toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, L.-F.; Flammia, L.; Covaci, L.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title Multifaceted impact of a surface step on superconductivity in atomically thin films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 10 Pages 104509  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent experiments show that an atomic step on the surface of atomically thin metallic films can strongly affect electronic transport. Here we reveal multiple and versatile effects that such a surface step can have on superconductivity in ultrathin films. By solving the Bogoliubov-de Gennes equations self-consistently in this regime, where quantum confinement dominates the emergent physics, we show that the electronic structure is profoundly modified on the two sides of the step, as is the spatial distribution of the superconducting order parameter and its dependence on temperature and electronic gating. Furthermore, the surface step changes nontrivially the transport properties both in the proximity-induced superconducting pair correlations and the Josephson effect, depending on the step height. These results offer a new route to tailor superconducting circuits and design atomically thin heterojunctions made of one same material.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000411076000012 Publication Date 2017-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF project) and the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001). ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:146750 Serial 4790  
Permanent link to this record
 

 
Author Arsoski, V.V.; Grujić, M.M.; Čukarić, N.A.; Tadic, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Normal and skewed phosphorene nanoribbons in combined magnetic and electric fields Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 12 Pages 125434  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy spectrum and eigenstates of single-layer black phosphorus nanoribbons in the presence of a perpendicular magnetic field and an in-plane transverse electric field are investigated by means of a tight-binding method, and the effect of different types of edges is examined analytically. A description based on a continuum model is proposed using an expansion of the tight-binding model in the long-wavelength limit. Thewave functions corresponding to the flatband part of the spectrum are obtained analytically and are shown to agree well with the numerical results from the tight-binding method for both narrow (10 nm) and wide (100 nm) nanoribbons. Analytical expressions for the critical magnetic field at which Landau levels are formed and the ranges of wave numbers in the dispersionless flatband segments in the energy spectra are derived. We examine the evolution of the Landau levels when an in-plane lateral electric field is applied, and we determine analytically how the edge states shift withmagnetic field. For wider nanoribbons, the conductance is shown to have a characteristic staircase shape in combined magnetic and electric fields. Some of the stairs in zigzag and skewed armchair nanoribbons originate from edge states that are found in the band gap.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000411572400008 Publication Date 2017-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; This work was supported by Erasmus+, the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:146738 Serial 4791  
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V. url  doi
openurl 
  Title Advanced first-principles theory of superconductivity including both lattice vibrations and spin fluctuations : the case of FeB4 Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 1 Pages 014503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental T-c similar to 2.4 K [H. Gou et al., Phys. Rev. Lett, 111, 157002 (2013)]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I = 1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q = 0, from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from T-c = 41 K, if they are not taken into account, to T-c = 1.7 K, in good agreement with the experimental value.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000419229100004 Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government-department EWI. Anisotropic Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148447UA @ admin @ c:irua:148447 Serial 4866  
Permanent link to this record
 

 
Author Lane, T.L.M.; Andelkovic, M.; Wallbank, J.R.; Covaci, L.; Peeters, F.M.; Fal'ko, V.I. url  doi
openurl 
  Title Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 4 Pages 045301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These channels are formed by a combination of valley-polarized evanescent states propagating along the delamination edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers). For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where 2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with a gap epsilon(g) scaling as epsilon(g) alpha W-1 with delamination width and epsilon(g) alpha delta(-1) with the on-layer energy difference in the delaminated part of the structure. Depending on the width, delaminations may also support several \u0022higher-energy\u0022 waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the electrostatic conditions in the structure, such as the vertical displacement field.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000419772200005 Publication Date 2018-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was funded by EPSRC via EPSRC Grand Engineering Chellenges Grant No. EP/N010345, the Manchester NOWNANO CDT EP/L-1548X, the Flemish Science Foundation (FWO-VI), the European Graphene Flagship project, ERC Synergy grant Hetero2D, and FLAG-ERA project TRANS2DTMD. The authors would like to acknowledge useful discussions with M. Zarenia, S. Slizovskiy, E. McCann, and K. Novesolov. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148441UA @ admin @ c:irua:148441 Serial 4868  
Permanent link to this record
 

 
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V. url  doi
openurl 
  Title Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 21 Pages 214403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000416846900002 Publication Date 2017-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 52 Open Access  
  Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:147684 Serial 4890  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 22 Pages 224512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418653500012 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148504 Serial 4901  
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V. url  doi
openurl 
  Title Tunable Snell's law for spin waves in heterochiral magnetic films Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 10 Pages 104422  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428238600006 Publication Date 2018-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes This work was supported by the Research Foundation- Flanders (FWO-Vlaanderen) through Project No. G098917N. Approved (up) Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:150118UA @ admin @ c:irua:150118 Serial 4915  
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 8 Pages 085437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000426042800009 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; Q. Chen acknowledges financial support from the (China Scholarship Council (CSC)). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040) and by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042). Additional support from the FLAG-ERA TRANS-2D-TMD is acknowledged. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149905UA @ admin @ c:irua:149905 Serial 4941  
Permanent link to this record
 

 
Author Wang, W.; Van Duppen, B.; Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Magnetopolaron effect on shallow-impurity states in the presence of magnetic and intense terahertz laser fields in the Faraday configuration Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 6 Pages 064108  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetopolaron effect on shallow-impurity states in semiconductors is investigated when subjected simultaneously to a magnetic field and an intense terahertz laser field within the Faraday configuration. We use a time-dependent nonperturbative theory to describe electron interactions. The externally applied fields are exactly included via a laser-dressed interaction potential. Through a variational approach we evaluate the binding energy of the shallow-impurity states. We find that the interaction strength of the laser-dressed Coulomb potential can not only be enhanced but also weakened by varying the two external fields. In this way, the binding energy can be tuned by the external fields and red-or blue-shifted with respect to the static binding energy. In the nonresonant polaron region, a magnetopolaron correction that includes the effects of photon process is observed. In the resonant polaron region, moreover, the resonant magnetopolaron effect accompanied by the emission and absorption of a single photon is distinctly observed. This can be modulated to be far away from the reststrahlen band. The intriguing findings of this paper can be observed experimentally and, in turn, provide a way to measure the strength of the electron-phonon interaction.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000426041900004 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grants No. 11404214 and No. 11455015) and the China Scholarship Council (CSC), Anhui Provincial Natural Science Foundation (Grant No. 1408085QA13), Key Projects of Anhui Provincial Department of Education (Grants No. KJ2017A406 and No. KJ2017A401). B.V.D. was financially supported by the Research Science Foundation-Flanders (FWO-Vl) through a postdoctoral fellowship and M.V.d.D. was financially supported by the Research Science Foundation-Flanders (FWO-Vl) through a doctoral fellowship. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149906UA @ admin @ c:irua:149906 Serial 4942  
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title Quantum transport in defective phosphorene nanoribbons : effects of atomic vacancies Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 7 Pages 075414  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000424901800006 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 30 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the FLAG-ERA TRANS 2D TMD, and by the Chinese Academy of Sciences (CAS). ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149255UA @ admin @ c:irua:149255 Serial 4946  
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 8 Pages 081109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000425603600001 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This Rapid Communication was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the Methusalem Foundation of the Flemish Government. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149913UA @ admin @ c:irua:149913 Serial 4948  
Permanent link to this record
 

 
Author Cavalcante, L.S.R.; Chaves, A.; Van Duppen, B.; Peeters, F.M.; Reichman, D.R. pdf  url
doi  openurl
  Title Electrostatics of electron-hole interactions in van der Waals heterostructures Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427983700007 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Discussions with A. Chernikov and A. Raja are gratefully acknowledged. This work has been financially supported by CNPq, through the PRONEX/FUNCAP, PQ, and Science Without Borders programs, and the FWO-CNPq bilateral program between Brazil and Flanders. B.V.D. acknowledges support from the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. D.R.R. was supported by NSF CHE-1464802. Approved (up) Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:150835UA @ admin @ c:irua:150835 Serial 4953  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Strain mapping in single-layer two-dimensional crystals via Raman activity Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 11 Pages 115427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono-and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X = S, Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427799300006 Publication Date 2018-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 116C073. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150840UA @ admin @ c:irua:150840 Serial 4979  
Permanent link to this record
 

 
Author Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title Superconducting nanoribbon with a constriction : a quantum-confined Josephson junction Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 13 Pages 134514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430161500004 Publication Date 2018-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF), the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001), the MultiSuper network, and the EU-COST NANOCOHYBRI action CA16218. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150754UA @ admin @ c:irua:150754 Serial 4980  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model for borophene and borophane Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427983700004 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 45 Open Access  
  Notes ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987  
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 15 Pages 155424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430459400005 Publication Date 2018-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Comment on “Impurity spectra of graphene under electric and magnetic fields” Type Editorial
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 20 Pages 207403  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract In a recent paper [Phys. Rev. B 89, 155403 (2014)], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge vertical bar alpha vertical bar = 0.5 and, to obtain correct results for alpha > 0.5, a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of alpha.  
  Address  
  Corporate Author Thesis  
  Publisher Amer physical soc Place of Publication College pk Editor  
  Language Wos 000433288800015 Publication Date 2018-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:152042UA @ admin @ c:irua:152042 Serial 5017  
Permanent link to this record
 

 
Author de Aquino, B.R.H.; Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Electrostrictive behavior of confined water subjected to GPa pressure Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 14 Pages 144111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Water inside a nanocapillary exhibits unconventional structural and dynamical behavior due to its ordered structure. The confining walls, density, and lateral pressures control profoundly the microscopic structure of trapped water. Here we study the electrostriction of confined water subjected to pressures of the order of GPa for two different setups: (i) a graphene nanochannel containing a constant number of water molecules independent of the height of the channel, (ii) an open nanochannel where water molecules can be exchanged with those in a reservoir. For the former case, a square-rhombic structure of confined water is formed when the height of the channel is d = 6.5 angstrom having a density of rho = 1.42 g cm(-3). By increasing the height of the channel, a transition from a flat to a buckled state occurs, whereas the density rapidly decreases and reaches the bulk density for d congruent to 8.5 angstrom. When a perpendicular electric field is applied, the water structure and the lateral pressure change. For strong electric fields (similar to 1 V/angstrom), the square-rhombic structure is destroyed. For an open setup, a solid phase of confined water consisting of an imperfect square-rhombic structure is formed. By applying a perpendicular field, the density and phase of confined water change. However, the density and pressure inside the channel decrease as compared to the first setup. Our study is closely related to recent experiments on confined water, and it reveals the sensitivity of the microscopic structure of confined water to the size of the channel, the external electric field, and the experimental setup.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430809300002 Publication Date 2018-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Fund for Scientific Research-Flanders (FWO-Vl) and the Methusalem programe. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151574UA @ admin @ c:irua:151574 Serial 5023  
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Excitons, trions, and biexcitons in transition-metal dichalcogenides : magnetic-field dependence Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 19 Pages 195408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of a perpendicular magnetic field on the binding energy and structural properties of excitons, trions, and biexcitons in monolayers of semiconducting transition metal dichalcogenides (TMDs) is investigated. The stochastic variational method (SVM) with a correlated Gaussian basis is used to calculate the different properties of these few-particle systems. In addition, we present a simplified variational approach which supports the SVM results for excitons as a function of magnetic field. The exciton diamagnetic shift is compared with recent experimental results, and we extend this concept to trions and biexcitons. The effect of a local potential fluctuation, which we model by a circular potential well, on the binding energy of trions and biexcitons is investigated and found to significantly increase the binding of those excitonic complexes.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000432024800005 Publication Date 2018-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 36 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for M.V.D.D. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151521UA @ admin @ c:irua:151521 Serial 5025  
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F.M. url  doi
openurl 
  Title High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 17 Pages 174503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to similar to 90 K with onset carrier densities as high as 4 x 10(12) cm(-2). This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000431986100002 Publication Date 2018-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes ; We thank David Neilson for helpful discussions. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government and Iran Ministry of Science, Research and Technology. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151533UA @ admin @ c:irua:151533 Serial 5028  
Permanent link to this record
 

 
Author Zhang, S.-H.; Yang, W.; Peeters, F.M. url  doi
openurl 
  Title Veselago focusing of anisotropic massless Dirac fermions Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 20 Pages 205437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000433026700005 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the NSFC (Grants No. 11504018 and No. 11774021), the MOST of China (Grant No. 2014CB848700), and the NSFC program for “Scientific Research Center” (Grant No. U1530401). Support by the bilateral project (FWO-MOST) is gratefully acknowledged. S.H.Z. is also supported by “the Fundamental Research Funds for the Central Universities (ZY1824).” We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC). ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151501UA @ admin @ c:irua:151501 Serial 5047  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Rich many-body phase diagram of electrons and holes in doped monolayer transition metal dichalcogenides Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We use a variational technique to study the many-body phase diagram of electrons and holes in n-doped and p-doped monolayer transition metal dichalcogenides (TMDs). We find a total of four different phases. (i) A fully spin polarized and valley polarized ferromagnetic state. (ii) A state with no global spin polarization but with spin polarization in each valley separately, i.e., spin-valley locking. (iii) A state with spin polarization in one of the valleys and little to no spin polarization in the other valley. (iv) A paramagnetic state with no valley polarization. These phases are separated by first-order phase transitions and are determined by the particle density and the dielectric constant of the substrate. We find that in the presence of a perpendicular magnetic field the four different phases persist. In the case of n-doped MoS2, a fifth phase, which is completely valley polarized but not spin polarized, appears for magnetic fields larger than 7 T and for magnetic fields larger than 23 T completely replaces the second phase.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000445507000009 Publication Date 2018-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153622UA @ admin @ c:irua:153622 Serial 5125  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Magnetic field dependence of atomic collapse in bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The spectrum of a Coulomb impurity in bilayer graphene is investigated as function of the strength of a perpendicular magnetic field for different values of the angular quantum number m and for different values of the gate voltage. We point out fundamental differences between the results from the two-band and four-band model. The supercritical instability and fall-to-center phenomena are investigated in the presence of a magnetic field. We find that in the four-band model the fall-to-center phenomenon occurs as in monolayer graphene, while this is not the case in the two-band model. We find that in a magnetic field the supercritical instability manifests itself as a series of anticrossings in the hole part of the spectrum for states coming from the low-energy band. However, we also find very distinct anticrossings in the electron part of the spectrum that continue into the hole part, which are related to the higher energy band of the four-band model. At these anticrossings, we find a very sharp peak in the probability density close to the impurity, reminiscent for the fall-to-center phenomenon. In this paper, these peculiar and interesting effects are studied for different magnetic field, interlayer coupling, and bias potential strengths.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443671900010 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; We thank Matthias Van der Donck and Ben Van Duppen for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153654UA @ admin @ c:irua:153654 Serial 5113  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Interlayer excitons in transition metal dichalcogenide heterostructures Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs), we construct a four-band Hamiltonian describing interlayer excitons consisting of an electron in one TMD layer and a hole in the other TMD layer. An expression for the electron-hole interaction potential is derived, taking into account the effect of the dielectric environment above, below, and between the two TMD layers as well as polarization effects in the transition metal layer and in the chalcogen layers of the TMD layers. We calculate the interlayer exciton binding energy and average in-plane interparticle distance for different TMD heterostructures. The effect of different dielectric environments on the exciton binding energy is investigated and a remarkable dependence on the dielectric constant of the barrier between the two layers is found, resulting from competing effects as a function of the in-plane and out-of-plane dielectric constants of the barrier. The polarization effects in the chalcogen layers, which in general reduce the exciton binding energy, can lead to an increase in binding energy in the presence of strong substrate effects by screening the substrate. The excitonic absorbance spectrum is calculated and we show that the interlayer exciton peak depends linearly on a perpendicular electric field, which agrees with recent experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443671900004 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153653UA @ admin @ c:irua:153653 Serial 5110  
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M. url  doi
openurl 
  Title First-principles study of the stability and edge stress of nitrogen-decorated graphene nanoribbons Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 23 Pages 235436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Edge functionalization of graphene nanoribbons with nitrogen atoms for various adatom configurations at armchair and zigzag edges are investigated. We provide comprehensive information on the electronic and magnetic properties and investigate the stability of the various systems. Two types of rippling of the nanoribbons, namely edge and bulk rippling depending on the sign of edge stress induced at the edge, are found. They are found to play the decisive role for the stability of the structures. We also propose a type of edge decoration in which every third nitrogen adatom at the zigzag edges is replaced by an oxygen atom. In this way, the electron count is compatible with a full aromatic structure, leading to additional stability and a disappearance of magnetism that is usually associated with zigzag nanoribbons.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000436192300006 Publication Date 2018-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:152478UA @ admin @ c:irua:152478 Serial 5104  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Electronic and vibrational properties of PbI2: From bulk to monolayer Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 8 Pages 085431  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we study the dependence of the electronic and vibrational properties of multilayered PbI2 crystals on the number of layers and focus on the electronic-band structure and the Raman spectrum. Electronic-band structure calculations reveal that the direct or indirect semiconducting behavior of PbI2 is strongly influenced by the number of layers. We find that at 3L thickness there is a direct-to-indirect band gap transition (from bulk-to-monolayer). It is shown that in the Raman spectrum two prominent peaks, A(1g) and E-g, exhibit phonon hardening with an increasing number of layers due to the interlayer van der Waals interaction. Moreover, the Raman activity of the A(1g) mode significantly increases with an increasing number of layers due to the enhanced out-of-plane dielectric constant in the few-layer case. We further characterize rigid-layer vibrations of low-frequency interlayer shear (C) and breathing (LB) modes in few-layer PbI2. A reduced monatomic (linear) chain model (LCM) provides a fairly accurate picture of the number of layers dependence of the low-frequency modes and it is shown also to be a powerful tool to study the interlayer coupling strength in layered PbI2.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000442667200008 Publication Date 2018-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. Part of this work was supported by FLAG-ERA project TRANS-2D-TMD. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153716UA @ admin @ c:irua:153716 Serial 5097  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Electrical dipole on gapped graphene : bound states and atomic collapse Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 16 Pages 165420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy spectrum, wave functions, and local density of states of an electrical dipole placed on a sheet of gapped graphene as function of the charge strength Z alpha for different sizes of the dipole and for different regularization parameters. The dipole is modeled as consisting of a positive and negative charge. Bound states are found within the gap region with some energy levels that anticross and others that cross as function of the impurity strength Z alpha. The anticrossings are more pronounced and move to higher charges Z alpha when the length of the dipole decreases. These energy levels turn into atomic collapse states when they enter the positive (or negative) energy continuum. A smooth transition from the single-impurity behavior to the dipole one is observed: The states diving towards the continuum in the single-impurity case are gradually replaced by a series of anticrossings that represent a continuation of the diving states in the single-impurity case. By studying the local density of states at the edge of the dipole we show how the series of anticrossings persist in the positive and negative continuum.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000447302700010 Publication Date 2018-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for R.V.P. and a postdoctoral grant for B.V.D. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:154728UA @ admin @ c:irua:154728 Serial 5094  
Permanent link to this record
 

 
Author Mulkers, J.; Hals, K.M.D.; Leliaert, J.; Milošević, M.V.; Van Waeyenberge, B.; Everschor-Sitte, K. url  doi
openurl 
  Title Effect of boundary-induced chirality on magnetic textures in thin films Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 6 Pages 064429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the quest for miniaturizing magnetic devices, the effects of boundaries and surfaces become increasingly important. Here we show how the recently predicted boundary-induced Dzyaloshinskii-Moriya interaction (DMI) affects the magnetization of ferromagnetic films with a C-infinity v symmetry and a perpendicular magnetic anisotropy. For an otherwise uniformly magnetized film, we find a surface twist when the magnetization in the bulk is canted by an in-plane external field. This twist at the surfaces caused by the boundary-induced DMI differs from the common canting caused by internal DMI observed at the edges of a chiral magnet. Furthermore, we find that the surface twist due to the boundary-induced DMI strongly affects the width of the domain wall at the surfaces. We also find that the skyrmion radius increases in the depth of the film, with the average size of the skyrmion increasing with boundary-induced DMI. This increase suggests that the boundary-induced DMI contributes to the stability of the skyrmion.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443394600004 Publication Date 2018-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; The authors thank Matthias Sitte and Andre Thiaville for fruitful discussions. This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N and the German Research Foundation (DFG) under the Project No. EV 196/2-1. J.L. is supported by the Ghent University Special Research Fund with a BOF postdoctoral fellowship. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153706UA @ admin @ c:irua:153706 Serial 5093  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Dirac nodal line in bilayer borophene : tight-binding model and low-energy effective Hamiltonian Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer hexagonal borophene, which is bound together through pillars, is a novel topological semimetal. Using density functional theory, we investigate its electronic band structure and show that it is a Dirac material which exhibits a nodal line. A tight-binding model was constructed based on the Slater-Koster approach, which accurately models the electronic spectrum. We constructed an effective four-band model Hamiltonian to describe the spectrum near the nodal line. This Hamiltonian can be used as a new platform to study the new properties of nodal line semimetals. We found that the nodal line is created by edge states and is very robust against perturbations and impurities. Breaking symmetries can split the nodal line, but cannot open a gap.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443916200007 Publication Date 2018-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government and the graphene FLAG-ERA project TRANS-2D-TMD. ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153649UA @ admin @ c:irua:153649 Serial 5090  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Chaves, A.; Wirtz, L.; Peeters, F.M. url  doi
openurl 
  Title Ab initio and semiempirical modeling of excitons and trions in monolayer TiS3 Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 7 Pages 075419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the electronic and the optical properties of monolayer TiS3, which shows in-plane anisotropy and is composed of a chain-like structure along one of the lattice directions. Together with its robust direct band gap, which changes very slightly with stacking order and with the thickness of the sample, the anisotropic physical properties of TiS3 make the material very attractive for various device applications. In this study, we present a detailed investigation on the effect of the crystal anisotropy on the excitons and the trions of the TiS3 monolayer. We use many-body perturbation theory to calculate the absorption spectrum of anisotropic TiS3 monolayer by solving the Bethe-Salpeter equation. In parallel, we implement and use a Wannier-Mott model for the excitons that takes into account the anisotropic effective masses and Coulomb screening, which are obtained from ab initio calculations. This model is then extended for the investigation of trion states of monolayer TiS3. Our calculations indicate that the absorption spectrum of monolayer TiS3 drastically depends on the polarization of the incoming light, which excites different excitons with distinct binding energies. In addition, the binding energies of positively and the negatively charged trions are observed to be distinct and they exhibit an anisotropic probability density distribution.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000442342100002 Publication Date 2018-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. H.S. acknowledges financial support from TUBITAK under Project No. 117F095. A.C. acknowledges support from the Brazilian Research Council (CNPq), through the PRONEX/FUNCAP and Science Without Borders programs, and from the Lemann Foundation. E.T. and L.W. acknowledge support from the National Research Fund, Luxembourg (IN-TER/ANR/13/20/NANOTMD). ; Approved (up) Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153721UA @ admin @ c:irua:153721 Serial 5076  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: