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of SE to leaf geometry, i.e., the mean absolute deviation 
from the polar point to leaf marginal points was smaller 
than 5% of the radius of a hypothesized circle with its area 
equaling leaf area. The estimates of n for the two species 
were < 2, indicating that all sampled leaves conformed to 
SE and not to EE. This study confirms the existence of SE 
in leaves, linking this to its potential functional advantages, 
particularly the possible influence of leaf shape on hydraulic 
conductance.
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Introduction

In geometry, the ellipse is described by Eq. 1 (denoted 
henceforth as EE for convenience):

where x and y represent the abscissa and ordinate of the 
ellipse curve in the Euclidean plane, and a and b (≤ a) 

(1)(x∕a)2 + (y∕b)2 = 1

Abstract  The shape of leaf laminae exhibits considerable 
diversity and complexity that reflects adaptations to envi-
ronmental factors such as ambient light and precipitation 
as well as phyletic legacy. Many leaves appear to be ellipti-
cal which may represent a ‘default’ developmental condi-
tion. However, whether their geometry truly conforms to 
the ellipse equation (EE), i.e., (x/a)2 + (y/b)2 = 1, remains 
conjectural. One alternative is described by the superellipse 
equation (SE), a generalized version of EE, i.e., |x/a|n +|y/
b|n = 1. To test the efficacy of EE versus SE to describe leaf 
geometry, the leaf shapes of two Michelia species (i.e., M. 
cavaleriei var. platypetala, and M. maudiae), were inves-
tigated using 60 leaves from each species. Analysis shows 
that the majority of leaves (118 out of 120) had adjusted 
root-mean-square errors of < 0.05 for the nonlinear fitting 
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represent the major and minor semi-axes, respectively. When 
a = b, Eq. 1 describes a circle. Lamé (1818) proposed a more 
general equation that is referred to as the superellipse equa-
tion (SE):

where n is a positive real number that can be an integer 
or a non-integer (Gielis 2003a). Equation 2 uses an abso-
lute value for both x/a and for y/b, thereby making its n 
power meaningful for a negative value of x or y. Although 
SE has been applied to some artificial landscape and picture 
designs (e.g., a running track of an athletic field, and the 
profile of the new logo of Xiaomi, a Chinese multinational 
electronics company), there are still very few examples of 
the SE confirmed for natural geometries. Although many 
natural geometries are considered to be likely superellip-
ses (Gielis 2003a), actual tests have not been performed, 
in part because of the limitations of data-fitting technolo-
gies. Shi et al. (2015a) developed a practical technology for 
SE data-fitting, and fitted empirically determined tree-ring 
cross sections using SE. Their analysis confirmed that the 
cross sections of white spruce, Picea glauca (Moench) Voss, 
conformed to an SE, with estimates of n ranging from 1.7 
to 2.3. Huang et al. (2020) proposed an SE with a defor-
mation parameter that described the cross sections of the 
stems of the square bamboo, Chimonobambusa utilis (Keng) 
Keng. The estimates of n ranged from 1.5 to 3.0 for ca. 750 
cross sections through 30 culms of C. utilis. They also found 
that the outer rings of those cross sections had two types of 
superellipses: (1) a hyperellipse with n > 2 and, (2) a hypoel-
lipse with 1 < n < 2. In these two studies, none of the cross 
sections were shown to be elliptical because the estimated 
n deviated significantly from 2. These results highlight that 
some important natural geometries, appearing to be ellipses, 
are in fact superellipses.

The aforementioned biological studies have focused on 
the cross sections of stems. Thus, the question remains as 
to whether leaves that appear to be elliptical are in fact 
elliptical or are perhaps superelliptical. Leaves are the 
photosynthetic organs of the majority of vascular plants. 
Their diverse geometries, shapes, and sizes reflect adapta-
tions to mechanical, hydraulic, and other factors related 
to photosynthesis (Niklas 1992, 1999). For example, the 
venation patterns of the leaf lamina are correlated with leaf 
shape and geometry that collectively affect the sensitivity 
of hydraulic conductance to damage (Runions et al. 2005; 
Scoffoni et al. 2011), which is intimately associated with 
photosynthetic efficiency (Brodribb et al. 2007). Thus, leaf 
shape plays a significant role in plant growth and survival. 
“Elliptical” leaf shapes commonly exist in most floras. 
However, no relevant studies have been carried out to test 
whether these geometries truly conform to the EE or to the 

(2)|x∕a|n + |y∕b|n = 1

SE equation. Considering that leaf geometry reflects the 
spatial distribution patterns of minor leaf veins (Niinem-
ets et al. 2007; Sack and Scoffoni 2013; Carvalho et al. 
2018), the analysis of leaf geometry in the context of EE 
vs. SE equivocality can improve our understanding of leaf 
hydraulic conductance and adaptive evolution.

In this study, the leaves of two Michelia (Magnoliaceae) 
species, which appear to have elliptical geometries, were 
used to test and compare the validities of EE and SE in 
describing leaf geometry.

Materials and methods

Leaf sampling

Sixty mature, undamaged leaves were randomly collected 
from the middle canopies of Michelia cavaleriei var. platy-
petala (denoted henceforth as MCP) and M. maudiae 
(denoted henceforth as MM) growing in the Nanjing For-
estry University Campus (118°48′30′′ E, 32°4′49′′ N) on 
September 4, 2020 and September 13, 2020, respectively. 
The two species had been introduced from southern China 
where the species are naturally distributed. Four adjacent 
trees were selected for leaf sampling. Diameters at breast 
height ranged from 9.5 to 12.5 cm and heights from 5 to 
6 m. The light conditions were comparatively high because 
the four trees were growing along a path that allows most 
parts of the crowns open to the sky. The ranges in diameters 
and heights were considered unimportant because there is 
no evidence that leaf geometry is affected or influenced by 
tree age nor is there evidence for any significant differences 
between shade and sun leaves for Michelia with entire, non-
serrated leaves without lobes. Therefore, leaf samples were 
taken from the trees without distinguishing between shade 
and sun leaves.

Leaves of the Michelia species are well-suited for deter-
mining whether their elliptical geometries can be described 
by SE because they have been described as being elliptical. 
The laminae of these leaves are slightly axis-asymmetric 
with respect to the mid-vein, i.e., the lamina areas on each 
side of the mid-vein are unequal (Fig. 1A and B).

Data analysis

Leaf roundness index (RI) (Niinemets 1998; Peppe et al. 
2011) and leaf ellipticalness index (EI) (Li et al. 2021) were 
used to measure the extent to which lamina geometry devi-
ated from a circle or an ellipse using Eqs. 3 and 4:

(3)RI =
4�A

P2
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where A is lamina area, P is lamina perimeter, L is lamina 
length, and W is lamina width. It is necessary to point out 
that the use of EI is limited to oval and elliptical leaves with 
values ranging from 0 to 1 and should not be used to assess 
leaves with values > 1 (Li et al. 2021). The numerical values 
of A, P, L and W were obtained from the planar coordinates 
of lamina edges using the R script developed by Su et al. 
(2019).

In order to reduce the parameter-effects curvature in 
non-linear fitting, the re-parameterized version of SE 
(i.e., Eq. 2) was used in the polar coordinate system (Rat-
kowsky 1990; Shi et al. 2015a; Huang et al. 2020; Tian 
et al. 2020):

where r is the polar radius, φ is the polar angle, x = rcosφ, 
y = rsinφ, and k = b/a, where a and b are the major and minor 
semi-axes, respectively. In the range of 0 to 2π, the residual 
sum of squares (RSS) was minimized between the actual and 
predicted polar radii of SE to estimate the parameters of SE. 
It should be noted that the coordinates of the polar point and 

(4)EI =
A

�∕4LW

(5)r = a
(
|cosφ|n + |sinφ∕k|n

)−1∕n

the angle between the scanned major axis and the x-axis are 
unknown and must be estimated computationally. In addi-
tion to the three leaf-shape parameters a, k and n, there are 
three location parameters, i.e., the x- and y-coordinates of 
the polar point, and the rotation angle (for details see Shi 
et al. 2015a). In order to measure the goodness of fit of the 
nonlinear regression, the adjusted root-mean-square error 
(RMSEadj) was used (Wei et al. 2019; Huang et al. 2020; 
Shi et al. 2020):

where N represents the sample size, i.e., the number of data 
points on a leaf edge. The RI, EI, RMSEadj and n values 
between the two species were compared using the Tukey’s 
honestly significant difference (HSD; Hsu 1996). Note that, 
if leaf geometry conforms to the SE, leaf A is theoretically 
proportional to the product of leaf L and W (Huang et al. 
2020; Weisstein 2021):

(6)RMSEadj =

√
RSS∕N
√
A∕π

(7)A =
4−1∕n

√
π Γ(1 + 1∕n)

Γ(0.5 + 1∕n)
LW

Fig. 1   Examples of the leaves 
of two Michelia species and 
predicted leaf geometries based 
on the superellipse equation: 
M. cavaleriei var. platypetala 
(A and C); M. maudiae (B and 
D). In panels C and D, the gray 
curves represent the actual 
(scanned) geometry, whereas 
the red curves represent the 
predicted geometry using the 
superellipse equation; the black 
dashed line represents the major 
axis
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where Γ(·) is the gamma function. Thus, the following equa-
tion is obtained

where, c is a constant to be fitted. Note that Eq. 8 is referred 
to as the Montgomery equation, and the proportionality coef-
ficient is the Montgomery parameter (Montgomery 1911; 
Shi et al. 2019, 2021; Yu et al. 2020; Schrader et al. 2021).

In order to stabilize the variance of leaf A in a linear 
regression, both sides of Eq. 8 were log-transformed:

where d = ln(c). Ordinary least-squares regression protocols 
were used to fit Eq. 9 with a slope equal to one. The boot-
strap percentile method was used to compare whether there 
was a significant difference in the estimated Montgomery 
parameters between the two species (Efron and Tibshirani 
1993; Sandhu et al. 2011). Finally, if leaf geometry follows 
SE, it is possible to compare the intercept of Eq. 9 with the 
natural logarithm of the proportionality coefficient of Eq. 7 
calculated from the median of the estimated n values for 
individual leaves (nm), i.e.,

(8)A = cLW

(9)ln (A) = d + ln (LW)

All data analyses were carried out in R (v.4.0.2; R Core 
Team 2020).

Results

The leaf geometry of the two Michelia species deviated 
from that of a circle and tended toward an ellipse. The leaf 
roundness index (RI) and ellipticalness index (EI) of MCP 
were significantly smaller than those of MM (Fig. 2A, B). 
For both species, EI was greater than RI, indicating that the 
two leaf geometries were more likely to be ellipses (with 
n ≠ 2 in the light of the inequality of leaf length and width) 
than circles. Thus, both leaf geometries could be evaluated 
to determine whether the superellipse equation (SE) or the 
ellipse equation (EE) provided a better fit.

Subsequent analyses indicated that SE described the 
leaf geometry of both species. The adjusted RMSE val-
ues for the majority of leaves (118/120) were smaller than 
0.05 (Fig. 2C), indicating that the mean absolute deviation 
between the actual and the predicted radii did not exceed 
5% of the radius of the hypothesized circle whose area was 

(10)d̂ ≈ ln

�
4−1∕nm

√
π Γ

�
1 + 1∕nm

�

Γ
�
0.5 + 1∕nm

�

�

Fig. 2   Comparisons of the 
leaf roundness indices A leaf 
ellipticalness indices B adjusted 
root-mean-square errors C and 
estimates of n D between the 
two Michelia species; the letters 
indicate the significance of the 
difference, and a and b represent 
larger to lower mean; the 
percentage numbers represent 
the coefficients of variation 
for the two species; MCP: M. 
cavaleriei var. platypetala; 
MM: M. maudiae 
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equal to leaf area. All estimates of n were smaller than 2, 
confirming that the leaf geometries of MCP and MM con-
formed to the predictions of SE rather than EE and that the 
leaf geometries were hypoellipses. Figure 1C, D show the 
fitted hypoellipse curves for two representative leaves.

The fitted results of the Montgomery equation to the 
data of ln (A) vs. ln (LW) further confirmed the applicabil-
ity of SE. The calculated intercept based on the median 
of the estimated n values using Eq. 10 was approximately 
equal to that based on the linear regression for both spe-
cies as well as the pooled data for the two species (Fig. 3). 
Although the RMSE2 value based on the median of the 
estimated n values was slightly greater than that of RMSE1 
based on the linear regression, all RMSE2 values were 

numerically smaller than 0.05 (Fig.  3). The estimated 
Montgomery parameter of MM was significantly greater 
than that of MCP based on the upper limit of the 95% con-
fidence intervals of the difference of bootstrap replications 
between MCP and MM, which was smaller than 0 (Fig. 4).

Discussion

The objective of this research was to determine whether the 
leaf geometries of two Michelia species could be regarded 
as ellipses or superellipses with n ≠ 2, using the conformity 
of the data to compare the ellipse equation (EE) and the 
superellipse equation (SE). The analyses show that the SE, 
which can only produce centrosymmetric geometries, cat-
egorically describes the leaf geometries of both species to a 
better degree than the EE.

Prior studies of the geometries of tree rings (best 
described as cross sections through tree growth layers) of 
conifers and the stems of bamboo indicate that n-values 
range between > 2 and < 2 (Shi et al. 2015a; Huang et al. 
2020), i.e., the cross-sectional geometries of these stems are 
hyperellipses or hypoellipses, and not ellipses. In this study, 
our data reveal that n < 2 for both Michelia species. Thus, the 
leaf geometries of these two species are specifically hypoel-
lipses. This result should not be taken as evidence that all 
“elliptical” leaves are hypoellipses. This aspect of leaf mor-
phometry requires extensive additional research on a species 
by species basis.

In fact, the geometries of angiosperm leaves are 
extremely diverse, which prompted Gielis (2003b) to put 

Fig. 3   Fitted results of the Montgomery equation to the data from 
the two species for leaf area (A) vs. the product of leaf length (L) and 
width (W) on a log–log scale. RMSE1 is the root-mean-square error 
of the linear regression; RMSE2 is the root-mean-square error based 
on the median of the estimated n values using Eq. 10; r is the correla-
tion coefficient of the regression of A vs. LW on a log–log scale; N 
is sample size; exp ( ̂d ) is the estimated Montgomery parameter; the 

95% CIs represent the 95% confidence intervals of the Montgomery 
parameter. Panels (A-B) show the fitted results of the two species, 
and panel (C) shows the combined data from the two species; in each 
panel, small open circles represent the data of A vs. LW on a log–log 
scale, and the red regression line with slope = 1 is based on ordinary 
least-squares regression

Fig. 4   Comparison of the estimated Montgomery parameters for the 
two Michelia species (MCP vs. MM). The mean Montgomery param-
eter of MM is significantly greater than that of MCP (indicated by 
a > b). The boxplots represent the 4000 bootstrap replications for each 
dataset. MCP: M. cavaleriei var. platypetala; MM: M. maudiae 
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forth a generalized Lamé curve with an equation in the polar 
coordinate system:

where m is a positive integer determining the number of 
angles of the curve in the range of 0 to 2π, and n1, n2, and n3 

(11)r =

(||||
1

a
cos

(
m

4
φ
)||||

n2

+
||||
1

b
sin

(
m

4
φ
)||||

n3
)−1∕n1

are constants to be fitted. Shi et al. (2015b, 2018) proposed 
a simplified version of the original Gielis equation:

which describes the leaf geometries of bamboo species (Shi 
et al. 2015b, 2018; Lin et al. 2016). Here, another simplified 
Gielis equation is proposed:

(12)r =

(||||
1

a
cos

(
1

4
φ
)||||

+
||||
1

a
sin

(
1

4
φ
)||||

)−1∕n

Fig. 5   Relationships among 
the polar radius (r) and polar 
angle (φ) and simulated leaf 
geometries. A Eq. 13 with a = 2, 
b = 0.2 and n = 1.2; B the leaf 
geometry generated by Eq. 13 
without a deformation param-
eter; C the leaf geometry gener-
ated by Eq. 13 with a deforma-
tion parameter = 0.7; D Eq. 15 
with α = 1.5, β = 2.5 and γ = 2; 
E the leaf geometry generated 
by Eq. 15 without a deformation 
parameter; F the leaf geometry 
generated by Eq. 15 with a 
deformation parameter = 0.7. 
The deformation parameter 
is the same as that defined by 
Huang et al. (2020)
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which is a special case of the original Gielis equation 
(Eq. 11) when m = 2 and n1 = n2 = n3. Figure 5A − C pro-
vide an example of this curve shape. Equation 13 can gen-
erate ovate geometries similar to those generated by Eq. 12 
and it is more flexible owing to an additional parameter. 
Equation 11 was proposed originally as a transformation on 
classical planar curves such as circles, ellipses, rectangles, 
superellipses and logarithmic spirals. It has a form similar 
to that of Eq. 13. By replacing m = 2 with m = 5, Eq. 13 has 
been used as a transformation on Grandi curves to model 
flowers (Gielis et al. 2020). However, it still cannot generate 
the slight asymmetry between the leaf base and leaf tip that 
is evident in the leaves of the two species used in this study 
(and that is seen across leaves of many other species). This 
aspect of Eq. 13 is possibly a consequence of the intrin-
sic limitations of trigonometric functions. Thus, it is more 
appropriate to consider the following more general function:

where f(·) is a parametric function. This equation can pro-
duce any arbitrary curve determined by the f function. 
Therefore, any bilateral symmetric leaf geometry can be 
theoretically parameterized and described, provided that a 
suitable f function can be isolated to depict one-side of each 
leaf lamina (from 0 to π). To this end, we propose an expo-
nential parabolic function:

(13)r =

(||||
1

a
cos

(
1

2
φ
)||||

n

+
||||
1

b
sin

(
1

2
φ
)||||

n
)−1∕n

(14)r =

{
f (φ) 0 ≤ φ < π

f (2π − φ) π ≤ φ < 2π

where α, β and γ are constants to be fitted. Figure 5D − F 
provide an example of the utility of Eq. 15, and show that 
this equation can produce a slight acropetal to basipetal 
asymmetry. The deformation matrix proposed by Huang 
et al. (2020) can be used to explain such a deviation from a 
perfect bilateral symmetry along the leaf length axis. Fig-
ure 5C, F provide two deformed examples. Figure 6 illus-
trates the validity of this approach in describing the actual 
leaf geometry of M. cavaleriei var. platypetala. However, 
it is premature to suggest that Eq. 15 is better than Eq. 11. 
What can be asserted is that Eq. 15 has the potential to be 
significantly useful in describing leaf geometry.

Importantly, Eqs. 12 and 13 exceed the morphometric scope 
of SE, and each of these equations can be regarded as a special 
case of the original Gielis equation (i.e., Eq. 11). Equation 14 
is a generalized form of Eqs. 11 and 15. Clearly however, 
extensive research is required to test the suitability of these 
equations to describe organic forms such as the geometries of 
leaves and stem cross sections.

Conclusions

The geometries of M. cavaleriei var. platypetala and M. 
maudiae leaves are adequately described by the superel-
lipse equation (SE), although there remains some degree 
of deviation from the axis-asymmetry between the leaf 
base and the leaf tip. The adjusted root-mean-square errors 
(between the actual and predicted polar radii) for most 
leaves (118 out of 120) are smaller than 0.05, indicating 
that the mean absolute deviation is less than 5% of the 
radius of a circle whose area is hypothesized to be equal 
to leaf area. The estimates of n, an important parameter 
of the SE, range from 1.4 to 1.9 and therefore are smaller 
than 2.0 for each of the two species. This result indicates 
that leaf geometries of both species are hypoellipses. This 
study is the first to show that leaf geometry can be ade-
quately described using the superellipse equation. Con-
sequently, the description of leaves as “elliptical” may be 
in error in many cases (some may be superelliptical in 
geometry). This allegation requires future research into 
the morphometric description of leaf geometries, and may 
contribute to the development of models of leaf develop-
ment and to the evolution of important functional traits 
relating geometry to hydraulic and mechanical aspects 
affecting photosynthesis.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

(15)r =

{
γ exp

(
−αφ − βφ2

)
0 ≤ φ < π

γ exp
[
−α(2π − φ) − β(2π − φ)2

]
π ≤ φ < 2π

Fig. 6   A representative leaf of Michelia cavaleriei var. platypetala 
and the predicted leaf geometry based on Eq.  15. The gray curve 
represents the actual scanned leaf, whereas the red curve represents 
the predicted leaf geometry using Eq. 15; the black dashed line repre-
sents the major axis. The raw planar coordinates of the leaf edge can 
be found in the online supplementary Table S1 corresponding to the 
code 1–30. The adjusted RMSE equals 0.0144, which means that the 
average absolute deviation of the curve fitting is less than 1.5% of the 
radius of a circle assuming that its area is equal to the leaf area.
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