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ABSTRACT

Ptychography provides highly efficient imaging in scanning transmission electron microscopy (STEM), but questions have remained over its
applicability to strongly scattering samples such as those most commonly seen in materials science. Although contrast reversals can appear
in ptychographic phase images as the projected potentials of the sample increase, we show here how these can be easily overcome by a small
amount of defocus. The amount of defocus is small enough that it not only can exist naturally when focusing using the annular dark field
(ADF) signal but can also be adjusted post acquisition. The ptychographic images of strongly scattering materials are clearer at finite doses
than other STEM techniques and can better reveal light atomic columns within heavy lattices. In addition, data for ptychography can now be
collected simultaneously with the fastest of ADF scans. This combination of sensitivity and interpretability presents an ideal workflow for
materials science.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0101895

The ability of scanning transmission electron microscopy
(STEM) to determine structure and composition has made it essential
to materials science. Typically, this has been via Z-contrast ADF
imaging,1–3 with simultaneous spectroscopies providing greater com-
positional sensitivity at the cost of far higher doses and drift.4,5 One
particularly prominent deficiency of ADF imaging is the difficulty
the modality faces in resolving light atoms near heavy elements. The
precise locations of such light elements can dramatically alter the
properties of materials containing them. Such is the case in many
oxides where tiny changes in bond angles or lengths can completely
change their magnetic or electronic properties.6–8 Given sufficient sta-
bility of the stage and the sample, electron energy loss spectroscopy
(EELS) can reveal the locations of such light elements.4,5 However,
drift remains a challenge for precise measurements of atomic locations
in EELS, and for many materials systems, the damage from the doses
required for spectroscopy preclude its use at atomic resolution. In
many materials, the propensity to damage under the electron beam
also precludes atomic resolution ADF imaging.9 Alternative means of

imaging with both greater sensitivity to light elements and higher
overall dose efficiency have, thus, been sought to complement ADF
imaging.10,11

Annular bright field (ABF) became popular because it can
often determine the locations of light elements in heavy lattices at
higher precision and at lower doses than spectroscopic elemental
mapping.12–15 Recently, methods based on tracking the center of mass
(CoM) of the electron scattering have begun to take over from ABF, as
they are able to provide a higher signal to noise ratio. Integrated differ-
ential phase contrast (iDPC)16 and integrated CoM (iCoM)17,18 have
shown particular promise in this regard. iDPC can be performed using
a set of conventional detectors arranged into quadrants or seg-
ments,16,19 while iCoM is performed using four-dimensional STEM
(4D STEM)20 data. Thus, while iCoM utilizes a more accurate measure
of the CoM, most cameras used for 4D STEM have made it signifi-
cantly slower than iDPC. Now, however, developments in camera
technology have made 4D STEM possible without any decrease
in scan speed compared to even the most rapid ADF imaging.21
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This technological advance also accelerates the acquisition speed for
highly efficient ptychography.22–25 Direct focused probe forms of pty-
chography are compatible with simultaneous ADF imaging, but their
applicability to stronger objects such as thicker samples containing
heavier elements have remained in question due to the use of the weak
phase object (WPO) or multiplicative approximations in the theory
underlying these ptychographic methods.23,26–29

Here, we demonstrate the significant advantages of combining
focused probe ptychography with conventional rapid scan ADF work-
flows for the thicker samples typical of materials science. Both the sin-
gle sideband (SSB) and Wigner distribution deconvolution (WDD)
methods are capable of providing significantly clearer images of thick
structures at lower doses than ABF and iCoM. This is true well beyond
the approximations used in the theoretical description of the methods.
Although complex thickness induced contrast reversals can appear in
the SSB and WDD phase images, as has previously been shown,28 we
show how defocus adjustment can remove these effects and provide
contrast reversal free images that can clearly show the positions of all
the atomic columns in thick structures. The amount of defocus
required can be within the range of defocus that is set naturally when
optimizing ADF images manually in conventional imaging, but it can
also be applied and optimized after acquiring the data due to the abil-
ity of ptychography to perform post collection aberration correction.

In SSB and WDD ptychography, the phases of diffracted conver-
gent beam electron diffraction (CBED) disks are solved via their
mutual interference with the direct beam in probe position reciprocal
space. Experiments proceed by recording the intensity distribution of
the scattering as a function of probe position with a camera. The
Fourier transform of this 4D STEM data with respect to probe position
yields, in the multiplicative approximation,27

GðKf ;QpÞ ¼ AðKf ÞA�ðKf þ QpÞ�Kf WsðKf ÞW�s ðKf � QpÞ; (1)

in which Kf is the scattering vector leading to a location on the cam-
era, Qp is the spatial frequency, A is an aperture function expressing
both the effect of the aperture size and the aberrations that appear
within it, and Ws represents the Fourier transform of the specimen
transmission function. This represents the convolution between the
region of mutual overlap of the shifted and unshifted aperture func-
tions and the interference of the diffracted beams differing in
frequency by Qp. In SSB ptychography, the WPO approximation is
invoked to further simplify this to22

GðKf ;QpÞ ¼ jAðKf Þj2dðQpÞ þ AðKf ÞA�ðKf þ QpÞW�s ð�QpÞ
þA�ðKf ÞAðKf �QpÞWsðQpÞ; (2)

from which it can be understood how to obtain the phase and ampli-
tude of each frequency of the specimen transmission function from
the double disk overlap regions where the shifted and unshifted aper-
ture functions coincide.23 In WDD, the WPO approximation is
avoided and deconvolution is used to separate the aperture functions
from the specimen transmission function.27 However, the principle
remains essentially the same in that the phase and amplitude of each
spatial frequency relative to the direct beam is determined from the
double overlap regions.

Although the details of CBED patterns are dependent on thick-
ness, both the WDD and SSB can in practice be seen to provide clear
images of the structures of materials containing heavy elements that
are likely tens of nanometers thick. An experimental example using a
Medipix3 camera30 is shown with SrTiO3 in Fig. 1 comparing simulta-
neous ADF and 4D STEM based ABF, iCoM, and the focused probe
SSB and WDD ptychography signals. The thickness is most likely on
the order of tens of nanometers from the position averaged CBED31

data (see the supplementary material) which puts this sample
well beyond both the WPO and multiplicative approximations.

FIG. 1. ADF and Medipix3 based 4D STEM
data from SrTiO3. iCoM and ptychography
show the O columns more clearly than the
ABF. However, these data show some drift
from the slow scan imposed by the camera.
Sr, Ti, and O columns are indicated by
orange, blue, and red, respectively, in the
overlays. The scale bar shows 2 Å, and the
color bars are in radians.
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The conditions were optimized for the ADF image during the acquisi-
tion at 200 kV with a 20 mrad convergence angle. Distortions due to
drift are apparent due to the very slow speed of the scan compared to
conventional ADF imaging. The 2400 frames per second of the 6 bit
mode of the Medipix3 camera used here is a typical speed for 4D
STEM cameras over the past five years, and with a typical probe cur-
rent of a few tens of picoamps results in a dose on the order of 106

e�=Å2. However, it is clear that both SSB and WDD provide atomic
resolution images that, along with the iCoM, are far clearer than that
of the ABF, despite the strength of the scattering here. A degree of fil-
tering is apparent, but most of the clarity is attributed to the dose effi-
ciency of the iCoM and ptychographic methods. Note that the ADF
remains useful for clearly distinguishing the Sr, and Ti columns, but
the O atoms are not visible without the additional signals.

Frame based direct detection 4D STEM cameras such as the
Medipix3 and its competitors are faster and more efficient than previ-
ous generation cameras and are continuing to improve, but the sus-
ceptibility to instabilities such as drift and jitter resulting from their
relatively low speeds remains a major problem for precision measure-
ments. Furthermore, the slow scan speeds they impose also make it
more difficult to reach low doses. These two issues, instabilities and
dose, have thus motivated continued use of methods based on conven-
tional STEM detector setups such as ABF and iDPC which are in
many ways inferior to 4D STEM methods but which have so far been
more practical.17,23,26,32

Now we can remove the camera as a bottleneck to the speed at
which 4D STEM can be performed. With event based detectors such
as the Timepix3,21 we can easily reach the equivalent of not just a few
thousand frames per second, but millions of frames per second. We
refer to the frames per second equivalent here in relation to the event
driven camera only for the ease of comparison it can provide, as event
driven operation does not utilize camera frames. Instead, each electron
detected by the camera is labeled with a pixel location and time,
and readout directly after the hit occurs rather than waiting for a full
camera frame to be exposed and readout together. This provides a
more efficient readout that enables us to easily perform 4D STEM at
the single to few microsecond dwell times used in rapid scan ADF
imaging. Faster scans are also possible, such as the 100ns dwell time
we demonstrated previously,21 and may become increasingly desirable
with the enhanced dose efficiency available with CoM and especially
ptychography. Indeed, we can also perform the same type of drift cor-
rected multiple scan based imaging as has become common in rapid
scan ADF imaging, allowing us to use data up until the point damage
sets in. Thus, with event driven cameras, 4D STEM can now be
acquired as rapidly as any other STEMmodality.

We illustrate the step change in the quality of images microsec-
ond dwell time 4D STEM provides in Fig. 2 with data acquired on a
Timepix3 complementing ADF data collected simultaneously from
Fe3O4, again using 200 kV and a 20 mrad convergence angle. The elec-
tron dose was 10 000 e�=Å2 and the dwell time was 2 ls. The ADF
signal was used to optimize the imaging conditions, just as in a stan-
dard high end ADF STEM workflow. From both the Ronchigram and
ADF imaging, the sample is qualitatively of a thickness typical of 3D
materials science samples for STEM. As seen in Fig. 1, the clarity of
the iCoM and focused probe ptychography far exceed that of the ABF
image. However, unlike Fig. 1, this scan is essentially free of drift and
other instabilities and at approximately two orders of magnitude lower

dose. Because of the relatively low dose employed, the ADF is
extremely noisy, as is the ABF signal which provides little advantage
over the ADF. With the lower dose used here, the strength of the
focused probe ptychography over that of iCoM also becomes much
more apparent. Essentially, every single atomic column is visible in the
focused probe ptychography, but they are not in the iCoM.

Although the contrast transfer functions of SSB and WDD pty-
chography are single signed and provide easily interpretable images in
which the contrast of the atoms is consistent against the background
for thin weak specimens,26,33 the contrast becomes more complex
when handling thicker samples. Complex changes in contrast can
appear as the projected potential of the sample becomes stronger as
evidenced previously in GaN.28 Atomic columns can be seen to change
from bright to dark as the sample thickens, generally beginning in the
center of the atomic columns where the projected potential is stron-
gest. Thus, one can encounter images in which the center of atomic
columns have become dark while further out they remain bright. Such
complex contrast reversals can not only impede the ease of interpret-
ability but also degrade the dose efficiency by reducing the available
contrast in low dose images.

An example of such contrast reversals is shown with simulations
in Figs. 3(b) and 3(c). The 4D datasets are simulated using the multi-
slice method with abTEM.34 The voltage and convergence angle are

FIG. 2. ADF and 4D STEM ABF, iCoM, and SSB ptychography images of Fe3O4

from the same 2 ls scan enabled by a Timepix3 camera. Despite the low dose, the
SSB image clearly shows the oxygen columns. The crystallinity and absence of
distortions allowed the full image to be divided into four parts and aligned, based on
the SSB signal, and averaged to produce the higher signal-to-noise ratio images
shown. O and Fe atoms are shown in red and brown, respectively, in the model. The
projection vector of the plane is (2,3,1) and the color bar for the SSB is in radians.
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the same as the experimental results shown in Fig. 1. With the probe
focused to the entrance surface of the 16nm thick STO (zero defocus),
both the SSB and WDD produce complex phase images in which the
centers of both the Ti and Sr columns are dark but the light O columns
remain bright. Surrounding the dark centers of the Ti and Sr columns
are regions of higher phase values before these reduce to an intermedi-
ate phase value in the background. It is still possible to interpret which
columns are where, particularly with the ADF signal present and
indeed, the O columns already appear bright. Thus, it is already feasi-
ble to locate the O atoms with this combination. However, these com-
plex contrast reversals are clearly often undesirable, and by applying a
small amount of defocus, it is possible to remove them as illustrated in
Fig. 3 for SSB (e) and WDD (f) with a defocus of 8 nm, which has a
minimal effect on the ADF image. With this defocus, all the atomic
columns appear bright on a dark background in the ptychographic
images. Note that we define positive defocus as underfocus, moving
the focal point into the sample from the entrance surface, and negative
values as overfocus, moving the focal point before the sample. Focal
series for thicknesses of 16, 20, 28, and 50nm are shown in the supple-
mentary material. The optimal defocus appears to be close to the mid-
dle of the sample for the thinner examples, but for the 50nm case,
defoci corresponding to a few nanometers before the sample or near
the exit surface appear preferable.

In Fig. 3, we also show the effect of adding 10nm of defocus post
collection to the SSB (g) andWDD (h) for the 16nm thick STO simu-
lation. 10 nm was chosen as it optimizes the removal of the contrast

reversals. This also works for considerably thicker materials as we
show in the supplementary material with a focal series for the 50nm
thick STO simulation. Using post collection SSB defocus adjustment,
we are able to remove the complex contrast reversals with the probe
focused to the entrance surface during the simulated scan (with the
CBED patterns simulated with defocus equal to zero). Although not
identical to performing the defocus adjustment on the probe directly,
this illustrates that post acquisition adjustment can also be used to
remove the contrast reversals. The difference between applying the
defocus during and after acquisition could be explained by channeling
effects which are not accounted for with the post acquisition adjust-
ment of the defocus.

The availability of the simultaneous ADF signal is, thus, of two-
fold importance. Its atomic number contrast provides greater compo-
sitional discernment without resorting to the greater doses required
for atomic resolution spectrum imaging, while providing a reference
image which is not susceptible to contrast reversals. Atoms are always
bright on a dark background in ADF images. This advantage is not
available in defocused probe methods of ptychography because the
ADF image is blurred beyond usability.

Although elucidating the physics of the removal of contrast
reversals via defocus in detail is reserved for future studies, we believe
the effect can be understood as rolling the phase around across the
field of view such that the centers of the atomic columns are maximum
and the background at a minimum. This works in practice because the
ptychographic phase images generally only use a small fraction of the
2p radian range of values available for phase value images, and thus,
the phase rolling does not bring other features into non intuitive
ranges of contrast.

In our experimental examples, the ptychographic data did not
need additional defocus to produce clear images. This could be
because they were obtained at a focus that produced clear ADF and
ptychographic images. The defocus applied to provide contrast rever-
sal free ptychographic images in Fig. 3 only slightly reduced the quality
of the ADF image. However, when the defocus is not optimal for pty-
chography, it can be adjusted after taking the data. The injection of
defocus and post collection aberration correction has been demon-
strated previously27,33 with focused probe ptychography, but here pro-
vides an unanticipated benefit. Post collection aberration correction
can also be combined with such defocus optimization.

In comparison to direct ptychography, iterative ptychography is
not guaranteed to converge to the correct result or indeed to converge
at all, but they are guaranteed to take a longer time to produce a useful
image. We timed serial SSB and extended ptychographic iterative
engine (ePIE)35 calculations from the same focused probe dataset
using an i7-10700K processor. The entire SSB calculation took 2.4 s
regardless of dose. The ePIE calculation took 3.5 s (1 a limit) to 24.4 s
(3 a limit) per iteration so that 10 ePIE iterations takes between 15 and
100 times as long as the SSB result. Convergence depends on the dose,
and at 1:2� 105 e�=Å2, ePIE did not converge whereas the SSB pro-
duces clear images. Parallelism can speed up both algorithms, but this
shows the far higher computational costs of iterative vs direct meth-
ods. See the supplementary material for further details. Live iCoM36

and SSB37 have already been reported, but live imaging with iterative
methods would be at least far more difficult. Detailed information
about simulation methods and the related parameters can be found in
the supplementary material.

FIG. 3. ADF, SSB, and WDD images simulated for 16 nm thick STO. At zero defo-
cus, complex contrast reversals appear in the SSB and WDD images, but when the
probe is focused 8 nm into the material, the contrast reversals are removed.
Importantly, however, the contrast reversals can also be removed by inserting defo-
cus post collection, meaning the experiment can proceed with the focus optimized
for the ADF. The scale bar indicates 2 Å and the colorbar is in radians.
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In conclusion, we have demonstrated the utility of performing
focused probe ptychography within existing rapid scan ADF workflows
for general materials science samples. Simultaneous ADF and ptychog-
raphy provide a robust and interpretable method of efficiently imaging
all the atomic columns in such samples. In particular, when combined
with the ability to apply corrective defocus, the method works well
beyond the approximations which have been used to motivate the SSB
and WDD methods. The clarity of the ptychographic images provides
the best possible combination of the general efficiency of structural
imaging, visibility of light elements, and interpretability when combined
with simultaneous Z-contrast ADF imaging. With a detector such as the
Timepix3, drift is no longer a significant issue with 4D STEM and there
is indeed very little reason not to perform simultaneous ADF and 4D
STEM imaging. We, therefore, anticipate the widespread adoption of
this imaging pipeline in the future.

See the supplementary material for a comparison of the experi-
mental and simulated STO PACBED; simulated focal series for 16, 20,
28, and 50nm thick STO; and a simulated post collection focal series
for 50 nm thick STO.
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