|
Record |
Links |
|
Author |
Torun, E.; Sahin, H.; Chaves, A.; Wirtz, L.; Peeters, F.M. |
|
|
Title |
Ab initio and semiempirical modeling of excitons and trions in monolayer TiS3 |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
98 |
Issue |
7 |
Pages |
075419 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
We explore the electronic and the optical properties of monolayer TiS3, which shows in-plane anisotropy and is composed of a chain-like structure along one of the lattice directions. Together with its robust direct band gap, which changes very slightly with stacking order and with the thickness of the sample, the anisotropic physical properties of TiS3 make the material very attractive for various device applications. In this study, we present a detailed investigation on the effect of the crystal anisotropy on the excitons and the trions of the TiS3 monolayer. We use many-body perturbation theory to calculate the absorption spectrum of anisotropic TiS3 monolayer by solving the Bethe-Salpeter equation. In parallel, we implement and use a Wannier-Mott model for the excitons that takes into account the anisotropic effective masses and Coulomb screening, which are obtained from ab initio calculations. This model is then extended for the investigation of trion states of monolayer TiS3. Our calculations indicate that the absorption spectrum of monolayer TiS3 drastically depends on the polarization of the incoming light, which excites different excitons with distinct binding energies. In addition, the binding energies of positively and the negatively charged trions are observed to be distinct and they exhibit an anisotropic probability density distribution. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Physical Society |
Place of Publication |
New York, N.Y |
Editor |
|
|
|
Language |
|
Wos |
000442342100002 |
Publication Date |
2018-08-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
10 |
Open Access |
|
|
|
Notes |
; This work was supported by the Flemish Science Foundation (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. H.S. acknowledges financial support from TUBITAK under Project No. 117F095. A.C. acknowledges support from the Brazilian Research Council (CNPq), through the PRONEX/FUNCAP and Science Without Borders programs, and from the Lemann Foundation. E.T. and L.W. acknowledge support from the National Research Fund, Luxembourg (IN-TER/ANR/13/20/NANOTMD). ; |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
UA @ lucian @ c:irua:153721UA @ admin @ c:irua:153721 |
Serial |
5076 |
|
Permanent link to this record |