toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blansaer, N.; Alloul, A.; Verstraete, W.; Vlaeminck, S.E.; Smets, B.F. pdf  url
doi  openurl
  Title Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation : impact of organic loading rate, hydraulic retention time and water composition Type A1 Journal article
  Year (down) 2022 Publication Bioresource technology Abbreviated Journal Bioresource Technol  
  Volume 348 Issue Pages 126806-126809  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) form an interesting group of microbes for resource recovery from wastewater. Solid/liquid separation is key for biomass and value-added products recovery, yet insights into PNSB aggregation are thus far limited. This study explored the effects of organic loading rate (OLR), hydraulic retention time (HRT) and water composition on the aggregation of Rhodobacter capsulatus in an anaerobic upflow photobioreactor. Between 2.0 and 14.6 gCOD/(L.d), the optimal OLR for aggregation was 6.1 gCOD/(L.d), resulting in a sedimentation flux of 5.9 kgTSS/(m2.h). With HRT tested between 0.04 and 1.00 d, disaggregation occurred at the relatively long HRT (1 d), possibly due to accumulation of thus far unidentified heat-labile metabolites. Chemical oxygen demand (COD) to nitrogen ratios (6–35 gCOD/gN) and the nitrogen source (ammonium vs. glutamate) also impacted aggregation, highlighting the importance of the type of wastewater and its pre-treatment. These novel insights to improve purple biomass separation pave the way for cost-efficient PNSB applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800442200008 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4  
  Call Number UA @ admin @ c:irua:185843 Serial 7123  
Permanent link to this record
 

 
Author Loomba, V.; Pourfallah, H.; Olsen, J.E.; Einarsrud, K.E. doi  openurl
  Title Lab-scale physical model experiments to understand the effect of particle bed on tapping flow rates Type P1 Proceeding
  Year (down) 2022 Publication Abbreviated Journal  
  Volume Issue Pages 159-170  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-030-92543-7; 2367-1181; 2367-1696; 978-3-030-92546-8; 978-3-030-92544-4 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:186090 Serial 7177  
Permanent link to this record
 

 
Author Wambacq, E.; Alloul, A.; Grunert, O.; Carrette, J.; Vermeir, P.; Spanoghe, J.; Sakarika, M.; Vlaeminck, S.E.; Haesaert, G. url  doi
openurl 
  Title Aerobes and phototrophs as microbial organic fertilizers : exploring mineralization, fertilization and plant protection features Type A1 Journal article
  Year (down) 2022 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 17 Issue 2 Pages e0262497-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Organic fertilizers and especially microbial biomass, also known as microbial fertilizer, can enable a paradigm shift to the conventional fertilizer-to-food chain, particularly when produced on secondary resources. Microbial fertilizers are already common practice (e.g. Bloom® and Synagro); yet microbial fertilizer blends to align the nutrient release profile to the plant’s needs are, thus far, unexplored. Moreover, most research only focuses on direct fertilization effects without considering added value properties, such as disease prevention. This study has explored three promising types of microbial fertilizers, namely dried biomass from a consortium of aerobic heterotrophic bacteria, a microalga (Arthrospira platensis) and a purple non-sulfur bacterium (Rhodobacter sphaeroides). Mineralization and nitrification experiments showed that the nitrogen mineralization profile can be tuned to the plant’s needs by blending microbial fertilizers, without having toxic ammonium peaks. In a pot trial with perennial ryegrass (Lolium perenne L.), the performance of microbial fertilizers was similar to the reference organic fertilizer, with cumulative dry matter yields of 5.6–6.7 g per pot. This was confirmed in a pot trial with tomato (Solanum lycopersicum L.), showing an average total plant length of 90–99 cm after a growing period of 62 days for the reference organic fertilizer and the microbial fertilizers. Moreover, tomato plants artificially infected with powdery mildew (Oidium neolycopersici), a devastating disease for the horticultural industry, showed reduced disease symptoms when A. platensis was present in the growing medium. These findings strengthen the application potential of this novel class of organic fertilizers in the bioeconomy, with a promising match between nutrient mineralization and plant requirements as well as added value in crop protection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000775890100025 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:185568 Serial 7122  
Permanent link to this record
 

 
Author Peng, L.; Lou, W.; Xu, Y.; Yu, S.; Liang, C.; Alloul, A.; Song, K.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10 Type A1 Journal article
  Year (down) 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 822 Issue Pages 153489  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57–1.08 g biomass g−1 CODremoved and 0.48–0.71 d−1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2–1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g−1 CODremoved and 0.71 d−1) and the highest biomass quality (protein content of 609 mg g−1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g−1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L−1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g−1 DCW d−1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766801800010 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:185706 Serial 7202  
Permanent link to this record
 

 
Author Quintero-Coronel, D.A.; Lenis-Rodas, Y.A.; Corredor, L.; Perreault, P.; Bula, A.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Co-gasification of biomass and coal in a top-lit updraft fixed bed gasifier : syngas composition and its interchangeability with natural gas for combustion applications Type A1 Journal article
  Year (down) 2022 Publication Fuel Abbreviated Journal Fuel  
  Volume 316 Issue Pages 123394-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The co-gasification of biomass and coal is a promising approach for efficiently integrating the unique advantages of different gasification feedstock with syngas production. Additionally, syngas from the co-gasification of locally available biomass and coal could supplement the natural gas used in household and industrial burners. The top-lit updraft gasifier features a moving ignition front that starts at the top and propagates downward through the solids bed, while air enters from the bottom and the gas product flows upwards. This study assesses the co-gasification performance of palm kernel shell and high-volatile bituminous coal in a top-lit updraft fixed bed gasifier using 70, 85, and 100 vol% biomass and equivalence ratios ranging from 0.26 to 0.34. The results indicate that the ignition front propagates faster and is more uniform as the biomass volume increases. Micro GC analysis revealed that the H2/CO ratio remained in the range of 0.57–0.59, 0.49–0.51, and 0.42–0.46 for experiments with 70, 85, and 100 vol% biomass, respectively. A gas interchangeability analysis showed that syngas-natural gas blends with up to 15 vol% of syngas could combust in atmospheric natural gas burners without modifications. Thus, the top-lit updraft gasifier shows excellent potential for the co-gasification of coal and biomass. Further research on this technology should explore steam as a gasification agent to enhance the syngas energy content and continuous solids feeding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000783173000003 Publication Date 2022-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187752 Serial 7136  
Permanent link to this record
 

 
Author Li, Y.; Quinn, B.K.; Gielis, J.; Li, Y.; Shi, P. url  doi
openurl 
  Title Evidence that supertriangles exist in nature from the vertical projections of Koelreuteria paniculata fruit Type A1 Journal article
  Year (down) 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue 1 Pages 23  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural radial symmetrical shapes (e.g., sea stars) follow the Gielis equation (GE) or its twin equation (TGE). A supertriangle (three triangles arranged around a central polygon) represents such a shape, but no study has tested whether natural shapes can be represented as/are supertriangles or whether the GE or TGE can describe their shape. We collected 100 pieces of Koelreuteria paniculata fruit, which have a supertriangular shape, extracted the boundary coordinates for their vertical projections, and then fitted them with the GE and TGE. The adjusted root mean square errors (RMSEadj) of the two equations were always less than 0.08, and >70% were less than 0.05. For 57/100 fruit projections, the GE had a lower RMSEadj than the TGE, although overall differences in the goodness of fit were non-significant. However, the TGE produces more symmetrical shapes than the GE as the two parameters controlling the extent of symmetry in it are approximately equal. This work demonstrates that natural supertriangles exist, validates the use of the GE and TGE to model their shapes, and suggests that different complex radially symmetrical shapes can be generated by the same equation, implying that different types of biological symmetry may result from the same biophysical mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000746030100001 Publication Date 2021-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7  
  Call Number UA @ admin @ c:irua:186453 Serial 7158  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Towards mainstream partial nitritation/anammox in four seasons : feasibility of bioaugmentation with stored summer sludge for winter anammox assistance Type A1 Journal article
  Year (down) 2022 Publication Bioresource technology Abbreviated Journal Bioresource Technol  
  Volume 347 Issue Pages 126619-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The strong effect of low temperatures on anammox challenges its mainstream application over the winter in temperate climates. Winter bioaugmentation with stored summer surplus sludge is a potential solution to guarantee sufficient nitrogen removal in winter. Firstly, the systems for which nitrogen removal deteriorated by the temperature decrease (25 °C → 20 °C) could be fully restored bioaugmenting with granules resp. flocs stored for 6 months at 118 resp. 220% of the initial biomass levels. Secondly, the reactivation of these stored sludges was tested in lower temperature systems (15.3 ± 0.4/10.4 ± 0.4 °C). Compared to the activity before storage, between 56% and 41% of the activity of granules was restored within one month, and 41%–32% for flocs. Additionally, 85–87% of granules and 50–53% of flocs were retained in the systems. After reactivation (15.3 ± 0.4/10.4 ± 0.4 °C), a more specialized community was formed (diversity decreased) with Candidatus Brocadia still dominant in terms of relative abundance. Capital and operating expenditures (CAPEX, OPEX) were negligible, representing only 0.19–0.36% of sewage treatment costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000781730900001 Publication Date 2021-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4  
  Call Number UA @ admin @ c:irua:185210 Serial 7220  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Xie, Y.; Timmer, M.J.; Peng, L.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Storage without nitrite or nitrate enables the long-term preservation of full-scale partial nitritation/anammox sludge Type A1 Journal article
  Year (down) 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 806 Issue 3 Pages 151330  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bioaugmentation with summer harvested sludge during winter could compensate for bacterial activity loss but requires that sludge activity can be restored after storage. This study assesses the effect of temperature and redox adjustment during the storage over 180 days of partial nitritation/anammox (PN/A) granular resp. floccular sludge from potato processing resp. sludge reject water treatment. Anoxic storage conditions (in the presence of nitrite or nitrate and the absence of oxygen) resulted in a loss of 80-100% of the anammox bacteria (AnAOB) activity capacity at 20 degrees C and 4 degrees C, while anaerobic conditions (without oxygen, nitrite, and nitrate) lost only 45-63%. Storage at 20 degrees C was more cost-effective compared to 4 degrees C, and this was confirmed in the sludge reactivation experiment (20 CC). Furthermore, AnAOB activity correlated negatively with the electrical conductivity level (R-2 > 0.85, p < 0.05), so strong salinity increases should be avoided. No significant differences were found in the activity capacity of aerobic ammonia-oxidizing bacteria (AerAOB) under different storage conditions (p > 0.1). The relative abundance of dominant AnAOB (Candidatus Brocadia) and AerAOB genera (Nitrosomonas) remained constant in both sludges. In conclusion, preserving PN/A biomass without cooling and nitrite or nitrate addition proved to be a cost-effective strategy. (C) 2021 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740216300013 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:185447 Serial 7213  
Permanent link to this record
 

 
Author Xie, Y.; Spiller, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title A bioreactor and nutrient balancing approach for the conversion of solid organic fertilizers to liquid nitrate-rich fertilizers : mineralization and nitrification performance complemented with economic aspects Type A1 Journal article
  Year (down) 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 806 Issue Pages 150415  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Due to the high water- and nutrient-use efficiency, hydroponic cultivation is increasingly vital in progressing to environment-friendly food production. To further alleviate the environmental impacts of synthetic fertilizer production, the use of recovered nutrients should be encouraged in horticulture and agriculture at large. Solid organic fertilizers can largely contribute to this, yet their physical and chemical nature impedes application in hydroponics. This study proposes a bioreactor for mineralization and nitrification followed by a supplementation step for limiting macronutrients to produce nitrate-based solutions from solid fertilizers, here based on a novel microbial fertilizer. Batch tests showed that aerobic conversions at 35 °C could realize a nitrate (NO₃−-N) production efficiency above 90% and a maximum rate of 59 mg N L−1 d−1. In the subsequent bioreactor test, nitrate production efficiencies were lower (44–51%), yet rates were higher (175–212 mg N L−1 d−1). Calcium and magnesium hydroxide were compared to control the bioreactor pH at 6.0 ± 0.2, while also providing macronutrients for plant production. A mass balance estimation to mimic the Hoagland nutrient solution showed that 92.7% of the NO₃−-N in the Ca(OH)₂ scenario could be organically sourced, while this was only 37.4% in the Mg(OH)₂ scenario. Besides, carbon dioxide (CO₂) generated in the bioreactor can be used for greenhouse carbon fertilization to save operational expenditure (OPEX). An estimation of the total OPEX showed that the production of a nutrient solution from solid organic fertilizers can be cost competitive compared to using commercially available liquid inorganic fertilizer solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000707640400021 Publication Date 2021-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:181787 Serial 7132  
Permanent link to this record
 

 
Author Li, Y.; Niklas, K.J.; Gielis, J.; Niinemets, Ü.; Schrader, J.; Wang, R.; Shi, P. url  doi
openurl 
  Title An elliptical blade is not a true ellipse, but a superellipse : evidence from two Michelia species Type A1 Journal article
  Year (down) 2022 Publication Journal of forestry research Abbreviated Journal J Forestry Res  
  Volume 33 Issue 4 Pages 1341-1348  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The shape of leaf laminae exhibits considerable diversity and complexity that reflects adaptations to environmental factors such as ambient light and precipitation as well as phyletic legacy. Many leaves appear to be elliptical which may represent a ‘default’ developmental condition. However, whether their geometry truly conforms to the ellipse equation (EE), i.e., (x/a)2 + (y/b)2 = 1, remains conjectural. One alternative is described by the superellipse equation (SE), a generalized version of EE, i.e., |x/a|n +|y/b|n = 1. To test the efficacy of EE versus SE to describe leaf geometry, the leaf shapes of two Michelia species (i.e., M. cavaleriei var. platypetala, and M. maudiae), were investigated using 60 leaves from each species. Analysis shows that the majority of leaves (118 out of 120) had adjusted root-mean-square errors of < 0.05 for the nonlinear fitting of SE to leaf geometry, i.e., the mean absolute deviation from the polar point to leaf marginal points was smaller than 5% of the radius of a hypothesized circle with its area equaling leaf area. The estimates of n for the two species were ˂ 2, indicating that all sampled leaves conformed to SE and not to EE. This study confirms the existence of SE in leaves, linking this to its potential functional advantages, particularly the possible influence of leaf shape on hydraulic conductance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695118600001 Publication Date 2021-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3  
  Call Number UA @ admin @ c:irua:180967 Serial 7152  
Permanent link to this record
 

 
Author Alloul, A.; Spanoghe, J.; Machado, D.; Vlaeminck, S.E. url  doi
openurl 
  Title Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels Type A1 Journal article
  Year (down) 2022 Publication Microbial biotechnology Abbreviated Journal  
  Volume 15 Issue 1 Pages 6-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing world population and living standards urgently necessitate the transition towards a sustainable food system. One solution is microbial protein, i.e. using microbial biomass as alternative protein source for human nutrition, particularly based on renewable electron and carbon sources that do not require arable land. Upcoming green electrification and carbon capture initiatives enable this, yielding new routes to H2, CO2 and CO2-derived compounds like methane, methanol, formic- and acetic acid. Aerobic hydrogenotrophs, methylotrophs, acetotrophs and microalgae are the usual suspects for nutritious and palatable biomass production on these compounds. Interestingly, these compounds are largely un(der)explored for purple non-sulfur bacteria, even though these microbes may be suitable for growing aerobically and phototrophically on these substrates. Currently, selecting the best strains, metabolisms and cultivation conditions for nutritious and palatable microbial food mainly starts from empirical growth experiments, and mostly does not stretch beyond bulk protein. We propose a more target-driven and efficient approach starting from the genome-embedded potential to tuning towards, for instance, essential amino- and fatty acids, vitamins, taste,... Genome-scale metabolic models combined with flux balance analysis will facilitate this, narrowing down experimental variations and enabling to get the most out of the 'best' combinations of strain and electron and carbon sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613868600001 Publication Date 2021-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.7  
  Call Number UA @ admin @ c:irua:176174 Serial 7225  
Permanent link to this record
 

 
Author Van Tendeloo, M. openurl 
  Title Resource-efficient nitrogen removal from sewage : kinetic, physical and chemical tools for mainstream partial nitritation/anammox Type Doctoral thesis
  Year (down) 2022 Publication Abbreviated Journal  
  Volume Issue Pages iv, 204 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adequate removal of pollutants from sewage is important to protect the environment and public health. Today, sewage treatment plants are operational in many parts of the world, and although the used technologies are effective in removing pollutants from wastewater, they are energy- and resource-intensive. Reshaping sewage treatment into a two-stage system, with separated organic carbon and nitrogen removal, facilitates the transformation towards energy-positive sewage treatment. This thesis will focus on resource-efficient nitrogen removal from sewage via partial nitritation/anammox (PN/A), with reduced organic carbon and oxygen consumption compared to conventional techniques. PN/A relies on the teamwork between two microbial groups to convert ammonium into nitrogen gas. Several other groups of microbes however can proliferate in the sludge, competing for substrate with the key players, lowering the nitrogen removal efficiency and increasing the energy demand. To obtain the desired microbial community, control tools should be applied to selectively promote the desired microbes while suppressing the unwanted competitors. In this thesis, multiple control tools were studied to establish a workable framework for successful implementation of PN/A in the main stream of a sewage treatment plant. These tools can be divided into three categories: i) kinetic tools, regulating substrate availability (e.g., oxygen availability control and residual ammonium concentration), ii) physical tools, revolving around sludge retention and selection (e.g., sludge age control and sludge aggregation form), and iii) chemical tools, exposing the sludge to stress conditions for which the unwanted microbes are vulnerable (e.g., sludge treatments with a single stressor such as free ammonia). The first research chapter focussed on oxygen availability control and single-stressor sludge treatments. The following two chapters covered the development of a novel multi-stressor concept combining substrate starvation and exposure to sulphide and free ammonia. In the final research chapter, the previously obtained knowledge was combined into a demonstration study on pilot-scale. The combination of these control tools was found effective in achieving nitrogen removal via PN/A, both on lab- and pilot-scale. Consequently, the obtained results in this thesis can catalyse the implementation of mainstream PN/A by providing a toolbox with multiple control tools and clever reactor design, thus advancing the concept of energy neutrality and resource efficiency in sewage treatment plants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:187665 Serial 7204  
Permanent link to this record
 

 
Author Spanoghe, J. isbn  openurl
  Title Purple bacteria cultivation on light, carbon dioxide and hydrogen gas : exploring and tuning the potential for microbial food production Type Doctoral thesis
  Year (down) 2022 Publication Abbreviated Journal  
  Volume Issue Pages vi, 207 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The human population is projected to grow to 9.7 billion by 2050, resulting in an estimated increase in protein demand of 50%. From an environmental perspective, the current and future demand of protein cannot be sustainably met as the conventional food production chain is severely altering biogeochemical cycles of nitrogen and phosphorus, biodiversity and land-use, with flows towards the biosphere and oceans that are exceeding the planetary boundaries. Microbial protein (protein derived from microorganisms) has been suggested as an excellent sustainable protein source, a fortiori when produced in a land- and fossil free manner. The photoautohydrogenotrophic cultivation (i.e. with light, CO2 and H2) of purple bacteria links up perfectly with the upcoming green electrification of industry (green H2) and the need for carbon capture and utilization. However, this metabolism represented a gap in literature, and thus this thesis aimed to establish a basic knowledge platform on its kinetic, stoichiometric and nutritional performance. At first, three originally photoheterotrophically enriched purple bacteria were studied of which Rhodobacter capsulatus reached the highest protein productivity of 0.16 g protein/L/d, which aligned well with the commonly-known photoautotrophic microalgae. Moreover, a full dietary essential amino acid match was found for human food, while the fatty acid content was dominated by the health-stimulating vaccenic acid (82-86%). Lastly, the achieved protein yield in photoautohydrogenotrophic purple bacteria was 2.3 times higher compared to hydrogen oxidizing bacteria, indicating a resource-efficient use of H2. Next, a photoautohydrogenotrophic enrichment of wastewater treatment microbiomes was performed in search for specialist species. While the isolates of this enrichment showed improvements in their performance during acclimation, the kinetic and nutritional performance of Rhodobacter capsulatus still excelled. Subsequently, the influence of nutrient limitations (C or N) and nitrogen gas fixation was studied on the nutritional tuning potential. Both the limitations as well as the N2 fixation resulted in the shift of the essential amino acid profiles. Additionally, the limitations significantly decreased the pigment content, while an increase in the storage of poly-P was seen in case of carbon limitations. The next major challenge was the production intensification in a photobioreactor of which the design was linked to minimizing both H2 and light limitations. The chosen bubble-column photobioreactor already resulted in a doubled biomass productivity. Finally, the remaining technological and non-technological challenges ahead for the production of a high-value, cost-efficient, environment-friendly microbial protein that complies with legislative requirements and appeals to future consumers were discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-741-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188233 Serial 7198  
Permanent link to this record
 

 
Author Gielis, J.; Shi, P.; Caratelli, D. openurl 
  Title Universal equations : a fresh perspective Type A1 Journal article
  Year (down) 2022 Publication Growth and Form Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A uniform description of natural shapes and phenomena is an important goal in science. Such description should check some basic principles, related to 1) the complexity of the model, 2) how well its fits real objects, phenomena and data, and 3) ia direct connection with optimization principles and the calculus of variations. In this article, we present nine principles, three for each group, and we compare some models with a claim to universality. It is also shown that Gielis Transformations and power laws have a common origin in conic sections  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189317 Serial 7224  
Permanent link to this record
 

 
Author Gielis, J.; Grigolia, R. url  openurl
  Title Lamé curves and Rvachev's R-functions Type A3 Journal article
  Year (down) 2022 Publication Sn – 1512-0066 Abbreviated Journal  
  Volume 37 Issue Pages 1-4  
  Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gielis transformations are a generalization of Lame curves. To combine domains, we can make use of the natural alliance between Lame's work and Rvachev's R-functions. A logical next step is the extension to n-valued logic dening dierent partitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189316 Serial 7178  
Permanent link to this record
 

 
Author De Tommasi, E.; Rogato, A.; Caratelli, D.; Mescia, L.; Gielis, J. url  isbn
openurl 
  Title Following the photons route : mathematical models describing the interaction of diatoms with light Type H1 Book chapter
  Year (down) 2022 Publication Abbreviated Journal  
  Volume Issue Pages 1-53  
  Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interaction of diatoms with sunlight is fundamental in order to deeply understand their role in terrestrial ecology and biogeochemistry, essentially due to their massive contribution to global primary production through photosynthesis and its e↵ect on carbon, oxygen and silicon cycles. Following the journey of light through natural waters, its propagation through the intricate frustule micro- and nano-structure and, finally, its fate inside the photosynthetic machinery of the living cell requires several mathematical and computational models in order to accurately describe all the involved phenomena taking place at di↵erent space scales and physical regimes. In this chapter, we review the main analytical models describing the underwater optical field, the essential numerical algorithms for the study of photonic properties of the diatom frustule seen as a natural metamaterial, as well as the principal models describing photon harvesting in diatom plastids and methods for complex EM propagation problems and wave propagation in dispersive materials with multiple relaxation times. These mathematical methods will be integrated in a unifying geometric perspective.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-119-74985-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:186731 Serial 7165  
Permanent link to this record
 

 
Author Borah, R. url  openurl
  Title Photoactive nanostructures : from single plasmonic nanoparticles to self-assembled films Type Doctoral thesis
  Year (down) 2022 Publication Abbreviated Journal  
  Volume Issue Pages xxxiv, 220 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photoactive nanoparticles and their light-driven applications have gained tremendous scientific attention towards remediation of the global environmental problems, meeting alternative energy demands, and other new technological discoveries. The research work presented in this dissertation includes a fundamental investigation of such nanoparticles to gain deeper insights that will ultimately benefit their application. In particular, the study of plasmonic metal nanoparticles and metal oxide nanoparticles for light driven applications is the major theme of this work. The investigation begins with isolated plasmonic Au and Ag nanoparticles, followed by a natural extension to nanoparticle clusters, and then further to nanoparticle films. Next, the application of such plasmonic nanoparticle films for gaseous phase sensing of volatile organic compounds is explored. Finally, the film formation of metal-oxide nanoparticles by self-assembly is investigated for the fabrication of photoactive functional interfaces. The fundamental theoretical investigation of the isolated plasmonic nanoparticles encompasses alloy and core-shell nanostructures of Au-Ag bimetallic compositions. First, the optical properties of bimetallic alloy and core-shell nanoparticles are compared for different structures such as nanospheres, nanotriangles and nanorods. Based on the optical properties, the photothermal properties of these nanostructures are also evaluated for relevant light-driven applications. Further, to bridge the gap between the theoretical and experimental optical properties of colloidal plasmonic nanoparticles, the effect of different statistical parameters pertaining to the particle size distribution is studied. Going from isolated nanoparticles to nanoparticle clusters, the changes in the optical properties of plasmonic nanoparticles when they form finite clusters is investigated. A strong effect of clustering on the absorption intensities of the nanoparticles and hence, on the photothermal properties is found. Next, for the study of plasmonic nanoparticle infinite arrays, Au and Ag nanoparticles films are experimentally obtained by the self-assembly at the air-ethylene glycol interface. Upon further validation of the computational models with the experimental optical properties of these films, the near-field and far-field optical response of the plasmonic nanoparticle arrays is investigated. An application of the self-assembled Au nanoparticle film is then demonstrated in the sensing of volatile organic compounds (VOCs). Finally, the focus is shifted from plasmonic nanoparticles to metal oxide nanoparticles for their self-assembly at the air-water interface to obtain self-assembled films. For this, the hydrophobic functionalization of four metal oxides nanoparticles namely, TiO2, ZnO, WO3 and CuO is investigated. The insights from this work is useful for the design and fabrication of functional nanoparticles and interfaces for light driven applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189155 Serial 7188  
Permanent link to this record
 

 
Author Bollen, E.; Pagan, B.R.; Kuijpers, B.; Van Hoey, S.; Desmet, N.; Hendrix, R.; Dams, J.; Seuntjens, P. url  doi
openurl 
  Title A database system for querying of river networks : facilitating monitoring and prediction applications Type A1 Journal article
  Year (down) 2021 Publication Water Science And Technology-Water Supply Abbreviated Journal Water Sci Tech-W Sup  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing availability of real-time in situ measurements and remote sensing observations have the potential to contribute to the optimization of water resources management. Global challenges such as climate change, intensive agriculture and urbanization put a high pressure on our water resources. Due to recent innovations in measuring both water quantity and quality, river systems can now be monitored in real time at an unprecedented spatial and temporal scale. To interpret the sensor measurements and remote sensing observations additional data for example on: the location of the measurement, upstream and downstream catchment characteristics, horizontal ellipsis are required. In this paper, we present a data management system to support flow-path related functionality for decision making and prediction modelling. Adding meta data sets and facilitating (near) real-time processing of sensor data questions are key concepts for the systems. The potential of the database framework for hydrological applications is demonstrated using different applications for the river system of Flanders. In one, the database framework is used to simulate the daily discharge for each segment within a catchment using a simple data-driven approach. The presented system is useful for numerous applications including pollution tracking, alerting and inter-sensor validation in river systems, or related networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000729755100001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1606-9749 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.573 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.573  
  Call Number UA @ admin @ c:irua:184814 Serial 7387  
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Cayetano, F.C.; Van Schaeren, R.; Lenaerts, S. url  doi
openurl 
  Title Finding the optimal fatty acid composition for biodiesel improving the emissions of a one-cylinder diesel generator Type A1 Journal article
  Year (down) 2021 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 13 Issue 21 Pages 12089  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrogen oxides (NOx) and particulate matter (PM) currently are the main pollutants emitted by diesel engines. While there is a start in using hybrid and electric cars, ships will still be fueled by mineral oil products. In the quest to achieve zero-pollution and carbon-free shipping, alternative forms of energy carriers must be found to replace the commonly used mineral oil products. One of the possible alternative fuels is biodiesel. This paper explores the optimization of the composition of biodiesel in order to reduce the concentration of particulate matter and NOx in exhaust gases of a one-cylinder diesel generator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000719122800001 Publication Date 2021-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.789 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.789  
  Call Number UA @ admin @ c:irua:184041 Serial 7969  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year (down) 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.817 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S.W.; Ninakanti, R.; Emin, S. url  doi
openurl 
  Title Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells Type A1 Journal article
  Year (down) 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 10 Pages 10618-10626  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. Here, we exploited different phases of iron phosphide as CEs in DSSCs with an I–/I3–-based electrolyte. Solvothermal synthesis using a triphenylphosphine precursor as a phosphorus source allows to grow a Fe2P phase at 300 °C and a FeP phase at 350 °C. The obtained iron phosphide catalysts were coated on fluorine-doped tin oxide substrates and heat-treated at 450 °C under an inert gas atmosphere. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96 ± 0.06%, which is comparable to the device assembled with a platinum (Pt) CE. DFT calculations support the experimental observations and explain the fundamental origin behind the improved performance of Fe2P compared to FeP. These results indicate that the Fe2P catalyst exhibits excellent performance along with desired stability to be deployed as an efficient Pt-free alternative in DSSCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711236300022 Publication Date 2021-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181953 Serial 7853  
Permanent link to this record
 

 
Author Dingenen, F.; Blommaerts, N.; Van Hal, M.; Borah, R.; Arenas-Esteban, D.; Lenaerts, S.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO2: Towards Stable Solar Active Photocatalysts Type A1 Journal article
  Year (down) 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 10 Pages 2624  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000712759800001 Publication Date 2021-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access OpenAccess  
  Notes Research was funded by Research Foundation—Flanders (FWO), FN 700300001— Aspirant F. Dingenen. Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:183281 Serial 6812  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year (down) 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Gonzalez-Quiroga, A.; Shtern, V.; Perreault, P.; Vandewalle, L.; Marin, G.B.; Van Geem, K.M. pdf  doi
openurl 
  Title Intensifying mass and heat transfer using a high-g stator-rotor vortex chamber Type A1 Journal article
  Year (down) 2021 Publication Chemical Engineering And Processing Abbreviated Journal Chem Eng Process  
  Volume 169 Issue Pages 108638-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Vortex reactors take advantage of the synergy between enhanced heat and mass transfer rates and multifunctional phenomena at different temporal and spatial scales. Proof-of-concept experiments with our novel and innovative STAtor-Rotor VOrtex Chamber (STARVOC) confirm its advantageous features for the sustainable production of chemicals and fuels. STARVOC is a high-g contactor that uses carrier flow (gas or liquid) tangential injection to drive a rotor attached to low-friction bearings. The vortex chamber inside the rotor contains a secondary phase or phases, such as a solids bed, a liquid layer, or a suspension. Carrier fluid passes through the perforated rotor wall and contacts a densely and uniformly distributed secondary phase with enhanced slip velocities. Experiments focused on pressure profiles, rotor angular velocity, and solids azimuthal velocity. With air as the carrier fluid and different solid particle beds as the secondary phase, STARVOC reached bed azimuthal velocities up to four-fold compared to those reached in Gas-Solid Vortex Units with fully static geometry. These results show its potential to improve interfacial heat and mass transfer rates and take advantage of flow energy and angular momentum. Due to its process intensification capabilities, STARVOC is a promising alternative for the state-of-the-art chemical industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704946900008 Publication Date 2021-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.234 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.234  
  Call Number UA @ admin @ c:irua:181062 Serial 8111  
Permanent link to this record
 

 
Author Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. url  doi
openurl 
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year (down) 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 9 Issue Pages 733753  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697897900001 Publication Date 2021-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180591 Serial 7985  
Permanent link to this record
 

 
Author Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R. pdf  url
doi  openurl
  Title Towards harmonization of water quality management : a comparison of chemical drinking water and surface water quality standards around the globe Type A1 Journal article
  Year (down) 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 298 Issue Pages 113447-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract Water quality standards (WQS) set the legal definition for safe and desirable water. WQS impose regulatory concentration limits to act as a jurisdiction-specific legislative risk-management tool. Despite its importance in shaping a universal definition of safe, clean water, little information exists with respect to (dis)similarity of chemical WQS worldwide. Therefore, this paper compares chemical WQS for drinking and surface water matrices in eight jurisdictions representing a global geographic distribution: Australia, Brazil, Canada, China, the European Union, the region of Flanders in Belgium, the United States of America, and South Africa. The World Health Organization's list is used as a reference for drinking water standards. Sørensen–Dice indices (SDI) showed little qualitative similarity in the compounds that are regulated in drinking water (median SDI = 40%) and surface water (median SDI = 33%), indicating that the heterogeneity within a matrix is substantial at the level of the standard. Quantitative similarity for matching standards was higher than the qualitative per Kendall correlation (median = 0.73 and 0.58 for drinking water and surface water respectively), yet variance observed within standards remained inexplicably high for organic compounds. Variations in WQS were more pronounced for organic compounds. Most differences cannot be easily explained from a toxicological or risk-based point-of-view. Historical development, ease of measurement, and (toxicological) knowledge gaps on the risk of a vast number of organic compounds are theorized to be the drivers. Therefore, this study argues for a more tailored, risk-based approach in which standards incorporated into water safety plans are dynamically set for compounds that are persistent and could pose a risk for human health and/or aquatic ecosystems. Global variations in WQS should therefore not necessarily be avoided but rather globally harmonized with enough flexibility to ensure a global, up-to-date definition of safe and desirable water everywhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000700577400005 Publication Date 2021-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180765 Serial 8681  
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G. url  doi
openurl 
  Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
  Year (down) 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 17 Pages 6501-6514  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000683056500001 Publication Date 2021-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:180511 Serial 7558  
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S. doi  openurl
  Title The apeirogon and dual numbers Type A1 Journal article
  Year (down) 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 2 Pages 157-160  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The richness, diversity, connection, depth and pleasure of studying symmetry continue to open doors. Here we report a connection between Coxeter's Apeirogon and the geometry associated with pictorial space, parabolic rotation and dual numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670122100011 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179759 Serial 8652  
Permanent link to this record
 

 
Author Chapman, D.; Gielis, J. doi  openurl
  Title Gielis transformations for the audiovisual geometry database Type A1 Journal article
  Year (down) 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 2 Pages 177-180  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This publication introduces the audiovisual geometry database with Gielis transformations as initial records for a prototype of the database. A concise overview is given of the rationale behind the database and studying wave phenomena with Gielis transformations. First results on a form of timbral polyphony observed in Gielis curves and future work are briefly discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180965 Serial 8004  
Permanent link to this record
 

 
Author Firmansyah, I.; Carsjens, G.J.; de Ruijter, F.J.; Zeeman, G.; Spiller, M. url  doi
openurl 
  Title An integrated assessment of environmental, economic, social and technological parameters of source separated and conventional sanitation concepts : a contribution to sustainability analysis Type A1 Journal article
  Year (down) 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 295 Issue Pages 113131  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery and reuse from domestic wastewater has become an important subject for the current development of sanitation technologies and infrastructures. Different technologies are available and combined into sanitation concepts, with different performances. This study provides a methodological approach to evaluate the sustainability of these sanitation concepts with focus on resource recovery and reuse. St. Eustatius, a small tropical island in the Caribbean, was used as a case study for the evaluation. Three source separation-communityon-site and two combined sewerage island-scale concepts were selected and compared in terms of environmental (net energy use, nutrient recovery/reuse, BOD/COD, pathogens, and GHG emission, land use), economic (CAPEX and OPEX), social cultural (acceptance, required competences and education), and technological (flexibility/ adaptability, reliability/continuity of service) indicators. The best performing concept, is the application of Upflow Anaerobic Sludge Bed (UASB) and Trickling Filter (TF) at island level for combined domestic wastewater treatment with subsequent reuse in agriculture. Its overall average normalised score across the four categories (i. e., average of average per category) is about 15% (0.85) higher than the values of the remaining systems and with a score of 0.73 (conventional activated sludge – centralised level), 0.77 (UASB-septic tank (ST)), 0.76 (UASB-TF – community level), and 0.75 (ST – household level). The higher score of the UASB-TF at community level is mainly due to much better performance in the environmental and economic categories. In conclusion, the case study provides a methodological approach that can support urban planning and decision-making in selecting more sustainable sanitation concepts, allowing resource recovery and reuse in small island context or in other contexts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000681105800003 Publication Date 2021-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180488 Serial 7437  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: