, B.; Radu, I.P.; Adelmann, C. url  doi
openurl 
  Title Micromagnetic simulations of magnetoelastic spin wave excitation in scaled magnetic waveguides Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal  
  Volume 111 Issue 19 Pages 192411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the excitation of spin waves in scaled magnetic waveguides using the magnetoelastic effect. In uniformly magnetized systems, normal strains parallel or perpendicular to the magnetization direction do not lead to spin wave excitation since the magnetoelastic torque is zero. Using micromagnetic simulations, we show that the nonuniformity of the magnetization in submicron waveguides due to the effect of the demagnetizing field leads to the excitation of spin waves for oscillating normal strains both parallel and perpendicular to the magnetization. The excitation by biaxial normal in-plane strain was found to be much more efficient than that by uniaxial normal out-of-plane strain. For narrow waveguides with a width of 200 nm, the excitation efficiency of biaxial normal in-plane strain was comparable to that of shear strain. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000414975500027 Publication Date 2017-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152599 Serial 8247  
Permanent link to this record
 

 
Author Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
  Year 2023 Publication Applied physics letters Abbreviated Journal  
  Volume 123 Issue 3 Pages 033102-33106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 001033604700003 Publication Date 2023-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4; 2023 IF: 3.411  
  Call Number UA @ admin @ c:irua:198382 Serial 8823  
Permanent link to this record
 

 
Author Béché, A.; Goris, B.; Freitag, B.; Verbeeck, J. pdf  url
doi  openurl
  Title Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 108 Pages 093103  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of compressed sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic beam blanker placed in the condenser plane of a STEM is proposed. The beam blanker deflects the beam with a random pattern, while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both the medium scale and high resolution are acquired and reconstructed based on a discrete cosine algorithm. The obtained results confirm that compressed sensing is highly attractive to limit beam damage in experimental STEM even though some remaining artifacts need to be resolved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000375329200043 Publication Date 2016-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 40 Open Access  
  Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2), from the GOA project SOLARPAINT and the POC project I13/009 from the University of Antwerp. B.G. acknowledges the Research Foundation Flanders (FWO Vlaanderen) for a postdoctoral research grant. The QuAnTem microscope was partially funded by the Hercules Foundation. We thank Zhaoliang Liao from the Mesa+ laboratory at the University of Twente for the perovskite test sample.; esteem2jra3 ECASJO; Approved Most recent IF: 3.411  
  Call Number c:irua:131895 c:irua:131895UA @ admin @ c:irua:131895 Serial 4023  
Permanent link to this record
 

 
Author M. K. Kinyanjui, N. Gauquelin, E. Benckiser, H. –U. Habermeier, B. Keimer, U. Kaiser and G.A. Botton doi  openurl
  Title Local lattice distortion and anisotropic modulation in Epitaxially Strained LaNiO3/LaAlO3 hetero-structures Type A1 Journal Article
  Year 2014 Publication Applied Physics Letters Abbreviated Journal  
  Volume 104 Issue Pages 221909  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Using a complementary combination of x-ray diffraction and atomically resolved imaging we investigated the lattice structure of epitaxial LaNiO3/LaAlO3 superlattices grown on a compressive-strain inducing LaSrAlO4 (001) substrate. A refinement of the structure obtained from the x-ray data revealed the monoclinic I 2/c 1 1 space group. The (Ni/Al)O6 octahedral rotation angle perpendicular to the superlattice plane is enhanced, and the one parallel to the plane is reduced with respect to the corresponding bulk values. High-angle annular dark field imaging was used to determine the lattice parameters within the superlattice unit cell. High-resolution electron microscopy images of the oxygen atoms are consistent with the x-ray results.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000337161700029 Publication Date 2014-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 22 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4545  
Permanent link to this record
 

 
Author H. Zhang, N. Gauquelin, G.A. Botton and J.Y.T. Wei doi  openurl
  Title Attenuation of superconductivity in manganite/cuprate heterostructures by epitaxially induced CuO intergrowths Type A1 Journal Article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal  
  Volume 103 Issue Pages 052606  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We examine the effect of CuO intergrowths on the superconductivity in epitaxial

La 2/3 Ca 1/3 MnO 3 / YBa 2 Cu 3 O 7−δ La2/3Ca1/3MnO3/YBa2Cu3O7−δ

(LCMO/YBCO) thin-film heterostructures. Scanning transmission electron microscopy on bilayer LCMO/YBCO thin films revealed double CuO-chain intergrowths which form regions with the 247 lattice structure in the YBCO layer. These nanoscale 247 regions do not appear in x-ray diffraction, but can physically account for the reduced critical temperature (Tc) of bilayer thin films relative to unilayer films with the same YBCO thickness, at least down to ∼25 nm. We attribute the CuO intergrowths to the bilayer heteroepitaxial mismatch and the Tc reduction to the generally lower Tc seen in bulk 247 samples. These epitaxially-induced CuO intergrowths provide a microstructural mechanism for the attenuation of superconductivity in LCMO/YBCO heterostructures.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000322723000063 Publication Date 2013-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 12 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4546  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Tinck, S.; de Marneffe, J.-F.; Zhang, L.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanisms for plasma cryogenic etching of porous materials Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 111 Issue 17 Pages 173104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Porous materials are commonly used in microelectronics, as they can meet the demand for continuously shrinking electronic feature dimensions. However, they are facing severe challenges in plasma etching, due to plasma induced damage. In this paper, we present both the plasma characteristics and surface processing during the etching of porous materials. We explain how the damage occurs in the porous material during plasma etching for a wide range of chuck temperatures and the responsible mechanism for plasma damage-free etching at cryogenic temperature, by a combination of experiments and numerical modeling.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000413863400032 Publication Date 2017-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 2 Open Access OpenAccess  
  Notes We acknowledge the support from Marie Skłodowska- Curie actions (Grant Agreement-702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. L. Zhang and J.-F. de Marneffe acknowledge Dr. M. Cooke and A. Goodyear from Oxford Instruments Plasma Technology for processing the samples at their Yatton facility in the United Kingdom. Approved Most recent IF: 3.411  
  Call Number PLASMANT @ plasmant @c:irua:147022 Serial 4762  
Permanent link to this record
 

 
Author Ghimire, B.; Szili, E.J.; Lamichhane, P.; Short, R.D.; Lim, J.S.; Attri, P.; Masur, K.; Weltmann, K.-D.; Hong, S.-H.; Choi, E.H. pdf  url
doi  openurl
  Title The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 9 Pages 093701  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasma jets (plasma) operated in ambient air provide a rich source of reactive oxygen and nitrogen species (RONS), which are known to influence biological processes important in disease. In the plasma treatment of diseased tissue such as subcutaneous cancer tumors, plasma RONS need to first traverse an interface between the plasma-skin surface and second be transported to millimeter depths in order to reach deep-seated diseased cells. However, the mechanisms in the plasma generation of RONS within soft tissues are not understood. In this study, we track the plasma jet delivery of RONS into a tissue model target and we delineate two processes: through target delivery of RONS generated (primarily) in the plasma jet and in situ RONS generation by UV photolysis within the target. We demonstrate that UV photolysis promotes the rapid generation of RONS in the tissue model target’s surface after which the RONS are transported to millimeter depths via a slower molecular process. Our results imply that the flux of UV photons from plasma jets is important for delivering RONS through seemingly impenetrable barriers such as skin. The findings have implications not only in treatments of living tissues but also in the functionalization of soft hydrated biomaterials such as hydrogels and extracellular matrix derived tissue scaffolds.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000460820600048 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access Not_Open_Access  
  Notes National Research Foundation of Korea, NRF-2016K1A4A3914113 ; Australian Research Council, DP16010498 ; This work was supported by the National Research Foundation of Korea (NRF) Grant No. NRF-2016K1A4A3914113 and in part by Kwangwoon University 2018, Korea. E.J.S., S.-H.H., and R.D.S. wish to thank the Australian Research Council for partially supporting this research through Discovery Project No. DP16010498 and UniSA through the Vice Chancellor Development Fund. Approved Most recent IF: 3.411  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158111 Serial 5159  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Spectroscopic coincidence experiments in transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 14 Pages 143101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal

correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a

delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both

events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or

EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many

difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input

and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations

of elements need to be detected in a matrix of other elements.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000464450200022 Publication Date 2019-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 18 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G093417 ; Horizon 2020 Framework Programme, 823717 ESTEEM3 ; Helmholtz Association, VH-NG-1327 ; Approved Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159155 Serial 5168  
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J. url  doi
openurl 
  Title Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 24 Pages 243501  
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)  
  Abstract Strain has a strong effect on the properties of materials and the performance of electronic devices. Their ever shrinking size translates into a constant demand for accurate and precise measurement methods with a very high spatial resolution. In this regard, transmission electron microscopes are key instruments thanks to their ability to map strain with a subnanometer resolution. Here, we present a method to measure strain at the nanometer scale based on the diffraction of electron Bessel beams. We demonstrate that our method offers a strain sensitivity better than 2.5 × 10−4 and an accuracy of 1.5 × 10−3, competing with, or outperforming, the best existing methods with a simple and easy to use experimental setup.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000472599100019 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 17 Open Access OpenAccess  
  Notes Deutsche Forschungsgemeinschaft, RO2057/12-2 ; Fonds Wetenschappelijk Onderzoek, G.0934.17N ; Approved Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160119 Serial 5181  
Permanent link to this record
 

 
Author Wang, J.; Gauquelin, N.; Huijben, M.; Verbeeck, J.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal-insulator transition of SrVO 3 ultrathin films embedded in SrVO 3 / SrTiO 3 superlattices Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue 13 Pages 133105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The metal-insulator transition (MIT) in strongly correlated oxides is a topic of great interest for its potential applications, such as Mott field effect transistors and sensors. We report that the MIT in high quality epitaxial SrVO3 (SVO) thin films is present as the film thickness is reduced, lowering the dimensionality of the system, and electron-electron correlations start to become the dominant interactions. The critical thickness of 3 u.c is achieved by avoiding effects due to off-stoichiometry using optimal growth conditions and excluding any surface effects by a STO capping layer. Compared to the single SVO thin films, conductivity enhancement in SVO/STO superlattices is observed. This can be explained by the interlayer coupling effect between SVO sublayers in the superlattices. Magnetoresistance and Hall measurements indicate that the dominant driving force of MIT is the electron–electron interaction.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000577126100001 Publication Date 2020-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 8 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 13HTSM01 ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number EMAT @ emat @c:irua:172461 Serial 6415  
Permanent link to this record
 

 
Author Gao, C.; Hofer, C.; Jannis, D.; Béché, A.; Verbeeck, J.; Pennycook, T.J. pdf  url
doi  openurl
  Title Overcoming contrast reversals in focused probe ptychography of thick materials: An optimal pipeline for efficiently determining local atomic structure in materials science Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 121 Issue 8 Pages 081906  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ptychography provides highly efficient imaging in scanning transmission electron microscopy (STEM), but questions have remained over its applicability to strongly scattering samples such as those most commonly seen in materials science. Although contrast reversals can appear in ptychographic phase images as the projected potentials of the sample increase, we show here how these can be easily overcome by a small amount of defocus. The amount of defocus is small enough that it not only can exist naturally when focusing using the annular dark field (ADF) signal but can also be adjusted post acquisition. The ptychographic images of strongly scattering materials are clearer at finite doses than other STEM techniques and can better reveal light atomic columns within heavy lattices. In addition, data for ptychography can now be collected simultaneously with the fastest of ADF scans. This combination of sensitivity and interpretability presents an ideal workflow for materials science.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000844403300006 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 9 Open Access OpenAccess  
  Notes European Research Council, 802123-HDEM ; HORIZON EUROPE European Research Council, 823717-ESTEEM3 ; Fonds Wetenschappelijk Onderzoek, G042920N ; Fonds Wetenschappelijk Onderzoek, G042820N ; Horizon 2020 Framework Programme, 101017720 ; Fonds Wetenschappelijk Onderzoek, G013122N ; esteem3reported; esteem3jra Approved Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:190670 Serial 7120  
Permanent link to this record
 

 
Author Kourmoulakis, G.; Michail, A.; Paradisanos, I.; Marie, X.; Glazov, M.M.; Jorissen, B.; Covaci, L.; Stratakis, E.; Papagelis, K.; Parthenios, J.; Kioseoglou, G. pdf  url
doi  openurl
  Title Biaxial strain tuning of exciton energy and polarization in monolayer WS2 Type A1 Journal Article
  Year 2023 Publication Applied Physics Letters Abbreviated Journal  
  Volume 123 Issue 22 Pages  
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;  
  Abstract We perform micro-photoluminescence and Raman experiments to examine the impact of biaxial tensile strain on the optical properties of WS2 monolayers. A strong shift on the order of −130 meV per % of strain is observed in the neutral exciton emission at room temperature. Under near-resonant excitation, we measure a monotonic decrease in the circular polarization degree under the applied strain. We experimentally separate the effect of the strain-induced energy detuning and evaluate the pure effect coming from the biaxial strain. The analysis shows that the suppression of the circular polarization degree under the biaxial strain is related to an interplay of energy and polarization relaxation channels as well as to variations in the exciton oscillator strength affecting the long-range exchange interaction.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 001124156400003 Publication Date 2023-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access  
  Notes Hellenic Foundation for Research and Innovation, HFRI-FM17-3034 ; Approved Most recent IF: 4; 2023 IF: 3.411  
  Call Number CMT @ cmt @c:irua:202178 Serial 8991  
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Comment on “Chiral tunneling in trilayer graphene” [Appl. Phys. Lett. 100, 163102 (2012)] Type Editorial
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 22 Pages 226101-1  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Amer inst physics Place of Publication Melville Editor  
  Language Wos 000311967000107 Publication Date 2012-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:105999 Serial 408  
Permanent link to this record
 

 
Author Silhanek, A.V.; van de Vondel, J.; Moshchalkov, V.V.; Metlushko, V.; Ilic, B.; Misko, V.R.; Peeters, F.M. pdf  doi
openurl 
  Title Comment on “Transverse rectification in superconducting thin films with arrays of asymmetric defects” Type Editorial
  Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 92 Issue 17 Pages  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Amer inst physics Place of Publication Melville Editor  
  Language Wos 000255524000100 Publication Date 2008-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes Approved Most recent IF: 3.411; 2008 IF: 3.726  
  Call Number UA @ lucian @ c:irua:68867 Serial 412  
Permanent link to this record
 

 
Author Schowalter, M.; Titantah, J.T.; Lamoen, D.; Kruse, P. doi  openurl
  Title Ab initio computation of the mean inner Coulomb potential of amorphous carbon structures Type A1 Journal article
  Year 2005 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 86 Issue Pages 112102  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000228050700042 Publication Date 2005-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.411; 2005 IF: 4.127  
  Call Number UA @ lucian @ c:irua:51764 Serial 31  
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kruse, P.; Gerthsen, D. doi  openurl
  Title Ab initio computation of the mean inner Coulomb potential of wurtzite-type semiconductors and gold Type A1 Journal article
  Year 2006 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 88 Issue 23 Pages Artn 232108  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000238914500031 Publication Date 2006-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.411; 2006 IF: 3.977  
  Call Number UA @ lucian @ c:irua:60581 Serial 33  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W. doi  openurl
  Title Aromatic ring generation as a dust precursor in acetylene discharges Type A1 Journal article
  Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 88 Issue 15 Pages 151501,1-3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000236796400010 Publication Date 2006-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes Approved Most recent IF: 3.411; 2006 IF: 3.977  
  Call Number UA @ lucian @ c:irua:57218 Serial 150  
Permanent link to this record
 

 
Author Jungbauer, M.; Huehn, S.; Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.; Moshnyaga, V. pdf  url
doi  openurl
  Title Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 105 Issue 25 Pages 251603  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO3)(n) (n = infinity, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO3(001) substrates by means of a sequential deposition of Sr-O/Ti-O-2 atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2-4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5-6 repetitions of the SrO(SrTiO3)(4) block at the level of 2.4%. This identifies the SrTiO3 substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000346914000007 Publication Date 2014-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 32 Open Access  
  Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:122830UA @ admin @ c:irua:122830 Serial 172  
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 20 Pages 203109-203109,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000297786500058 Publication Date 2011-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 90 Open Access  
  Notes Hercules Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184  
Permanent link to this record
 

 
Author Egoavil, R.; Tan, H.; Verbeeck, J.; Bals, S.; Smith, B.; Kuiper, B.; Rijnders, G.; Koster, G.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale investigation of a PbTiO3/SrRuO3/DyScO3 heterostructure Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 22 Pages 223106-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An epitaxial PbTiO3 thin film grown on self-organized crystalline SrRuO3 nanowires deposited on a DyScO3 substrate with ordered DyO and ScO2 chemical terminations is investigated by transmission electron microscopy. In this PbTiO3/SrRuO3/DyScO3 heterostructure, the SrRuO3 nanowires are assumed to grow on only one type of substrate termination. Here, we report on the structure, morphology, and chemical composition analysis of this heterostructure. Electron energy loss spectroscopy reveals the exact termination sequence in this complex structure. The energy loss near-edge structure of the Ti-L-2,L-3, Sc-L-2,L-3, and O K edges shows intrinsic interfacial electronic reconstruction. Furthermore, PbTiO3 domain walls are observed to start at the end of the nanowires resulting in atomic steps on the film surface. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000320621600070 Publication Date 2013-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Ifox; Esteem2; Countatoms; Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109606UA @ admin @ c:irua:109606 Serial 185  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: