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Normal and skewed phosphorene nanoribbons in combined magnetic and electric fields
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The energy spectrum and eigenstates of single-layer black phosphorus nanoribbons in the presence of a
perpendicular magnetic field and an in-plane transverse electric field are investigated by means of a tight-binding
method, and the effect of different types of edges is examined analytically. A description based on a continuum
model is proposed using an expansion of the tight-binding model in the long-wavelength limit. The wave functions
corresponding to the flatband part of the spectrum are obtained analytically and are shown to agree well with
the numerical results from the tight-binding method for both narrow (10 nm) and wide (100 nm) nanoribbons.
Analytical expressions for the critical magnetic field at which Landau levels are formed and the ranges of wave
numbers in the dispersionless flatband segments in the energy spectra are derived. We examine the evolution of
the Landau levels when an in-plane lateral electric field is applied, and we determine analytically how the edge
states shift with magnetic field. For wider nanoribbons, the conductance is shown to have a characteristic staircase

shape in combined magnetic and electric fields. Some of the stairs in zigzag and skewed armchair nanoribbons

originate from edge states that are found in the band gap.
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I. INTRODUCTION

Phosphorene, a single layer of black phosphorus, is a re-
cently isolated material [ 1-4] that provides some extraordinary
advantages over other two-dimensional (2D) materials. Most
importantly, it has a large band gap of about 1.84 eV [5],
thus circumventing the main drawback of graphene with its
zero band gap. Additionally, because of the puckered structure
[2,6,7], it has highly anisotropic electronic and thermal
properties, allowing for the emergence of new functionalities.
In addition, higher carrier mobilities can be achieved as
compared to the 2D materials consisting of transition-metal
dichalcogenides [8].

However, phosphorene also has two major downsides:
(i) the quality of the samples degrades with time when exposed
to air [9], and (ii) unlike few-layer phosphorene, the band
gap is not electrically tunable. The first issue can be evaded
successfully by, for instance, encapsulating phosphorene with
hexagonal boron nitride, as was done previously with graphene
[10-12]. Besides strain [13,14], fashioning phosphorene into
nanoribbons can modify the band gap through the quantum
confinement effect. Indeed, several theoretical papers have
studied various types of phosphorene nanoribbons, and all of
them show the potential for certain applications [15—17]. Note
that due to the anisotropy of phosphorene, there are two distinct
types of zigzag (ZZ) and armchair (AC) edges—normal
and skewed—with skewed edges intersecting the ridges of
phosphorus atoms at a sharp angle [15]. Intriguingly, normal
zigzag and skewed armchair (sAC) nanoribbons are metallic,
while skewed zigzag (sZZ) and normal armchair nanoribbons
are insulating, and all of them have an electrically tunable band
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structure, featuring metal-insulator transitions for a sufficiently
strong electric field. Furthermore, as a consequence of low
scattering rates of carriers, high values of electron mobility in
phosphorene were demonstrated [2,3].

While it was predicted that “bulk phosphorene” displays
linearly dispersing Landau levels (LLs) for low-energy quasi-
particles in low magnetic fields [18-21], which was confirmed
by recent experiments [11,12], the results concerning the
magnetic response of phosphorene nanoribbons are relatively
scarce. In Ref. [18], the formation of LLs in normal nanorib-
bons was reported, while in Ref. [20] the impact of a magnetic
field on the quasiflat bands (QFBs) of zigzag nanoribbons
was investigated. The purpose of this paper is to examine the
influence of a magnetic field on phosphorene nanoribbons in
more detail. In particular, we will examine the band structure of
phosphorene nanoribbons with various edge types (including
skewed). We will discuss the impact of dispersion anisotropy
on LL formation from both a qualitative and a quantitative
point of view. We will also briefly consider the effect of
an in-plane electric field on the LLs. The influence of the
nanoribbon width on the electronic structure and transport
properties will also be analyzed.

II. THEORETICAL MODEL

We model the phosphorene nanoribbons using the tight-
binding model, which is defined by 10 hopping parameters [5]
shown in Fig. 1. Within the tight-binding approximation, the
Hamiltonian reads

T 0

i#]
where the summation runs over all the lattice sites of
phosphorene, #;; are the hopping parameters, ¢;; = 7 fr? A-dl
denotes the Peierls phase picked up while hopping in the

presence of the magnetic field, and c} (c;) is the creation
(annihilation) operator of an electron on the site j(i).
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FIG. 1. Illustration of the phosphorene structure: (a) top view and
(b) side view. The red transparent-solid (opaque-dashed) rectangle
indicates the unit cell in the four-band (two-band) model. Relevant
parameters are explicitly indicated in the figure.

The unit cell of the single phosphorene sheet, framed by
the solid square line in Fig. 1, contains four atoms labeled
by A (blue), B (green), C (yellow), and D (black). It is
straightforward to show that the diagonal terms of the effective
Hamiltonian, related to the conduction and valence band, are

K2 K2
EM = Eqo+ K2+ ——k2, @)
2 - 2mey
X K2 72
EN = Epp— ——k> — k2, 3)
v ZmZ’)C * ZmZ’y Y

respectively. Details of the derivation are given in the Ap-
pendix. Here, the effective masses along the I'-X direction are
the same as in the case when coupling between the conduction
and the valence band is neglected,

me(h),x mOe(Oh),x 2(“)( :t Xx) ’ (4)

while the effective masses along the I'-Y direction are modified
by the term that perturbatively takes into account the interband
coupling,
h2
My y = - &)
’ 2(ay £ 4y + g_g)

The upper “+” (lower “—) sign is for the electron (hole). The
effective masses along the main axes (see Fig. 1) are given
in Table I. Note that there is a difference between our results
and the one obtained from the previously derived continuum
model [18] based on five hopping parameters [22].

Our goal is to analyze nanoribbons with arbitrary edges,
where the translation vector of a unit cell is d = c.a.e, +
cyaye,. Here, ¢, and ¢, are mutually prime integers, e,(,) are
the unit vectors, while d = |d| is the length of the unit cell.
Since ribbon edges are not flat, we define the effective ribbon
width as the total square of hexagonal plaquettes inside the
unit cell divided by the unit-cell width d.
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TABLE 1. The effective masses along the main axis for the
electron and the hole, where m is the free-electron mass.

x-ZZ y-AC
m’ (the electron) 1.1547my 0.1951m,
0.848m* 0.167my*
m}, (the hole) 3.2279my 0.1651my
1.142my* 0.184m*

2Results from Ref. [18].

It is straightforward to show that the effective masses of
electrons and holes in the vicinity of the ' point along the x’
and y’ axes, which are directed along and perpendicular to the
ribbon edge, are, respectively, given by

1 1 ) .5
" = — cos” ¢ + sin” ¢
me(h),x’ me(h),x me(h),y
_ Mmoo B ©
= 2 2 )
h* ko—0 dkz, k=0
1 1 )
" = sin? @+ Ccos™ ¢
Mygy vy My M hy.y
m d*E
= +— lim —2 ) )
ﬁz ky—0 dkf,

k=0

where E,() denote the electron (hole) dispersion relation
derived in the Appendix. Here ¢ = arctan(cya,/cxay) is the
angle of rotation with respect to the (x,y) coordinate system
shown in Fig. 1. To write the Hamiltonian in the rotated frame,
we replace k, — kycosg —kysing and ky, — ky sing +
ky cos ¢ in Egs. (2) and (3). For infinitely long nanoribbons
with arbitrary edges, the Hamiltonian should not depend on
x', therefore ¢y (x',¥") = ¢ew)(y")e*+* . For convenience, we
set y' = 0 in the middle of the ribbon.

We include the magnetic field perpendicular to the structure
(B = Be;), which implies that in the continuum model,
ke — ky —y'/1%, where we adopt the Landau gauge A =
(—By',0,0), with Iz = /i/e B being the magnetic length and
operators k, = —id/dx’ and kyy = —id/dy’. Using Eqs. (6)
and (7) and after some elaborate algebra, we obtain a set
of decoupled differential equations for the conduction and
valence bands,

2
K2 .0 {min oy tan 2¢ 5
| Tigs Y *( LA | | $ew)(P)
M),y y Moy x' 2y
I, 5 B .
5oy @0 T 9e(F) = AEecoyben(3), ®)

where the subscripts ¢ and e are used for the conduction band,
and v and / denote the valence band. Here, § = y' — k/.I% is the
shifted y’ coordinate, wen) = eB/~'my, .my,, , are the cy-
clotron frequencies for the electron (hole) in bulk phosphorene,
and AE ) = £(E.w) — Ecwp) are eigenenergies measured
from the bottom (top) of the conduction (valence) -band edges.
One may notice that the above equation does not include the
term related to the band offset at the edges of the ribbon. This
is because we want to analyze the conditions under which LLs
exist in a ribbon. Namely, we insist that either the ribbon is
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sufficiently wide or the magnetic field is sufficiently strong, so
that particle localization is governed by the effective parabolic
. 2 .
potential V) (ky/,y',B) = %me(h),y/a)g(h)(y/ —I3k))", which
is given in Eq. (8), rather than by the ribbon edges.
We seek the eigenvector components in the form

Gew)(¥) = exp <_M)~’_2>
c(v =

h 2
[ ™o,y tan 2¢ 3 3
- 1 A c(v ) 9
X exp [l (m:(h)’x/ 2B 2 few @), )

which leads to the differential equation
L@ = 28,05 &) + (ecy — D fewy(&) =0, (10)

where & = &) = Vmy, - W/l - § is the dimensionless
coordinate and &,y = 2AE)/hwen 1s the dimensionless
energy. Finally, to get eigenvalues denoted by the integer
quantum number, we impose the condition e,y — 1 = 2n,x).
Thus, the solutions of Eq. (10) are Hermite polynomials,

2

d"e~¢

fM@=QM@=qewﬁd@

, (11
where the principal quantum number n £ ney = {0,1,2, ...}
is the LL number, the normalization constant is C, =
«Al/m:(h) o @eny/ V12012112 and the eigenvalues of the
LLs follow the quantization of a one-dimensional quantum
harmonic oscillator (QHO),

EX = E + hoe(n. + 1), (12)

E{;L = EUO - ﬁwh (nh + %) (13)

It is obvious that the separation between adjacent energy
levels (|Anep| = 1) is approximately AE. ) = fiwey). This
energy difference is independent of edges and is equal to the
one found in a single-layer phosphorous sheet [18,19].

It should be pointed out that the exact treatment of
LLs in bulk phosphorene shows that the off-diagonal terms,
which account for the conduction- and valence-band coupling,
are similar in form to the Rashba (Dresselhaus) spin-orbit
interaction in conventional semiconductors [23]. However,
these terms do not contribute significantly to the spectra of
the lowest energy states, and the spatial density distribution
corresponding to the first few LLs is found to have an elliptical
shape [18]. In a quasiclassical picture, we might infer that,
when the magnetic field is turned on perpendicular to the
bulk phosphorene sheet, electrons and holes undergo elliptical
cyclotron orbits.

Let us now consider the impact of a perpendicular magnetic
field. When the magnetic field is turned on, the particle is
essentially confined in the transverse direction by a restricted
effective parabolic potential V) (k,,y’, B). One may notice
that an increase (decrease) of &, shifts the effective parabolic
potential toward the upper (lower) ribbon edge for both the
electron and the hole. Therefore, states occupying positive
and negative momenta reside on opposite sides of the ribbon.
Also, the magnetic field does not separate oppositely charged
particles in the transverse direction, and the electron and the
hole will have similar localization in space even when the
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magnetic field is turned on. Furthermore, the effective potential
is proportional to the transverse effective mass my, .,. Thus,
the confinement will be stronger in ribbons with higher
effective mass in the transverse direction.

For relatively low values of B, the influence of the
parabolic potential is small and the wave function is essentially
determined by edges of the ribbon, i.e., the potential in
the transverse direction resembles an infinite potential well.
However, when the eigenvalue energy of the 7n,.)th electron
(hole) state in bulk phosphorene is lower (higher) than the
effective potential at the ribbon edge closer to the potential
extrema, i.e., when

1 1 w 2
Fiwen <ne(h) + 5) < Eme(h)’y/a)g(h)<7 — 1§|kx,|> . (14)

the confinement along the y’ direction is dominantly QHO-
like. We should note that this criterion is not so rigid.
Namely, the effective potential at the closer edge should
be sufficiently larger than the QHO eigenenergy so that the
corresponding eigenfunction decreases sufficiently before it
reaches the ribbon edge. More comprehensive criteria are
established in Ref. [24], but since we have already made a few
approximations, it would not improve the analytical results
significantly.

The smallest value of the magnetic field for LL formation
in the nth electron (hole) state is found when k,, = 0, and
< in Eq. (14) is replaced by an equality sign:

_ 4K(2n, 1) v/ Metn.xMean.
pmin _ e + 1) s

Nety — eW?

*
M),y

Note that the minimal field B;“:,“) is proportional to the number
of LLs. In the above equation, only the transverse effective
mass m;q, ., depends on the edge orientation, and B,‘l“::‘)
decreases monotonically with it. In phosphorene, the largest
value of the effective mass is in the zigzag direction, while
the smallest one is in the armchair direction. Therefore, the
magnetic field required for the formation of the LLs is the
smallest in the case of AC ribbons and the largest for ZZ
ribbons. A similar conclusion could be drawn intuitively from
the analysis of the effective potential, based on the argument
related to the confinement strength.

Furthermore, when B > B,T:;‘) we deduce from inequality

(14) that in the range k. € (—kfB  kPB

) Ry, X" Re(ny, X
become independent of k., where

,), eigenvalues

1
3
B 1| W 5 o[V MM ey
= | = — Neh + _—
Ne(h), X Iz | 215 V “te(h) mZ(h),y’

(16)

is the flatband boundary wave number. Namely, the band
structure of states that satisfy the condition (14) should appear
flat. It is straightforward to show that the flatband boundary
wave number increases with transverse mass. Therefore, the
flatband range is the widest for a ribbon with AC edges and
the smallest for a ZZ ribbon. Furthermore, the width of the
flatband decreases with increasing LL number, which is due
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to the fact that higher states extend more along the width of
the ribbon, so the condition that the wave function “touches”
the ribbon edge given by inequality (14) is satisfied for smaller
values of the longitudinal momentum.

Let us also briefly discuss the influence of an in-plane
electric field E, on the LLs. Such an external electric
field modifies the on-site energy. Therefore, in the contin-
uum model we add the potential V(E|,y") = eEyy =

eEy(§ + 3ky) to the diagonal terms. It is straightforward
to show that the differential equations (8) are modified
so that the effective potential becomes V) (ky,y’,B) =

2 .
e,y oLy — 15k} £ eEy [/ (megny.y @7,)]", while  two
terms are added to the right side of the equations, AE.q) —
A.EL-(,{) + eEy/kxfl.% F e? E)%,/(Zme(h),y/a)g@)). Finally, we ob-
tain similar solutions for the eigenfunctions as for the case
when only the magnetic field is applied. As expected, the wave
functions are shifted along the ribbons width in the direction of
transverse electric field for holes, and in the opposite direction

for electrons. Also, eigenenergies of LLs are modified,

22

L+ eEykoly. (17)

Ecwy = Elj(Ey =0) F
' 2Meon), y @y

We infer that the energy gap between the states in the
conduction and valence bands with the same &,/ is reduced
by €2 E}2 [ (Mo, y/wz(h)), while formerly flatbands adopt linear
dispersion (~eE k%) turning the band gap to indirect. This
behavior is expected since B leads to a shift of states with posi-
tive (negative) momenta to the upper (lower) side of the ribbon,
and therefore electrons and holes experience opposite potential
shifts. Moreover, the wave numbers that determine the bound-
aries of these linear regions can be found from (14) when
ky is substituted by k. F Ak(E,,B), where Ak(E,,B) =
eEy [(Meny,y @alg) = (Ey [ BR)Moh) xMe(hy,y/ Meny.y- One
may note that these spectral shifts depend linearly on E, .
Moreover, based on the argument regarding the value of the
effective mass in a certain direction, it is easy to conclude
that these shifts are smallest in a ribbon with AC edges and
are largest for the one with ZZ edges. Consequently, the band
dispersions become tilted when E is applied.

The presented continuum model does not account for
the edge states. The presence and the origin of these states
in ribbons with various edges were discussed in detail in
Refs. [15,16]. The recently proposed continuum model with
proper boundary conditions results in adequately modeled
edge states for ZZ ribbons [25]. In a former approach [16], the
edge states are treated as quasiflat bands and are determined
as the zero-energy states in the anisotropic honeycomb lattice
model.

We note that for chosen directions of the magnetic and
electric fields, the wave functions are symmetric along the
x’ direction of the ribbon’s unit cell. Therefore, the effective
translation vector that is twice as short (d/2) can be introduced.
The same argument is used for the derivation of the two-band
Hamiltonian. As a consequence, the first Brillouin zone (FBZ)
becomes twice as wide and the energy spectrum unfolds. The
calculation times become more than twice as short.

In addition to the calculation of electron states, we model
electron transport by using the formalism of a nonequilibrium
Green’s functions [26]. The structure is assumed to be
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connected to the environment by semi-infinite leads, and
conductance is determined for the case of linear response using
the Fisher-Lee relation [27]

2 L
o(E) = %TT(FL(E)GTD(E)FR(E)GD(E))~ (18)

Here, G denotes the device Green’s function, which is given
by

Gp(E)=[E — Hp— 2. (E)— Zg(E)™",  (19)

where X (g are the self-energies:

Yiry(E) = HZ(R)DgL(R)HL(R)Da (20)

and grr)(E) = (E — HL(R))_1 are the Green’s functions of
the left (right) leads. Here, Hp is the device Hamiltonian,
Hj gy describe hopping in the left (right) lead, Hy(g)p describe
hopping from the device to the left (right) lead, and I'z(z) is
the broadening matrix,

Pun(E) = i(Zum(B) = g (B). @D

A detailed description of the transport model as well as pro-
cedures for its implementation are explained in Refs. [29,30],
and references cited therein.

III. NARROW NANORIBBONS IN COMBINED FIELDS

Our goal is to compare nanoribbons with equal width
having different edges. Therefore, we chose the number of
dimers along the ribbon cross section to be 61, 38, 46,
and 74, so we have approximately 10-nm-wide nanoribbons
with AC, sZZ, ZZ, and sAC edges, respectively. And we
chose the value of a perpendicular applied magnetic field
B =500 T, such that Landau level formation can be seen.
Notice that the critical field according to Eq. (15) is inversely
proportional to the square of the ribbon width. Furthermore,
for 10-nm-wide nanoribbons, energy levels are substantially
separated, such that LLs are visualized with more details.
Yet, the results do not qualitatively change if the nanoribbon
width is increased, which will be demonstrated later for an
order of magnitude wider nanoribbons. The eigenenergies are
calculated numerically using the tight-binding Hamiltonian
given by Eq. (1).

In Fig. 2, we show the band structures of AC nanoribbons
for the following cases: (a) in the absence of fields, (b) with
applied magnetic field only, and (c) in the presence of both
B and E,. In the absence of fields these nanoribbons are
insulating [15], and they host a series of parabolic bands,
which are effectively “sampled” from the band structure of
bulk phosphorene, as might be inferred from Fig. 2(a). When
the magnetic field is turned on, LLs are formed and flatbands
appear, as shown in Fig. 2(b). Quasiclassically, for states away
from the edges, the magnetic field enforces closed elliptical
cyclotron orbits. These states in turn quantize into LLs and
form the flat parts of the bands displayed in Fig. 2(b). Note
that these segments get narrower at higher energies and lower
magnetic fields; the reason for this is that the cyclotron radius
enlarges, and therefore fewer orbits are uninterrupted by the
edges.
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FIG. 2. The band structure of Noc = 61 nanoribbon for(a) B = 0
and E;y =0, (b) B=500T and E;y =0, and (¢c) B =500 T and
E, =200 mV/nm. Dashed magenta (blue) lines in the conduction
(valence) band denote theoretically calculated edges of the flat and
linear bands in (b) and (c), respectively.

As we discussed in Sec. II, due to the large effective
mass in the transverse ZZ direction, confinement is strong,
and LLs might be found almost as soon as B is turned
on. Therefore, a large number of LLs are supported by
nanoribbons with AC edges. Dashed magenta and blue curves
denote theoretically calculated edges of the flatbands in the
conduction and valence band, respectively. There is good
agreement between these edges and our numerical results.
One of the reasons for certain small differences is explained
in Sec. II, and is related to the flexible condition for these
edges, given in Eq. (14). The other reasons are the finite
width of the ribbon and interband coupling [18], due to which
the spacing between LLs decreases as we move from the top
(bottom) of the valence (conduction) band. Therefore, AE CI:(I;)
are overestimated, and slopes of the theoretically calculated
edges are higher than the actual ones. Furthermore, we must
bear in mind that the continuum approximation is valid in
a relatively narrow range of momenta around the I' point.
Consequently, the discrepancy between the analytical and
numerical results is larger for the AC ribbon.

When an electric field Ey is applied, the flatbands become
linearly dependent on B and appear as tilted. As predicted
by theory, due to the linear term the band gap switches to an
indirect one as soon as the in-plane electric field is applied.
For the value of the electric field £, = 200 mV /nm, the band
gap closes, as might be observed from Fig. 2(c). Furthermore,
shifts of these linear segments in momentum space seem to
be almost equal for the conduction and valence band. Earlier,
we analyzed the spectral shift with respect to the effective
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FIG. 3. Left (right) column depicts the probability density of
states in the Nyc = 61 nanoribbon in the top of the valence (bottom
of the conduction) band at k,» = 0 when (a),(b) B=0and E, =0
(first row), (c),(d) B =500 T and E, =0 (second row), and
(e),(f) B=500 T and E,, = 100 mV/nm (third row). The solid
curves and the symbols show |¥|?> found from the continuum and
the tight-binding model, respectively.

masses and found that Ak ~ mp) xMen),y/Mem),y - In the case
of AC ribbons, AkAC ~ Me(h),y, Where m, , = 0.195m and
my, , = 0.165my, thus the spectral shifts have similar values
for electrons and holes. We note that only for AC ribbons is
the shift slightly larger for electrons than for holes. For all the
other ribbons discussed in the paper, the mass-dependent part
of the shift for the holes is approximately 1.5-3 times larger
than for the electrons. Therefore, we expect that for ribbons
other than of the AC type, the holes are much more sensitive
to the in-plane field than the electrons.

In Fig. 3 we show the real-space probability density of
states at the top (bottom) of the valence (conduction) band
for k. = 0. The states are marked with correspondingly
colored circles in Fig. 2. Numerical results are compared to
analytical solutions. To compare probability densities found
by the tight-binding model to those determined by means of
the continuum approximation, we divide the probability for
occupying a certain state by the distance between the adjacent
atoms in each sublattice, i.e., ij\C =a,/2 for AC and

Ay = 5 cosp = %% for all the others. When magnetic
and electric fields are not present, confinement along the
transverse direction is as in an infinite potential well. Wave
functions that are obtained numerically (denoted by open
circles in Fig. 3) are compared to the theoretical expression
Wo(y', ke =0) = \/%COS(%)I/) displayed by solid lines in
Figs. 3(a) and 3(b), for the hole and the electron, respectively.
We found that the wave function is spread along the ribbons
with similar distribution for both the electron and the hole, as
predicted by the theoretical expression. According to Eq. (9)
for the case when both magnetic and electric fields are applied,
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FIG. 4. The band structure of N7z = 38 nanoribbon for (a) B =0
and Ey =0, (b) B=500T and Ey =0, and (c) B =500 T and
E, =100 mV/nm.

the ground-state wave function at k,» = O reads

1
O, Me(h),y' We(h) 1
|1//82h)(y skx’ = 0)| = <#> exp

_ Me(h),y Pe(h)
2h

ek

!
(¥ E——s—
Me(h),y' Wp(p)

(22)

When only the magnetic field is present, we found excellent
agreement between our numerical results and the theoretically
predicted Gaussian function from our simplified model.
Namely, almost perfect bell-shaped functions are formed in the
middle of the ribbon, as may be inferred from Figs. 3(c) and
3(d) for the hole and electron, respectively. Good agreement
is also found in the presence of an electric field, as shown in
Figs. 3(d) and 3(e). The wave functions remain Gaussian-like
but shift toward the upper (lower) edge for the hole (electron).

Next, we display the evolution of the band structure of
sZZ nanoribbons in magnetic and electric fields in Fig. 4. In
the absence of the fields, similarly for AC, these ribbons are
insulating, as inferred from Fig. 4(a). When sufficiently large
B is applied, LLs are formed in the middle of the FBZ, i.e., the
parabolic bands evolve, and they start featuring dispersionless
segments, as we observed in Fig. 4(b). By inspection of
Fig. 4(b), we note that there are fewer flat segments that are
somewhat narrower than in the case of the AC ribbon with
approximately the same width.

To elucidate these effects, in Fig. 5 we plot the real-space
probability density of the ground states marked with corre-
spondingly colored circles in Fig. 4, where solid and dashed
curves depict |W|> on opposite sublattices. Both sublattices
exhibit the same functional variation of |W|?, with a slight
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FIG. 5. The left (right) column depicts the probability density
of the ground states of the Nyzz; = 38 nanoribbon in the top of the
valence (bottom of the conduction) band at k,y = —0.87/dzz (first
row), k,, = —0.2w /dyz (second row), k., = 0.27 /dszz (third row),
and k,» = 0.87/dyz (fourth row). The light blue lines correspond to
B =0and E, = 0, red lines correspond to B = 500 T and E,» = 0,
while green lines correspond to B = 500 T and E,y = 100 mV /nm.
The solid and dashed lines show |W|? of the opposite sublattices.

lateral offset, which is a general property independent of the
applied fields. The left (right) panel column corresponds to the
valence (conduction) band, while the first, second, third, and
fourth rows in the panel correspond to k,» = —0.87/d, ky =
—0.2n/d, kv =0.27/d, and k,, = 0.87/d, respectively. In
the absence of fields, the ground electron and hole states fully
extend across the ribbon width, regardless of the k,/, as might
be observed from the light blue curves in Figs. 5(a)-5(h). For
nonzero k,, energy increases as described by hzkf, [2Meany v
while confinement along the ribbon width remains unchanged.
The probability densities of the ground states corresponding
to the dispersionless segments in the valence (conduction)
band are shown by the red curves in Figs. 5(c)-5(f). We infer
that these probability densities have an almost unchangeable
Gaussian shape for any &, in the flatband range, as can be
concluded by comparing the red curves in Figs. 5(c) and 5(e)
for the valence band, as well as from Figs. 5(d) and 5(f) for
the conduction band.

Next, we analyze the effects of an applied transverse electric
field. By comparing the green curves in Figs. 5(b)-5(g) to
the red ones, we found that the states are almost the same
as in the case when only the magnetic field is applied. As
expected, calculated wave functions in linear segments of
the spectrum shown in Fig. 4(c) have a shape that is almost
identical to the corresponding eigenfunctions in the flatbands.
However, these states are shifted along the ribbon width due
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FIG. 6. The band structure of Nz; = 46 nanoribbon for (a) B = 0
and E;y =0, (b) B=500T and E;y =0, and (¢c) B =500 T and
E, = 100 mV/nm. The edge states are shown by the dotted green
line.

to the electric field. For negative values of the longitudinal
momenta where the dispersion is linear [see linear segments
limited by the dashed blue line in Fig. 4(c)], the hole wave
function is localized around the center of the ribbon. Note
that the valence-band ground state at k,, = 0.27/d is not
in the linear region, as shown in Fig. 4(c). In fact, since
Ak;?% | AkS?2 = 2.352 is large, linear segments are much more
shifted in the valence than in the conduction band, as displayed
in Fig. 4(c). Therefore, the probability density displayed in
Fig. 5(e) interferes with the upper ribbon edge, and it differs
from the bell-shaped function shown in Fig. 5(c).

However, the most intriguing behavior occurs near the left
zone edge, where crossing is found for the hole ground state.
The crossing involves the states localized at the opposite edges
of the ribbon [see Fig. 4(c)]. Therefore, the localization of the
hole ground state can be abruptly changed by the electric field,
as shown in Fig. 5(a). The same effect occurs in the conduction
band, but near the upper edge of the FBZ [see Fig. 4(c)]. Due to
the crossing, the electron localization switches to the opposite
edge, as shown by the green curves in Fig. 5(h). Additionally,
the position of the crossings can be tuned by a magnetic field.

The band structures of zigzag nanoribbons are shown in
Fig. 6. As discussed in Sec. II, the interband coupling has a
smaller influence on the motion along the I'-X direction, and
the dispersion is almost perfectly parabolic in most of the bands
[see Fig. 6(a)]. Since ZZ ribbons have the weakest confinement
in the transverse direction even when high B is applied, only
a few LLs evolve [see the small regions encircled by dashed
lines in Fig. 6(b)]. When the electric field is applied, bands
become immediately tilted, and newly formed linear bands
are shifted. By comparing these shifts in the conduction and
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FIG. 7. The band structure of Njsc = 74 nanoribbon for (a) B =0
and Ey =0, (b) B=500T and E,y =0, and (c) B =500 T and
E, = 100 mV/nm. The edge states are displayed by a dotted green
line.

valence bands in Fig. 6(c), we realize that the hole is much
more sensitive to the electric field, which is supported by the
fact that the ratio Ak /Ak?* = 2.795 for ZZ nanoribbons is
the highest out of all considered ribbons.

In Fig. 7, we show the band structure of skewed armchair
nanoribbons. Note that there are fewer flat segments in the
spectrum of Fig. 7(b) corresponding to LLs forming around
the middle of the ribbon than in the case of AC and sZZ
ribbons. Also, these segments are much narrower, which can
be explained by having in mind that the width of FBZ for
sAC is 1.5-3 times narrower than for the other ribbon types.
Since AkJAC/AKSAC = 2.734, linear segments are much more
shifted in the valence than in the conduction band, and the
dashed blue line delineating linear bands starts at the band
edge, as shown in Fig. 7(c).

Finally, we investigate the behavior of edge states. These
states are in the gap and have energies close to zero, as
predicted by a simple model for anisotropic honeycomb
lattices [16]. They do not undergo Landau quantization, as
can be seen in Figs. 6(b) and 7(b), which is a consequence of
their exponential localization near the edges [15]. Instead, each
QFB is effectively shifted along the &,  axis, but in opposite
directions. This behavior was absent in the case of edge states
in zigzag graphene ribbons, since the corresponding bands
were not fully detached from the bulk bands [16], as is the
case with edge states in phosphorene nanoribbons.

In Fig. 8, we take a closer look at QFBs for (a) Nzz = 46
and (b) Ngac = 74 and a range of magnetic-field values. In
the absence of a magnetic field, the bands are degenerate for
both ZZ and sAC, as depicted by solid blue curves in Fig. 8.
It is clear that the QFBs are progressively shifted in opposite
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FIG. 8. The quasifiat bands for (a) Nzz = 46 and (b) Nac = 74
nanoribbon for B = 0 (blue solid curves), B = B../2 (red dashed
curves), and B = B, (green dotted curves).

directions with increasing magnetic field (see the red dashed
lines in Fig. 8). An explanation for this behavior is very similar
to the one given in Ref. [28]: exponentially localized states
“sample” the vector potential only in a small area where it is
effectively constant, and therefore the effect of magnetic fields
amounts only to a phase shift. Additionally, the two QFB states
are localized at opposite edges (at y’ = +W /2, for a ribbon
of width W), where the local vector potential A = B(—y,0,0)
has different signs, which explains the opposite shifts.

A quantitative description can be obtained by employing
the principle of minimal coupling kv — k' + £ A . In other
words, the bands get shifted left and right by %, depending
on at which edge they are localized. We have confirmed that
this is indeed a very good approximation for smaller fields.
This also suggests that when 7 /d = eB..W /2h, where d is
the unit-cell length, QFBs get completely “out of phase,” so
that maxima and minima change places (see the green dotted
curves in Fig. 8). This critical magnetic field is then given
as By = 2w h/(ed W), which in fact means that the magnetic
flux through the unit cell (¥, = B,dW) is equal to one flux
quantum (®y = h/e).

The exact expressions for the critical magnetic
field read BczrZ = ®y/[(Nzz — 1)Anex] and Bcsfc =
Dy /[2(Nsac — 2)Anex] for ZZ and sAC ribbons, respectively.
Here, Anex = a,c,/2 is the area of plaquette projection onto
the x,y plane. The green dotted curves in Fig. 8 show the band
structure at B.;. However, these two bands are not degenerate
and thus they are not exactly in opposition with respect to the
solid blue curves. There are two reasons for this, both related
to the fact that edge states have some finite spread toward the

PHYSICAL REVIEW B 96, 125434 (2017)

ribbon center. On the one hand, this means that the edge states
effectively experience somewhat smaller ribbon widths (thus
increasing true B;). On the other hand, for larger magnetic
fields the vector potential has a stronger spatial variation, so
that the simple picture of phase shifts (assuming relatively
constant A in the narrow space occupied by the edge state)
gradually loses validity.

IV. WIDE NANORIBBONS IN COMBINED FIELDS

our calculations, it was necessary to adopt large values of B,
which might stay beyond current experimental observations.
Similarly, the value of the electric field that closes the band gap
is high such that real samples could be damaged under these
conditions. Experimental conditions could be approached by,
e.g., assuming a larger nanoribbon width.

The band structure of 100-nm-wide AC, sZZ, ZZ, and
sAC nanoribbons is shown in Fig. 9. The eigenenergies are
calculated numerically using Eq. (1). The upper panel displays
how LLs are formed in the presence of a magnetic field whose
magnitude is B =20 T, whereas the lower panel shows a
result when both a magnetic field B = 20 T and an electric

>
a

0.76

oo

E(eV) S

-1.2

i /|

-1.28
0.74(0)

B=20T, Ey=0mV/nm

-1.18 %
-1.22/A\

-1.26
05 0 05
ke (ndsac)

20T, Ey'=1 mV/nm

B

B =20T: (a) Nac = 610, (b) Nyzz = 380, (c) Nzz = 460, and (d)
Ngac = 740. Lower panel: the same as in the upper panel but for
B=20T and Ey =1 mV/nm: (e) Nac = 610, (f) Nyzz = 380,
(g) Nzz = 460, and (h) Ngac = 740. Dashed magenta (cyan) curves
denote borders of linear parts of the dispersion relations in the
conduction (valence) band.
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FIG. 10. The conductances of Nac = 610, Nyz = 380, N7z =
460, and Nyac = 740 are shown in the upper panel in (a), (b), (c), and
(d), respectively. The dependences when fields are off are marked by
solid blue lines, when only B = 20 T is shown by green dashed lines,
and when B =20 T and Ey = 3 mV/nm is displayed by dotted red
lines.

field E,, =1 mV/nm are applied. Since the energy spectra
are dense in these wider ribbons, states originating from only
the valence-band top and the conduction-band bottom, which
are both located in the vicinity of the I' point, are displayed
in this figure. As a priori inferred, wider ribbons are more
suitable for our analytical estimates, which is confirmed by
a comparison of the results of the analytical model and the
obtained numerical results for this case. The analytical model
predicts that a large number of Landau states emerge in AC
ribbons, which are represented by linear segments in Figs. 9(a)
and 9(e). As Figs. 9(b) and 9(f) show, the number of LLs in
sZZ nanoribbons is comparably smaller. Yet it is larger than
the number of LLs in ZZ nanoribbons, as Figs. 9(c) and 9(g)
show. And similar to the latter case, a small influence of the
magnetic field on sAC nanoribbons is found [see Figs. 9(d)
and 9(h)]. The small difference between the sAC and ZZ
nanoribbons is a consequence of the small angular separation
between the sAC and ZZ directions. It also implies that the
values of the parameters of the effective model are similar for
the two directions.

For the considered nanoribbons, we compute the conduc-
tance for T = 0 K and display it in Fig. 10 for four types
of edges. They all exhibit conductance quantization in a
magnetic field. For the cases of AC and sZZ nanoribbons
there are no edge states, so we show only conductance for
a range of energies near the bottom (top) of the conduction
(valence) band in Figs. 10(a) and 10(b). It is quite apparent
that conductance adopts a distinctive staircase shape in a range
of energies in which LLs exist. Furthermore, the diagram
for a sufficiently large magnetic field (dashed green line) is
considerably misplaced with respect to the B = 0 case (solid
blue line). The effects of a magnetic field on the conductance
dependence are much smaller for the cases of ZZ and sAC
nanoribbons, which are shown in Figs. 10(c) and 10(d). Here,
only a few LLs are formed near the bottom (top) of the
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conduction (valence) for B =20 T. Applying a transverse
electric field E/ together with the magnetic field leads to a
decrease of the band gap and an increase in the height of the
stairs in the G(E) dependence, as shown by red dotted lines
in Fig. 10. It is a result consistent with Eq. (17). At higher
energies, where LLs cease to exist, the separation between the
levels is similar to the B = 0 case.

One important detail in Fig. 10 should not escape our
attention. Itis the region of a constant conductance in the gap of
the ZZ and sAC nanoribbons [see Figs. 10(c) and 10(d)]. The
nonzero conductance here arises from the edge states hosted
by these types of nanoribbons. This region exists for a zero
magnetic field, and in the ZZ nanoribbons it is not affected
by an applied magnetic field, as the overlap between the solid
blue and dashed green lines in Fig. 10(c) indicates. Similarly,
the central region is slightly modified in sAC nanoribbons [see
Fig. 10(d)]. But, when both the electric and magnetic fields
are applied, the conductance changes considerably. These
changes are established by means of splitting and shifting
of the edge states toward the bottom of the conduction and the
top of the valence band. The eigenenergies of the edge states
in ZZ nanoribbons vary considerably with momentum and
decrease the band gap. Hence ZZ nanoribbons are metallic
regardless of width, which is a detail that might be derived
from Fig. 10(c). On the other hand, in SAC nanoribbons the
band gap opens around the Fermi level even for a small value
of E,/, which turns the nanoribbon into an insulating state. We
might conjecture that this effect could be useful for efficient
lateral gating of field-effect transistors (FET) with a channel
made of a single-layer phosphorus sheet [15].

V. SUMMARY AND CONCLUSIONS

In summary, we derived a Hamiltonian to describe the
electronic structure of phosphorene nanoribbons with arbitrary
edges in transverse electric and perpendicular magnetic fields.
We found that when a magnetic field is turned on, the states
of positive and negative momenta split to the opposite sides
of the nanoribbon. An analytical expression for the minimal
magnetic field when the bands become flat is obtained. The
boundaries of these flat segments in momentum space are
also described by analytical functions. We show that both the
minimal field and the extension of the flatbands depend on
the type of nanoribbon edge. Furthermore, when the magnetic
field increases, the Landau level spectrum emerges first in
an armchair nanoribbon and last in the zigzag nanoribbon of
equal width. Thus, the transverse confinement of electrons is
found to be weakest in the zigzag nanoribbons and strongest
in the armchair nanoribbons. Moreover, the application of an
in-plane electric field causes the band gap to decrease and turns
the previously flat segments into ranges of linear variation of
the energy spectra in momentum space. We found that the
electric field gives rise to shifts of crossings toward the center
of the phosphorene Brillouin zone. Furthermore, the analytical
expression for the critical magnetic field, when the edge states
that are localized at opposite edges acquire counter phases, is
derived for the cases of zigzag and skewed armchair nanorib-
bons. For all analyzed nanoribbon types and for two values
of width, we found good agreement between the numerical
results obtained by means of the tight-binding method and
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the results derived from an analytical model. Furthermore,
due to quantization of Landau levels, conductance exhibits a
characteristic staircase shape at low temperature, and stairlike
features of conductance due to edge states are found in the band
gap. The band gap in skewed armchair nanoribbons appeared
to be efficiently opened and closed by an in-plane electric field,
which might be important for nanoelectronic applications of
phosphorene.
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APPENDIX: THE EFFECTIVE HAMILTONIAN

Using the tight-binding model, the four-band Hamiltonian
[16,19] for a single-layer phosphorene sheet is given by

Uy Hap Hpp Hye
A4 Hjp Us Hgp Hpc (A1)
* T \H:, Hi, Up Hpcl|

Hi. Hze Hpe Uc

with eigenvectors represented by the spinor (Paddsdpdc]”,
and diagonal terms are given by

U = Uu_p = 2t3cos(ayky) + 2t7 cos(ayk,)

+ 4t cos(axky) cos(ayky). (A2)
The interaction terms between sublattice sites are
Hap = Hp = el 4 ggemib@—h)
+ 2ty cos(acky)e Ry @=ha) (A3)
Hap = Hie = 4ts cos (%) cos (a>’2k>'>, (A4)

ack .
Hyc = Hyp = 2t4cos (—sz )e’k>(“>‘_h“‘)

axkx 3axkx ik
+ 2|t cos - + tg cos — e ikhy

(AS5)

Here hy, = d; cos(anex/2) and hy, = dycos B (see Fig. 1).
The parameter values are taken from Ref. [S]. The equality
of certain terms of the Hamiltonian (A1) indicates the
“equivalence” of certain atomic sites. This is actually due to
the D5, point-group invariance [16,21], which is preserved
even when a perpendicular magnetic field is applied. Atoms
in the upper and lower lattice, namely A = D and B = C,
are “indistinguishable,” and the unit cell is reduced to a
single dimer, framed by the dashed square in Fig. 1. Using
this symmetry argument, the simplified two-band Hamiltonian
reads

HY? = [ Ut Hap (A6)

Hap + Hac
Hip + Hjc ’

U+ Hap
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which acts upon the spinors

g _ [@a+00)2] _[on
(65 + ¢c)/2 ¢ |
The eigenvalue problem for the Hamiltonian (A6) can be

solved analytically,

E =U+ Hup £ |Hap + Hacl,

(A7)

(A8)

where the upper (lower) sign is for the conduction (valence)
band.

Recent theoretical analysis [16,19] based on the tight-
binding model with five hopping parameters shows that the
MacLaurin series of analytical functions in the vicinity of the
I" point up to the quadratic term yield satisfactory accuracy for
the phosphorene band structure. Using a similar argument, we
derive the effective two-band Hamiltonian

i =[h 8] (49)
where f = Eo + x.ki + xyks andg=E, /2 — iyky + a.k} +
aykg, with

Eg = 2t; + 4t5 + 2t7 4+ 4t,p = —0.262 eV, (A10)
Eg =41 4 2t) + 4ty + 2te + 4ty + 419 = 1.838 eV, (All)
Xx = (=13 — t5/2 — 2t19)a? = 0.01060 eV nm?*,  (A12)

Xy = (=15/2 — t; = 2t19)a; = —0.017 72 eV nm®, (A13)

oy = (=11 /4 — t3/4 — 913 /4 — t9)a? = 0.0224 eV nm?,

(Al14)
— 2 2 2
oy = —(t1 + 13)hy, — 12/2h5, — ta(ay — hy)
— (t6/2 + to)(@y — hay)* = 0.02026 eV nm?, (A15)
y =2t +t3)h1y — tahay — 2t4(ay, — hyy)

+ (t6 + 2t9)(ay — hay) = —0.5952eVnm,  (Al6)
and we obtain the simplified dispersion for electrons and holes,

Eoiy = Eo + 1<k + xyk;

E 2
+ \/(Tg + o k2 + ayk§> + vk (A17)

From Eq. (A17), it is obvious that phosphorene has a
nonelliptical dispersion due to the parameter y .

To transform the low-energy Hamiltonian given by Eq. (A9)
into a more convenient form, we perform the unitary transfor-
mation given by the Hadamard matrix,

po L1
=50 -1
The resulting Hamiltonian has the same form as the one

obtained in Ref. [13] by fitting to results from ab initio
calculations,

(A18)

E i’”ky], (A19)

U
Hk—>I‘ - |:—i)/ky Eu
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where the diagonal terms

Eg 2 2
E.=Ey+ X + (ax + Xk + (o + Xy)ky

K2 K>
=E o+ k2 + k2, (A20)
2m(>§e,x zmge,y Y

E
Ev = EO - 767 - (ax - Xx)k)zf - (ay - Xy)ki

hZ k2 hZ

X

— Ew K2, (A21)

- * - *
2mg, 2mgy,

are related to the conduction- and valence-band dispersions,
respectively, while the off-diagonal term introduces interband
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coupling. Here, E () are the conduction (valence) -band edges
in monolayer phosphorene, and mg, () = B2 /2(atxy) + Xx(r)
and mg, () = 1% /2(ctx(y) — Xx(y)) are the electron and hole
effective masses when the coupling is neglected. Furthermore,
spinors given by Eq. (A7) are transformed to ¥V = [¢.$,]",
where @) = (¢1 % ¢2)/+/2.

In the long-wavelength limit, E. — E, > E, > |yk,|.
Thus, the second term in Eq. (A17) is expanded around
the I" point, and the energy dispersions of conduction and
valence bands are approximated by E®f = E, + yzk%/Eg
and EX" = E, — y?k?/E,, respectively [18]. Therefore, the
Hamiltonian given by Eq. (A19) is reduced to the diagonal
form H™Y — diag(ES™, EST).
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