toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Frota, D.A.; Chaves, A.; Ferreira, W.P.; Farias, G.A.; Milošević, M.V. doi  openurl
  Title Superconductor-ferromagnet bilayer under external drive : the role of vortex-antivortex matter Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 093912  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using advanced Ginzburg-Landau simulations, we study the superconducting state of a thin superconducting film under a ferromagnetic layer, separated by an insulating oxide, in applied external magnetic field and electric current. The taken uniaxial ferromagnet is organized into a series of parallel domains with alternating polarization of out-of-plane magnetization, sufficiently strong to induce vortex-antivortex pairs in the underlying superconductor in absence of other magnetic field. We show the organization of such vortex-antivortex matter into rich configurations, some of which are not matching the periodicity of the ferromagnetic film. The variety of possible configurations is enhanced by applied homogeneous magnetic field, where additional vortices in the superconductor may lower the energy of the system by either annihilating the present antivortices under negative ferromagnetic domains or by lowering their own energy after positioning under positive ferromagnetic domains. As a consequence, both the vortex-antivortex reordering in increasing external field and the evolution of the energy of the system are highly nontrivial. Finally, we reveal the very interesting effects of applied dc electric current on the vortex-antivortex configurations, since resulting Lorentzian force has opposite direction for vortices and antivortices, while direction of the applied current with respect to ferromagnetic domains is of crucial importance for the interaction of the applied and the Meissner current, as well as the consequent vortex-antivortex dynamics-both of which are reflected in the anisotropic critical current of the system. (C) 2016 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000372351900018 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access  
  Notes ; This work was supported by the Brazilian agencies CNPq, PRONEX/FUNCAP, and CAPES, and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:133200 Serial 4255  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G. pdf  url
doi  openurl
  Title Uniform strain in heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2016 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 37 Issue 37 Pages 337-340  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Strain can strongly impact the performance of III-V tunnel field-effect transistors (TFETs). However, previous studies on homostructure TFETs have found an increase in ON-current to be accompanied with a degradation of subthreshold swing. We perform 30-band quantum mechanical simulations of staggered heterostructure p-n-i-n TFETs submitted to uniaxial and biaxial uniform stress and find the origin of the subthreshold degradation to be a reduction of the density of states in the strained case. We apply an alternative configuration including a lowly doped pocket in the source, which allows to take full benefit of the strain-induced increase in ON-current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000372372100026 Publication Date 2016-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 17 Open Access  
  Notes ; This work was supported by the imec Industrial Affiliation Program. The work of D. Verreck was supported by the Agency for Innovation by Science and Technology in Flanders. The review of this letter was arranged by Editor Z. Chen. ; Approved Most recent IF: 3.048  
  Call Number UA @ lucian @ c:irua:133207 Serial 4271  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Transport properties of bilayer graphene in a strong in-plane magnetic field Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials and increases the corresponding conductance. Our results show that the chiral suppression of transmission at normal incidence, reminiscent of bilayer graphene's 2 pi Berry phase, is turned into a chiral enhancement when the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an in-plane pseudomagnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000372409900006 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO-Vl) through an aspirant research grant to M.V.D.D. and B.V.D. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133197 Serial 4267  
Permanent link to this record
 

 
Author Roy, P.; Torun, E.; de Groot, R.A. url  doi
openurl 
  Title Effect of doping and elastic properties in (Mn,Fe)2(Si,P) Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 094110  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Mixed magnetism (the coexistence of strong and weak magnetism in one material) is regarded as the origin of the giant magnetocaloric effect (GMCE). A good example is (Mn,Fe)(2)(Si,P), which is established as one of the best magnetocaloric materials available. Tuning the material properties are essential for optimizing its performance, and a straightforward way to do that is by doping. In this article, an ab initio electronic structure method was used to calculate the structure and magnetic properties of 3d-transition-metal-doped (Mn,Fe)(2)(Si,P) materials for magnetocaloric applications (transition metals are Cr, Co, Mn, Ni, Cu). For a steady performance, the material should be mechanically stable. A detailed analysis of the elastic constants shows that the mechanical stability of the (Mn,Fe)(2)(Si,P) system increases significantly by doping with boron without affecting the magnetic properties. Insights of the influence of doping enable future studies to understand and predict bettermagnetocaloric materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000372712100001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work is part of an Industrial Partnership Programme (IPP I28) of Fundamenteel Onderzoek der Materie (FOM) (The Netherlands) and co-financed by BASF New Business. The authors would like to thank Phuong Thao Nguyen and Dr. Gilles A. de Wijs for very useful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133192 Serial 4164  
Permanent link to this record
 

 
Author Chaves, A.; Mayers, M.Z.; Peeters, F.M.; Reichman, D.R. url  doi
openurl 
  Title Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasiparticle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000372715700001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes ; This work has been financially supported by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs, the FWO-CNPq bilateral program between Brazil and Flanders, and the Lemann Foundation. M.Z.M. is supported by a fellowship from the National Science Foundation, under Grant No. DGE-11-44155. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133191 Serial 4262  
Permanent link to this record
 

 
Author Missault, N.; Vasilopoulos, P.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Spin- and valley-dependent miniband structure and transport in silicene superlattices Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 125425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate silicene superlattices in the presence of a tunable barrier potential U, an exchange field M, and a perpendicular electric field E-z. The resulting miniband structure depends on the spin and valley indices and on the fields M and E-z. These fields determine the minigaps and also affect the additional Dirac points brought about by the periodic potential U. In addition, we consider diffusive transport and assess its dependence on the spin and valley indices as well as on temperature. The corresponding spin and valley polarizations strongly depend on the potential U and can be made almost 100% at very low temperatures at particular values of the Fermi energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000372715800009 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 49 Open Access  
  Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (P.V.), and by the Flemish Science Foundation FWO-Vl) with the “Odysseus” Program (N. M.) and with a PhD research grant (B.V.D.). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133194 Serial 4246  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K. url  doi
openurl 
  Title Commensurability Effects in Viscosity of Nanoconfined Water Type A1 Journal article
  Year 2016 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 10 Issue 10 Pages 3685-3692  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.  
  Address School of Physics and Astronomy, University of Manchester , Manchester M13 9PL, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000372855400073 Publication Date 2016-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 160 Open Access  
  Notes ; M.N.A. was support by Shahid Rajaee Teacher Training University under contract number 29605. ; Approved Most recent IF: 13.942  
  Call Number c:irua:133237 Serial 4012  
Permanent link to this record
 

 
Author Saqlain, M.A.; Hussain, A.; Siddiq, D.M.; Leenaerts, O.; Leitão, A.A. pdf  doi
openurl 
  Title DFT Study of Synergistic Catalysis of the Water-Gas-Shift Reaction on Cu-Au Bimetallic Surfaces Type A1 Journal article
  Year 2016 Publication ChemCatChem Abbreviated Journal Chemcatchem  
  Volume 8 Issue 8 Pages 1208-1217  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The water-gas-shift reaction (WGSR) is an important industrial process that can be significantly enhanced at suitable catalyst surfaces. In this work, we investigate the catalytic behavior of metallic Cu(1 0 0) and bimetallic Cu–Au(1 0 0) surfaces. With density functional theory calculations, the variation in the Gibbs free energy (ΔG°), the activation barriers, and the rate constants for the WGSR are calculated. The variation in ΔG° for water dissociation shows that the process is spontaneous up to 520 K on the bimetallic surface and up to 229 K on the Cu(1 0 0) surface. The calculated rate constants for the process also show that the bimetallic surface is much more reactive than the Cu(1 0 0) surface. The calculated pressure–temperature phase diagram for water dissociation shows that the partial pressure of H2O required for water dissociation on the bimetallic surface is substantially lower than that on the Cu(1 0 0) surface at all the studied temperatures. Additionally, the calculations demonstrate that the kinetics of the water-gas-shift reaction is dominated by redox processes on both the surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000373074900026 Publication Date 2016-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.803 Times cited 8 Open Access  
  Notes ; The authors would like to thank the Brazilian agencies CNPq, CAPES, FAPEMIG (CEX-PPM-00262/13), and TWAS for financial support and CENAPAD-SP for computational facilities. M.A. Saqlain pays special thanks to all the members of GFQSI for making his stay in Brazil memorable. ; Approved Most recent IF: 4.803  
  Call Number c:irua:133236 Serial 4070  
Permanent link to this record
 

 
Author Yang, S.; Kang, J.; Yue, Q.; Coey, J.M.D.; Jiang, C. pdf  doi
openurl 
  Title Defect-modulated transistors and gas-enhanced photodetectors on ReS2 nanosheets Type A1 Journal article
  Year 2016 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 3 Issue 3 Pages 1500707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000373149400011 Publication Date 2016-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 22 Open Access  
  Notes ; This work was supported by the National Natural Science Foundations of China (NSFC) under Grant No.51331001. The authors thank S. Tongay for giving them the ReS<INF>2</INF> crystals. ; Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:133232 Serial 4159  
Permanent link to this record
 

 
Author Bakalov, P.; Esfahani, D.N.; Covaci, L.; Peeters, F.M.; Tempere, J.; Locquet, J.-P. url  doi
openurl 
  Title Electric-field-driven Mott metal-insulator transition in correlated thin films : an inhomogeneous dynamical mean-field theory approach Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 165112  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω=0) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A(ω=0). The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000373572700002 Publication Date 2016-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was partially funded by the Flemish Fund for Scientific Research (FWO Belgium) under FWO Grant No. G.0520.10 and the joint FWF (Austria)-FWO Grant No. GOG6616N, and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132872 Serial 4167  
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Ketabi, S.A.; da Costa, D.R.; Peeters, F.M. url  doi
openurl 
  Title Energy levels of hybrid monolayer-bilayer graphene quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 165410  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000373572700004 Publication Date 2016-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO)-CNPq project between Flanders and Brazil and the Brazilian Science Without Borders program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133261 Serial 4174  
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; da Silva Pereira, T.A.; Milošević, M.V. url  doi
openurl 
  Title Electronic states in an atomistic carbon quantum dot patterned in graphene Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 155417  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We reveal the emergence of metallicKondo clouds in an atomistic carbon quantum dot, realized as a single-atom junction in a suitably patterned graphene nanoflake. Using density functional dynamical mean-field theory (DFDMFT) we show how correlation effects lead to striking features in the electronic structure of our device, and how those are enhanced by the electron-electron interactions when graphene is patterned at the atomistic scale. Our setup provides a well-controlled environment to understand the principles behind the orbital-selective Kondo physics and the interplay between orbital and spin degrees of freedom in carbon-based nanomaterials, which indicate new pathways for spintronics in atomically patterned graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000373760900004 Publication Date 2016-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; L.C.'s work is supported by CNPq (Proc. No. 307487/2014-8). Acknowledgment (L.C.) is also made to G. Seifert for discussions and the Department of Theoretical Chemistry at Technical University Dresden for hospitality. T.A.S.P. thanks PRONEX/CNPq/FAPEMAT 850109/2009 for financial support. M.V.M. acknowledges support from Research Foundation-Flanders (FWO), TOPBOF, and the CAPES-PVE program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133260 Serial 4171  
Permanent link to this record
 

 
Author Van Duppen, B.; Tomadin, A.; Grigorenko, A.N.; Polini, M. url  doi
openurl 
  Title Current-induced birefringent absorption and non-reciprocal plasmons in graphene Type A1 Journal article
  Year 2016 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 3 Issue 3 Pages 015011  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present extensive calculations of the optical and plasmonic properties of a graphene sheet carrying a dc current. By calculating analytically the density-density response function of current-carrying states at finite temperature, we demonstrate that an applied dc current modifies the Pauli blocking mechanism and that absorption acquires a birefringent character with respect to the angle between the in-plane light polarization and current flow. Employing the random phase approximation at finite temperature, we show that graphene plasmons display a degree of non-reciprocity and collimation that can be tuned with the applied current. We discuss the possibility to measure these effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000373936300031 Publication Date 2016-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 5 Open Access  
  Notes This work was supported by the EC under the Graphene Flagship program (contract no. CNECT- ICT-604391) and MIUR through the program ‘Pro- getti Premiali 2012’ – Project ‘ABNANOTECH’. B.V. D. wishes to thank the Scuola Normale Superiore (Pisa, Italy) for the kind hospitality while this work was carried out and Research Foundation Flanders (FWO- Vl) for a PhD Fellowship. Approved Most recent IF: 6.937  
  Call Number c:irua:131900 c:irua:131900 Serial 4017  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. pdf  doi
openurl 
  Title Giant magnetic anisotropy in doped single layer molybdenum disulfide and fluorographene Type A1 Journal article
  Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 195301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Stable monolayer materials based on existing, well known and stable two-dimensional crystal fluorographene and molybdenum disulfide are predicted to exhibit a huge magnetocrystalline anisotropy when functionalized with adsorbed transition metal atoms at vacant sides. Ab initio calculations within the density-functional theory formalism were performed to investigate the adsorption of the transitional metals in a single S (or F) vacancy of monolayer molybdenum disulfide (or fluorographene). We found strong bonding of the transitional metal atoms to the vacant sites with binding energies ranging from 2.5 to 5.2 eV. Our calculations revealed that these systems with adsorbed metal atoms exhibit a magnetic anisotropy, specifically the structures including Os and Ir show a giant magnetocrystalline anisotropy energy of 31-101 meV. Our results demonstrate the possibility of obtaining stable monolayer materials with huge magnetocrystalline anisotropy based on preexisting, well known and stable two-dimensional crystals: fluorographene and molybdenum disulfide. We believe that the results obtained here are useful not only for deeper understanding of the origin of magnetocrystalline anisotropy but also for the design of monolayer optoelectronic devices with novel functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000374394700007 Publication Date 2016-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:133611 Serial 4185  
Permanent link to this record
 

 
Author Cukaric, N.A.; Partoens, B.; Tadic, M.Z.; Arsoski, V.V.; Peeters, F.M. pdf  doi
openurl 
  Title The 30-band k . p theory of valley splitting in silicon thin layers Type A1 Journal article
  Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 195303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The valley splitting of the conduction-band states in a thin silicon-on-insulator layer is investigated using the 30-band k . p theory. The system composed of a few nm thick Si layer embedded within thick SiO2 layers is analyzed. The valley split states are found to cross periodically with increasing quantum well width, and therefore the energy splitting is an oscillatory function of the quantum well width, with period determined by the wave vector K-0 of the conduction band minimum. Because the valley split states are classified by parity, the optical transition between the ground hole state and one of those valley split conduction band states is forbidden. The oscillations in the valley splitting energy decrease with electric field and with smoothing of the composition profile between the well and the barrier by diffusion of oxygen from the SiO2 layers to the Si quantum well. Such a smoothing also leads to a decrease of the interband transition matrix elements. The obtained results are well parametrized by the effective two-valley model, but are found to disagree from previous 30-band calculations. This discrepancy could be traced back to the fact that the basis for the numerical solution of the eigenproblem must be restricted to the first Brillouin zone in order to obtain quantitatively correct results for the valley splitting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000374394700009 Publication Date 2016-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.649 Times cited Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:133610 Serial 4261  
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 24860  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We predict enhanced electron-hole superfluidity in two coupled electron-hole armchair-edge terminated graphene nanoribbons separated by a thin insulating barrier. In contrast to graphene monolayers, the multiple subbands of the nanoribbons are parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus boosting the pairing strength and enhancing the superfluid properties. The pairing strength is further boosted by the quasi one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each subband. The latter magnifies superfluid shape resonances caused by the quantum confinement. Several superfluid partial condensates are present for finite-width nanoribbons with multiple subbands. We find that superfluidity is predominately in the strongly-coupled BEC and BCS-BEC crossover regimes, with large superfluid gaps up to 100 meV and beyond. When the gaps exceed the subband spacing, there is significant mixing of the subbands, a rounding of the shape resonances, and a resulting reduction in the one-dimensional nature of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos (up) 000374654500002 Publication Date 2016-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 7 Open Access  
  Notes ; M.Z. acknowledges support by the Flemish Science Foundation (FWO-Vl), the University Research Fund (BOF), and the European Science Foundation (POLATOM). A.P. and D.N. acknowledge support by the University of Camerino FAR project CESEMN. The authors thank the colleagues involved in the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions for this work. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:133619 Serial 4201  
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M. doi  openurl
  Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 4 Issue 16 Pages 6029-6035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000374790700033 Publication Date 2016-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 202 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:144763 Serial 4669  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C. url  doi
openurl 
  Title Comment on “Generalized exclusion processes : transport coefficients” Type A1 Journal article
  Year 2016 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 93 Issue 93 Pages 046101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment,we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000374962100019 Publication Date 2016-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:141060 Serial 4591  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Cahangirov, S.; Rubio, A.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic electronic, mechanical, and optical properties of monolayer WTe2 Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 7 Pages 074307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we investigate the electronic, mechanical, and optical properties of monolayer WTe2. Atomic structure and ground state properties of monolayer WTe2 (T-d phase) are anisotropic which are in contrast to similar monolayer crystals of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, WSe2, and MoTe2, which crystallize in the H-phase. We find that the Poisson ratio and the in-plane stiffness is direction dependent due to the symmetry breaking induced by the dimerization of the W atoms along one of the lattice directions of the compound. Since the semimetallic behavior of the T-d phase originates from this W-W interaction (along the a crystallographic direction), tensile strain along the dimer direction leads to a semimetal to semiconductor transition after 1% strain. By solving the Bethe-Salpeter equation on top of single shot G(0)W(0) calculations, we predict that the absorption spectrum of T-d-WTe2 monolayer is strongly direction dependent and tunable by tensile strain. (C) 2016 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000375158000022 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 62 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. S.C. and A.R. acknowledge the financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, European Research Council (ERC-2010-AdG-267374), Spanish grant (FIS2013-46159-C3-1-P), Grupos Consolidados (IT578-13), and AFOSR Grant No. FA2386-15-1-0006 AOARD 144088, H2020-NMP-2014 project MOSTOPHOS, GA No. SEP-210187476, and COST Action MP1306 (EUSpec). S.C. acknowledges the support from The Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:144747 Serial 4640  
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Vinokur, V.M.; Aguiar, J.A.; Peeters, F.M. url  doi
openurl 
  Title Superconductivity between standard types: Multiband versus single-band materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000375527500001 Publication Date 2016-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes Conselho Nacional de Desenvolvimento Científico e Tecnológico, 307552/2012-8 141911/2012-3 ; Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-0589-1.05/08 ; U.S. Department of Energy; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:141732 Serial 4480  
Permanent link to this record
 

 
Author Horzum, S.; Torun, E.; Serin, T.; Peeters, F.M. pdf  doi
openurl 
  Title Structural, electronic and optical properties of Cu-doped ZnO : experimental and theoretical investigation Type A1 Journal article
  Year 2016 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 96 Issue 96 Pages 1743-1756  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/G(0)W(0) method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000376076500002 Publication Date 2016-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 29 Open Access  
  Notes ; Theoretical part of this work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Experimental part of this work was supported by Ankara University BAP under Project Number [14B0443001]. ; Approved Most recent IF: 1.505  
  Call Number UA @ lucian @ c:irua:134161 Serial 4254  
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title N-doped graphene : polarization effects and structural properties Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural and mechanical properties of N-doped graphene (NG) are investigated using reactive force field (ReaxFF) potentials in large-scale molecular dynamics simulations. We found that ripples, which are induced by the dopants, change the roughness of NG, which depends on the number of dopants and their local arrangement. For any doping ratio N/C, the NG becomes ferroelectric with a net dipole moment. The formation energy increases nonlinearly with N/C ratio, while the Young's modulus, tensile strength, and intrinsic strain decrease with the number of dopants. Our results for the structural deformation and the thermoelectricity of the NG sheet are in good agreement with recent experiments and ab initio calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000376245900002 Publication Date 2016-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134148 Serial 4212  
Permanent link to this record
 

 
Author Mulkers, J.; Milošević, M.V.; Van Waeyenberge, B. url  doi
openurl 
  Title Cycloidal versus skyrmionic states in mesoscopic chiral magnets Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 214405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract When subjected to the interfacially induced Dzyaloshinskii-Moriya interaction, the ground state in thin ferromagnetic films with high perpendicular anisotropy is cycloidal. The period of this cycloidal state depends on the strength of the Dzyaloshinskii-Moriya interaction. In this work, we have studied the effect of confinement on the magnetic ground state and excited states, and we determined the phase diagram of thin strips and thin square platelets by means of micromagnetic calculations. We show that multiple cycloidal states with different periods can be stable in laterally confined films, where the period of the cycloids does not depend solely on the Dzyaloshinskii-Moriya interaction strength but also on the dimensions of the film. The more complex states comprising skyrmions are also found to be stable, though with higher energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000377298600006 Publication Date 2016-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number c:irua:133919 Serial 4081  
Permanent link to this record
 

 
Author Mao, J.; Jiang, Y.; Moldovan, D.; Li, G.; Watanabe, K.; Taniguchi, T.; Masir, M.R.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Realization of a tunable artificial atom at a supercritically charged vacancy in graphene Type A1 Journal article
  Year 2016 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 12 Issue 12 Pages 545-549  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene’s remarkable electronic properties have fuelled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor graphene’s electronic properties and to control its charge carriers. Here we show that a single-atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunnelling microscope. The response of the conduction electrons in graphene to the local charge is monitored with scanning tunnelling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states within a disc centred on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a mechanism to control and guide electrons in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000377475700011 Publication Date 2016-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 93 Open Access  
  Notes ; Funding was provided by DOE-FG02-99ER45742 (STM/STS), NSF DMR 1207108 (fabrication and characterization). Theoretical work supported by ESF-EUROCORES-EuroGRAPHENE, FWO-VI and Methusalem programme of the Flemish government. We thank V. F. Libisch, M. Pereira and E. Rossi for useful discussions. ; Approved Most recent IF: 22.806  
  Call Number c:irua:134210 Serial 4011  
Permanent link to this record
 

 
Author Andrikopoulos, D.; Sorée, B.; De Boeck, J. url  doi
openurl 
  Title Skyrmion-induced bound states on the surface of three-dimensional topological insulators Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 193903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Neel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number N-Sk. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000377718100013 Publication Date 2016-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134607 Serial 4244  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 247401  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.  
  Address  
  Corporate Author Thesis  
  Publisher Amer physical soc Place of Publication College pk Editor  
  Language Wos (up) 000377802200009 Publication Date 2016-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134601 Serial 4151  
Permanent link to this record
 

 
Author Grujić, M.M.; Ezawa, M.; Tadic, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Tunable skewed edges in puckered structures Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 245413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E-z. A topological argument is presented, revealing the condition for the emergence of such edge states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000377802700010 Publication Date 2016-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). M.E. is thankful for the support by the Grants-in-Aid for Scientific Research from MEXT KAKENHI (Grants No. 25400317 and No. 15H05854). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134599 Serial 4268  
Permanent link to this record
 

 
Author Aierken, Y.; Çakir, D.; Peeters, F.M. pdf  doi
openurl 
  Title Strain enhancement of acoustic phonon limited mobility in monolayer TiS3 Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 14434-14441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Strain engineering is an effective way to tune the intrinsic properties of a material. Here, we show by using first-principles calculations that both uniaxial and biaxial tensile strain applied to monolayer TiS3 are able to significantly modify its intrinsic mobility. From the elastic modulus and the phonon dispersion relation we determine the tensile strain range where structure dynamical stability of the monolayer is guaranteed. Within this region, we find more than one order of enhancement of the acoustic phonon limited mobility at 300 K (100 K), i.e. from 1.71 x 10(4) (5.13 x 10(4)) cm(2) V-1 s(-1) to 5.53 x 10(6) (1.66 x 10(6)) cm(2) V-1 s(-1). The degree of anisotropy in both mobility and effective mass can be tuned by using tensile strain. Furthermore, we can either increase or decrease the band gap of TiS3 monolayer by applying strain along different crystal directions. This property allows us to use TiS3 not only in electronic but also in optical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000378102700036 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 24 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-V1). Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:134628 Serial 4250  
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Schoeters, B.; Partoens, B. pdf  doi
openurl 
  Title System-size dependent band alignment in lateral two-dimensional heterostructures Type A1 Journal article
  Year 2016 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 3 Issue 3 Pages 025012  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic band alignment in semiconductor heterostructures is a key factor for their use in electronic applications. The alignment problem has been intensively studied for bulk systems but is less well understood for low-dimensional heterostructures. In this work we investigate the alignment in two-dimensional lateral heterostructures. First-principles calculations are used to show that the electronic band offset depends crucially on the width and thickness of the heterostructure slab. The particular heterostructures under study consist of thin hydrogenated and fluorinated diamond slabs which are laterally joined together. Two different limits for the band offset are observed. For infinitely wide heterostructures the vacuum potential above the two materials is aligned leading to a large step potential within the heterostructure. For infinitely thick heterostructure slabs, on the other hand, there is no potential step in the heterostructure bulk, but a large potential step in the vacuum region above the heterojunction is observed. The band alignment in finite systems depends on the particular dimensions of the system. These observations are shown to result from an interface dipole at the heterojunction that tends to align the band structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000378571400032 Publication Date 2016-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 19 Open Access  
  Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government— department EWI. Approved Most recent IF: 6.937  
  Call Number c:irua:132792 c:irua:132792 Serial 4055  
Permanent link to this record
 

 
Author Madan, I.; Kusar, P.; Baranov, V.V.; Lu-Dac, M.; Kabanov, V.V.; Mertelj, T.; Mihailovic, D. url  doi
openurl 
  Title Real-time measurement of the emergence of superconducting order in a high-temperature superconductor Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 22 Pages 224520  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Systems which rapidly evolve through symmetry-breaking transitions on timescales comparable to the fluctuation timescale of the single-particle excitations may behave very differently than under controlled near-ergodic conditions. A real-time investigation with high temporal resolution may reveal insights into the ordering through the transition that are not available in static experiments. We present an investigation of the system trajectory through a normal-to-superconductor transition in a prototype high-temperature superconducting cuprate in which such a situation occurs. Using a multiple pulse femtosecond spectroscopy technique we measure the system trajectory and time evolution of the single-particle excitations through the transition in La1.9Sr0.1CuO4 and compare the data to a simulation based on the time-dependent Ginzburg-Landau theory, using the laser excitation fluence as an adjustable parameter controlling the quench conditions in both experiment and theory. The comparison reveals the presence of significant superconducting fluctuations which precede the transition on short timescales. By including superconducting fluctuations as a seed for the growth of the superconducting order we can obtain a satisfactory agreement of the theory with the experiment. Remarkably, the pseudogap excitations apparently play no role in this process.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos (up) 000378815800003 Publication Date 2016-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; We wish to acknowledge the useful discussion with T. W. Kibble regarding the importance of a variable quench rate in the experiment. The funding was provided by European Research Council advanced grant TRAJECTORY. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144701 Serial 4683  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: