toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Béché, A.; Goris, B.; Freitag, B.; Verbeeck, J. pdf  url
doi  openurl
  Title Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy Type A1 Journal article
  Year (down) 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 108 Pages 093103  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of compressed sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic beam blanker placed in the condenser plane of a STEM is proposed. The beam blanker deflects the beam with a random pattern, while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both the medium scale and high resolution are acquired and reconstructed based on a discrete cosine algorithm. The obtained results confirm that compressed sensing is highly attractive to limit beam damage in experimental STEM even though some remaining artifacts need to be resolved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375329200043 Publication Date 2016-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 40 Open Access  
  Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2), from the GOA project SOLARPAINT and the POC project I13/009 from the University of Antwerp. B.G. acknowledges the Research Foundation Flanders (FWO Vlaanderen) for a postdoctoral research grant. The QuAnTem microscope was partially funded by the Hercules Foundation. We thank Zhaoliang Liao from the Mesa+ laboratory at the University of Twente for the perovskite test sample.; esteem2jra3 ECASJO; Approved Most recent IF: 3.411  
  Call Number c:irua:131895 c:irua:131895UA @ admin @ c:irua:131895 Serial 4023  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: