toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kenawy, A.; Magnus, W.; Sorée, B. doi  openurl
  Title Flux quantization and Aharonov-Bohm effect in superconducting rings Type A1 Journal article
  Year 2018 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 31 Issue 5 Pages 1351-1357  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconductivity is a macroscopic coherent state exhibiting various quantum phenomena such as magnetic flux quantization. When a superconducting ring is placed in a magnetic field, a current flows to expel the field from the ring and to ensure that the enclosed flux is an integer multiple of h/(2|e|). Although the quantization of magnetic flux in ring structures is extensively studied in literature, the applied magnetic field is typically assumed to be homogeneous, implicitly implying an interplay between field expulsion and flux quantization. Here, we propose to decouple these two effects by employing an Aharonov-Bohm-like structure where the superconducting ring is threaded by a magnetic core (to which the applied field is confined). Although the magnetic field vanishes inside the ring, the formation of vortices takes place, corresponding to a change in the flux state of the ring. The time evolution of the density of superconducting electrons is studied using the time-dependent Ginzburg-Landau equations.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000429354100010 Publication Date 2017-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.18 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:150742UA @ admin @ c:irua:150742 Serial 4969  
Permanent link to this record
 

 
Author Pourtois, G.; Dabral, A.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Houssa, M.; Collaert, N.; Horiguchi, N. pdf  doi
openurl 
  Title Probing the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type P1 Proceeding
  Year 2017 Publication Semiconductors, Dielectrics, And Metals For Nanoelectronics 15: In Memory Of Samares Kar Abbreviated Journal  
  Volume Issue Pages 303-311  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first-principles calculations with Non-Equilibrium Green functions transport simulations. The intrinsic contact resistivity is found to saturate at similar to 2x10(-10) Omega.cm(2) with the doping concentration and sets an intrinsic limit to the ultimate contact resistance achievable for n-doped Si vertical bar amorphous-TiSi. This limit arises from the intrinsic properties of the semiconductor and of the metal such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting metals with a heavy electron effective mass helps reducing the interface intrinsic contact resistivity.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Electrochemical soc inc Place of Publication Pennington Editor  
  Language Wos 000426271800028 Publication Date 2017-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 80 Series Issue 1 Edition  
  ISSN 978-1-62332-470-4; 978-1-60768-818-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149966 Serial 4976  
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P. url  doi
openurl 
  Title Self-assembly and clustering of magnetic peapod-like rods with tunable directional interaction Type A1 Journal article
  Year 2018 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 13 Issue 4 Pages e0195552  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Based on extensive Langevin Dynamics simulations we investigate the structural properties of a two-dimensional ensemble of magnetic rods with a peapod-like morphology, i.e, rods consisting of aligned single dipolar beads. Self-assembled configurations are studied for different directions of the dipole with respect to the rod axis. We found that with increasing misalignment of the dipole from the rod axis, the smaller the packing fraction at which the percolation transition is found. For the same density, the system exhibits different aggregation states for different misalignment. We also study the stability of the percolated structures with respect to temperature, which is found to be affected by the microstructure of the assembly of rods.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited Open Access  
  Notes Approved Most recent IF: 2.806  
  Call Number UA @ lucian @ c:irua:150778UA @ admin @ c:irua:150778 Serial 4977  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G. pdf  openurl
  Title Self-consistent 30-band simulation approach for (non-)uniformly strained confined heterostructure tunnel field-effect transistors Type P1 Proceeding
  Year 2017 Publication Simulation of Semiconductor Processes and, Devices (SISPAD)AND DEVICES (SISPAD 2017) Abbreviated Journal  
  Volume Issue Pages 29-32  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract Heterostructures of III-V materials under a mechanical strain are being actively researched to enhance the performance of the tunnel field-effect transistor (TFET). In scaled III-V device structures, however, the interplay between the effects of strain and quantum confinement on the semiconductor band structure and hence the performance is highly non-trivial. We have therefore developed a computationally efficient quantum mechanical simulator Pharos, which enables self-consistent full-zone k.p-based simulations of III-V TFETs under a general non-uniform strain. We present the self-consistent procedure and demonstrate it on confined staggered bandgap GaAs0.5Sb0.5/In0.53Ga0.47As TFETs. We find a large performance degradation due to size-induced quantum confinement compared to non-confined devices. We show that some performance can be regained either by applying a uniform biaxial tensile strain or through the non-uniform strain profile at a lattice-mismatched heterostructure.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-610-2 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149949 Serial 4978  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Strain mapping in single-layer two-dimensional crystals via Raman activity Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 11 Pages 115427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono-and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X = S, Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427799300006 Publication Date 2018-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 116C073. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150840UA @ admin @ c:irua:150840 Serial 4979  
Permanent link to this record
 

 
Author Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title Superconducting nanoribbon with a constriction : a quantum-confined Josephson junction Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 13 Pages 134514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430161500004 Publication Date 2018-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF), the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001), the MultiSuper network, and the EU-COST NANOCOHYBRI action CA16218. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150754UA @ admin @ c:irua:150754 Serial 4980  
Permanent link to this record
 

 
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 17 Pages 175701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000429329500001 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 11 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983  
Permanent link to this record
 

 
Author Peymanirad, F.; Singh, S.K.; Ghorbanfekr-Kalashami, H.; Novoselov, K.S.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Thermal activated rotation of graphene flake on graphene Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 4 Issue 2 Pages 025015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about similar to 4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA-or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than 2 degrees. Our results are in agreement with recent experiments.  
  Address (up)  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000424399600005 Publication Date 2017-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 16 Open Access  
  Notes ; We would like to acknowledge Annalisa Fasolino and MM van Wijk for providing us with the implemented parameters of REBO-KC [5] in LAMMPS. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:149364 Serial 4984  
Permanent link to this record
 

 
Author Pereira, J.R.V.; Tunes, T.M.; De Arruda, A.S.; Godoy, M. pdf  url
doi  openurl
  Title Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies Type A1 Journal article
  Year 2018 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 500 Issue 500 Pages 265-272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins S-A = 1 in the sublattice A and S-B = 3/2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J < 0). We used two random single-ion anisotropies, D-i(A) and D-j(B), on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature T-c versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution. (C) 2018 Elsevier B.V. All rights reserved.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000430027400025 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 3 Open Access  
  Notes ; The authors acknowledge financial support by the Brazilian agencies CNPq, Brazil, CAPES, Brazil (Grant No. 88881.120851/2016-01) and FAPEMAT, Brazil. ; Approved Most recent IF: 2.243  
  Call Number UA @ lucian @ c:irua:150706UA @ admin @ c:irua:150706 Serial 4985  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model for borophene and borophane Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427983700004 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 45 Open Access  
  Notes ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987  
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 15 Pages 155424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430459400005 Publication Date 2018-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988  
Permanent link to this record
 

 
Author Vanherck, J.; Sorée, B.; Magnus, W. pdf  doi
openurl 
  Title Anisotropic bulk and planar Heisenberg ferromagnets in uniform, arbitrarily oriented magnetic fields Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 27 Pages 275801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Today, further downscaling of mobile electronic devices poses serious problems, such as energy consumption and local heat dissipation. In this context, spin wave majority gates made of very thin ferromagnetic films may offer a viable alternative. However, similar downscaling of magnetic thin films eventually enforces the latter to operate as quasi-2D magnets, the magnetic properties of which are not yet fully understood, especially those related to anisotropies and external magnetic fields in arbitrary directions. To this end, we have investigated the behaviour of an easy-plane and easy-axis anisotropic ferromagnet-both in two and three dimensions-subjected to a uniform magnetic field, applied along an arbitrary direction. In this paper, a spin-1/2 Heisenberg Hamiltonian with anisotropic exchange interactions is solved using double-time temperature-dependent Green's functions and the Tyablikov decoupling approximation. We determine various magnetic properties such as the Curie temperature and the magnetization as a function of temperature and the applied magnetic field, discussing the impact of the system's dimensionality and the type of anisotropy. The magnetic reorientation transition taking place in anisotropic Heisenberg ferromagnets is studied in detail. Importantly, spontaneous magnetization is found to be absent for easy-plane 2D spin systems with short range interactions.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000434980600001 Publication Date 2018-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:151945UA @ admin @ c:irua:151945 Serial 5012  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Smets, Q.; Verreck, D.; Sorée, B.; Groeseneken, G. url  doi
openurl 
  Title Band-Tails Tunneling Resolving the Theory-Experiment Discrepancy in Esaki Diodes Type A1 Journal article
  Year 2018 Publication IEEE journal of the Electron Devices Society Abbreviated Journal Ieee J Electron Devi  
  Volume 6 Issue 1 Pages 633-641  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Discrepancies exist between the theoretically predicted and experimentally measured performance of band-to-band tunneling devices, such as Esaki diodes and tunnel field-effect transistors (TFETs). We resolve this discrepancy for highly-doped, direct-bandgap Esaki diodes by successfully calibrating a semi-classical model for high-doping-induced ballistic band-tails tunneling currents at multiple temperatures with two In0.53Ga0.47As Esaki diodes using their SIMS doping profiles, C-V characteristics and their forward-bias current density in the negative differential resistance (NDR) regime. The current swing in the NDR regime is shown not to be linked to the band-tails Urbach energy. We further demonstrate theoretically that the calibrated band-tails contribution is also the dominant band-tails contribution to the subthreshold swing of the corresponding TFETs. Lastly, we verify that the presented procedure is applicable to all direct-bandgap semiconductors by successfully applying it to InAs Esaki diodes in literature.  
  Address (up)  
  Corporate Author Thesis  
  Publisher IEEE, Electron Devices Society Place of Publication New York, N.Y. Editor  
  Language Wos 000435505000013 Publication Date 2018-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-6734 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.141 Times cited 5 Open Access  
  Notes ; J. Bizindavyi gratefully acknowledges FWO-Vlaanderen for a Strategic Basic Research PhD fellowship. ; Approved Most recent IF: 3.141  
  Call Number UA @ lucian @ c:irua:152097UA @ admin @ c:irua:152097 Serial 5014  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Comment on “Impurity spectra of graphene under electric and magnetic fields” Type Editorial
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 20 Pages 207403  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract In a recent paper [Phys. Rev. B 89, 155403 (2014)], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge vertical bar alpha vertical bar = 0.5 and, to obtain correct results for alpha > 0.5, a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of alpha.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Amer physical soc Place of Publication College pk Editor  
  Language Wos 000433288800015 Publication Date 2018-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:152042UA @ admin @ c:irua:152042 Serial 5017  
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Peeters, F.M. pdf  doi
openurl 
  Title Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 123 Issue 20 Pages 204301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the effective continuum model, the electron energy spectrum of gated bilayer graphene with a step-like region of decoupled graphene layers at the edge of the sample is studied. Different types of coupled-decoupled interfaces are considered, i.e., zigzag (ZZ) and armchair junctions, which result in significant different propagating states. Two non-valley-polarized conducting edge states are observed for ZZ type, which are mainly located around the ZZ-ended graphene layers. Additionally, we investigated both BA-BA and BA-AB domain walls in the gated bilayer graphene within the continuum approximation. Unlike the BA-BA domain wall, which exhibits gapped insulating behaviour, the domain walls surrounded by different stackings of bilayer regions feature valley-polarized edge states. Our findings are consistent with other theoretical calculations, such as from the tight-binding model and first-principles calculations, and agree with experimental observations. Published by AIP Publishing.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000433977200017 Publication Date 2018-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO), the BOF-UA (Bijzonder Onderzoeks Fonds), the Methusalem program of the Flemish Government, and Iran Nanotechnology Initiative Council (INIC). ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:152044UA @ admin @ c:irua:152044 Serial 5020  
Permanent link to this record
 

 
Author Hai, G.-Q.; Candido, L.; Brito, B.G.A.; Peeters, F.M. url  doi
openurl 
  Title Electron pairing: from metastable electron pair to bipolaron Type A1 Journal article
  Year 2018 Publication Journal of physics communications Abbreviated Journal  
  Volume 2 Issue 3 Pages Unsp 035017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the shell structure in atoms and the significant correlation within electron pairs, we distinguish the exchange-correlation effects between two electrons of opposite spins occupying the same orbital from the average correlation among many electrons in a crystal. In the periodic potential of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these correlated electron pairs can form a metastable energy band above the corresponding single-electron band separated by an energy gap. In order to determine if these metastable electron pairs can be stabilized, we calculate the many-electron exchange-correlation renormalization and the polaron correction to the two-band system with single electrons and electron pairs. We find that the electron-phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron pairs. The interplay of the electron-electron and electron-phonon interactions, manifested in the exchange-correlation energies, polaron effects, and screening, is responsible for the formation of electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.  
  Address (up)  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000434996900022 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-6528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; This work was supported by the Brazilian agencies FAPESP and CNPq. GQH would like to thank Prof. Bangfen Zhu for his invaluable support and expert advice. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:152079UA @ admin @ c:irua:152079 Serial 5022  
Permanent link to this record
 

 
Author de Aquino, B.R.H.; Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Electrostrictive behavior of confined water subjected to GPa pressure Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 14 Pages 144111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Water inside a nanocapillary exhibits unconventional structural and dynamical behavior due to its ordered structure. The confining walls, density, and lateral pressures control profoundly the microscopic structure of trapped water. Here we study the electrostriction of confined water subjected to pressures of the order of GPa for two different setups: (i) a graphene nanochannel containing a constant number of water molecules independent of the height of the channel, (ii) an open nanochannel where water molecules can be exchanged with those in a reservoir. For the former case, a square-rhombic structure of confined water is formed when the height of the channel is d = 6.5 angstrom having a density of rho = 1.42 g cm(-3). By increasing the height of the channel, a transition from a flat to a buckled state occurs, whereas the density rapidly decreases and reaches the bulk density for d congruent to 8.5 angstrom. When a perpendicular electric field is applied, the water structure and the lateral pressure change. For strong electric fields (similar to 1 V/angstrom), the square-rhombic structure is destroyed. For an open setup, a solid phase of confined water consisting of an imperfect square-rhombic structure is formed. By applying a perpendicular field, the density and phase of confined water change. However, the density and pressure inside the channel decrease as compared to the first setup. Our study is closely related to recent experiments on confined water, and it reveals the sensitivity of the microscopic structure of confined water to the size of the channel, the external electric field, and the experimental setup.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430809300002 Publication Date 2018-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Fund for Scientific Research-Flanders (FWO-Vl) and the Methusalem programe. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151574UA @ admin @ c:irua:151574 Serial 5023  
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Dong, H.M.; Yu, Y.; Qin, H.; Peeters, F.M. pdf  doi
openurl 
  Title Enhancement of plasmon-photon coupling in grating coupled graphene inside a Fabry-Perot cavity Type A1 Journal article
  Year 2018 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 280 Issue 280 Pages 45-49  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical investigation of the plasmon-polariton modes in grating coupled graphene inside a Fabry-Perot cavity. The cavity or photon modes of the device are determined by the Finite Difference Time Domain (FDTD) simulations and the corresponding plasmon-polariton modes are obtained by applying a many-body self-consistent field theory. We find that in such a device structure, the electric field strength of the incident electromagnetic (EM) field can be significantly enhanced near the edges of the grating strips. Thus, the strong coupling between the EM field and the plasmons in graphene can be achieved and the features of the plasmon-polariton oscillations in the structure can be observed. It is found that the frequencies of the plasmon-polariton modes are in the terahertz (THz) bandwidth and depend sensitively on electron density which can be tuned by applying a gate voltage. Moreover, the coupling between the cavity photons and the plasmons in graphene can be further enhanced by increasing the filling factor of the device. This work can help us to gain an in-depth understanding of the THz plasmonic properties of graphene-based structures.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000439059600008 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access  
  Notes ; This work is supported by the National Natural Science Foundation of China (Grand No. 11604192 and Grant No. 11574319); the Center of Science and Technology of Hefei Academy of Science; the Ministry of Science and Technology of China (Grant No. 2011YQ130018); Department of Science and Technology of Yunnan Province; Chinese Academy of Sciences. ; Approved Most recent IF: 1.554  
  Call Number UA @ lucian @ c:irua:152369UA @ admin @ c:irua:152369 Serial 5024  
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Excitons, trions, and biexcitons in transition-metal dichalcogenides : magnetic-field dependence Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 19 Pages 195408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of a perpendicular magnetic field on the binding energy and structural properties of excitons, trions, and biexcitons in monolayers of semiconducting transition metal dichalcogenides (TMDs) is investigated. The stochastic variational method (SVM) with a correlated Gaussian basis is used to calculate the different properties of these few-particle systems. In addition, we present a simplified variational approach which supports the SVM results for excitons as a function of magnetic field. The exciton diamagnetic shift is compared with recent experimental results, and we extend this concept to trions and biexcitons. The effect of a local potential fluctuation, which we model by a circular potential well, on the binding energy of trions and biexcitons is investigated and found to significantly increase the binding of those excitonic complexes.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000432024800005 Publication Date 2018-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 36 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for M.V.D.D. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151521UA @ admin @ c:irua:151521 Serial 5025  
Permanent link to this record
 

 
Author Korneychuk, S.; Partoens, B.; Guzzinati, G.; Ramaneti, R.; Derluyn, J.; Haenen, K.; Verbeeck, J. pdf  url
doi  openurl
  Title Exploring possibilities of band gap measurement with off-axis EELS in TEM Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 189 Issue 189 Pages 76-84  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A technique to measure the band gap of dielectric materials with high refractive index by means of energy electron loss spectroscopy (EELS) is presented. The technique relies on the use of a circular (Bessel) aperture and suppresses Cherenkov losses and surface-guided light modes by enforcing a momentum transfer selection. The technique also strongly suppresses the elastic zero loss peak, making the acquisition, interpretation and signal to noise ratio of low loss spectra considerably better, especially for excitations in the first few eV of the EELS spectrum. Simulations of the low loss inelastic electron scattering probabilities demonstrate the beneficial influence of the Bessel aperture in this setup even for high accelerating voltages. The importance of selecting the optimal experimental convergence and collection angles is highlighted. The effect of the created off-axis acquisition conditions on the selection of the transitions from valence to conduction bands is discussed in detail on a simplified isotropic two band model. This opens the opportunity for deliberately selecting certain transitions by carefully tuning the microscope parameters. The suggested approach is experimentally demonstrated and provides good signal to noise ratio and interpretable band gap signals on reference samples of diamond, GaN and AlN while offering spatial resolution in the nm range. (C) 2018 Elsevier B.V. All rights reserved.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000432868500008 Publication Date 2018-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access OpenAccess  
  Notes ; S.K., B.P. and J.V. acknowledge funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. S.K. and J.V. also acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N 'Charge ordering'. Financial support via the Methusalem “NANO” network is acknowledged. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO). ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:151472UA @ admin @ c:irua:151472 Serial 5026  
Permanent link to this record
 

 
Author Abdullah, H.M.; Van der Donck, M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B. pdf  url
doi  openurl
  Title Graphene quantum blisters : a tunable system to confine charge carriers Type A1 Journal article
  Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue 21 Pages 213101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene. Published by AIP Publishing.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000433140900025 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 9 Open Access  
  Notes ; H.M.A. and H.B. acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group Project Nos. RG1502-1 and RG1502-2. This work was supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (B.V.D.) and a doctoral fellowship (M.V.d.D.). ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:151505UA @ admin @ c:irua:151505 Serial 5027  
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F.M. url  doi
openurl 
  Title High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 17 Pages 174503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to similar to 90 K with onset carrier densities as high as 4 x 10(12) cm(-2). This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000431986100002 Publication Date 2018-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes ; We thank David Neilson for helpful discussions. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government and Iran Ministry of Science, Research and Technology. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151533UA @ admin @ c:irua:151533 Serial 5028  
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions Type A1 Journal article
  Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 29 Issue 29 Pages 295202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract There is an increasing need to understand interfaces between two-dimensional materials to realize an energy efficient boundary with low contact resistance and small heat dissipation. In this respect, we investigated the impact of charge and substitutional atom doping on the electronic transport properties of the hybrid metallic-semiconducting lateral junctions, formed between metallic (1T and 1T(d)) and semiconducting (1H) phases of MoS2 by means of first-principles and non-equilibrium Green function formalism based calculations. Our results clearly revealed the strong influence of the type of interface and crystallographic orientation of the metallic phase on the transport properties of these systems. The Schottky barrier height, which is the dominant mechanism for contact resistance, was found to be as large as 0.63 eV and 1.19 eV for holes and electrons, respectively. We found that armchair interfaces are more conductive as compared to zigzag termination due to the presence of the metallic Mo zigzag chains that are directed along the transport direction. In order to manipulate these barrier heights we investigated the influence of electron doping of the metallic part (i.e. 1T(d) -MoS2). We observed that the Fermi level of the hybrid system moves towards the conduction band of semiconducting 1H-MoS2 due to filling of 4d-orbital of metallic MoS2, and thus the Schottky barrier for electrons decreases considerably. Besides electron doping, we also investigated the effect of substitutional doping of metallic MoS2 by replacing Mo atoms with either Re or Ta. Due to its valency, Re (Ta) behaves as a donor (acceptor) and reduces the Schottky barrier for electrons (holes). Since Re and Ta based transition metal dichalcogenides crystallize in either the 1T(d) or 1T phase, substitutional doping with these atom favors the stabilization of the 1T(d) phase of MoS2. Co-doping of hybrid structure results in an electronic structure, which facilities easy dissociation of excitons created in the 1H part.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000432823800002 Publication Date 2018-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 4 Open Access  
  Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:151451UA @ admin @ c:irua:151451 Serial 5029  
Permanent link to this record
 

 
Author Chen, Q.; Wang, W.; Peeters, F.M. pdf  doi
openurl 
  Title Magneto-polarons in monolayer transition-metal dichalcogenides Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 123 Issue 21 Pages 214303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Landau levels (LLs) are modified by the Frohlich interaction which we investigate within the improved Wigner-Brillouin theory for energies both below and above the longitudinal-optical-continuum in monolayer MoS2.., WS2, MoSe2, and WSe2. Polaron corrections to the LLs are enhanced in monolayer MoS2 as compared to WS2. A series of levels are found at h omega(LO) + lh omega(c), and in addition, the Frohlich interaction lifts the degeneracy between the levels nh omega(c) and h omega(LO) + lh omega(c) resulting in an anticrossing. The screening effect due to the environment plays an important role in the polaron energy corrections, which are also affected by the effective thickness r(eff) parameter. The polaron anticrossing energy gap E-gap decreases with increasing effective thickness r(eff). Published by AIP Publishing.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000434775500014 Publication Date 2018-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 19 Open Access  
  Notes ; Q. Chen and W. Wang acknowledge the financial support from the China Scholarship Council (CSC). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040), by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042), and by the National Natural Science Foundation of China (Grant No. 11404214). ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:151985UA @ admin @ c:irua:151985 Serial 5031  
Permanent link to this record
 

 
Author Saberi-Pouya, S. pdf  openurl
  Title Many body properties in monolayer and doublelayer black phosphorus Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:151744 Serial 5032  
Permanent link to this record
 

 
Author Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F.M. pdf  url
doi  openurl
  Title Phase transition and field effect topological quantum transistor made of monolayer MoS2 Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 23 Pages 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q(2)) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q(2) diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q(2) diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000432821600001 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:151457UA @ admin @ c:irua:151457 Serial 5035  
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Saleh, M.; Farmanbar, M.; Salavati-fard, T. pdf  url
doi  openurl
  Title Plasmon modes in monolayer and double-layer black phosphorus under applied uniaxial strain Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 123 Issue 17 Pages 174301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the effects of an applied in-plane uniaxial strain on the plasmon dispersions of monolayer, bilayer, and double-layer black phosphorus structures in the long-wavelength limit within the linear elasticity theory. In the low-energy limit, these effects can be modeled through the change in the curvature of the anisotropic energy band along the armchair and zigzag directions. We derive analytical relations of the plasmon modes under uniaxial strain and show that the direction of the applied strain is important. Moreover, we observe that along the armchair direction, the changes of the plasmon dispersion with strain are different and larger than those along the zigzag direction. Using the analytical relations of two-layer phosphorene systems, we found that the strain-dependent orientation factor of layers could be considered as a means to control the variations of the plasmon energy. Furthermore, our study shows that the plasmonic collective modes are more affected when the strain is applied equally to the layers compared to the case in which the strain is applied asymmetrically to the layers. We also calculate the effect of strain on the drag resistivity in a double-layer black phosphorus structure and obtain that the changes in the plasmonic excitations, due to an applied strain, are mainly responsible for the predicted results. This study can be readily extended to other anisotropic two-dimensional materials. Published by AIP Publishing.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000431651600014 Publication Date 2018-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:151522UA @ admin @ c:irua:151522 Serial 5037  
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Leenaerts, O.; Wang, W.; Liu, X.-J.; Peeters, F.M. url  doi
openurl 
  Title Quantum anomalous Hall effect in a stable 1T-YN2 monolayer with a large nontrivial bandgap and a high Chern number Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 17 Pages 8153-8161  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The quantum anomalous Hall (QAH) effect is a topologically nontrivial phase, characterized by a non-zero Chern number defined in the bulk and chiral edge states in the boundary. Using first-principles calculations, we demonstrate the presence of the QAH effect in a 1T-YN2 monolayer, which was recently predicted to be a Dirac half metal without spin-orbit coupling (SOC). We show that the inclusion of SOC opens up a large nontrivial bandgap of nearly 0.1 eV in the electronic band structure. This results in the nontrivial bulk topology, which is confirmed by the calculation of Berry curvature, anomalous Hall conductance and the presence of chiral edge states. Remarkably, a QAH phase of high Chern number C = 3 is found, and there are three corresponding gapless chiral edge states emerging inside the bulk gap. Different substrates are also chosen to study the possible experimental realization of the 1T-YN2 monolayer, while retaining its nontrivial topological properties. Our results open a new avenue in searching for QAH insulators with high temperature and high Chern numbers, which can have nontrivial practical applications.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000432261400033 Publication Date 2018-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 28 Open Access  
  Notes ; This work was supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), the National Natural Science Foundation of China (NSFC) (No. 11574008), the Thousand-Young-Talent Program of China, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. W. Wang acknowledges financial support from the National Natural Science Foundation of China (Grant No. 11404214) and the China Scholarship Council (CSC). ; Approved Most recent IF: 7.367  
  Call Number UA @ lucian @ c:irua:151519UA @ admin @ c:irua:151519 Serial 5040  
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M. pdf  doi
openurl 
  Title Topological Dirac semimetal phase in <tex> $GexSny alloys Type A1 Journal article
  Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue 25 Pages 251601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, two stable allotropes (germancite and stancite) for the group IV elements (Ge and Sn) with a staggered layered dumbell structure were proposed to be three-dimensional (3D) topological Dirac semimetals [Phys. Rev. B 93, 241117 (2016)]. A pair of Dirac points is on the rotation axis away from the time-reversal invariant momentum, and the stability of the 3D bulk Dirac points is protected by the C-3 rotation symmetry. Here, we use the first principles calculations to investigate GexSny alloys which share the same rhombohedral crystal structure with the space group of D-3d(6). Six GexSny alloys are predicted to be energetically and dynamically stable, where (x, y) = (8, 6) and (6, 8) and the alpha and beta phases of (10, 4) and (4, 10). Our results demonstrate that all the six GexSny alloys are topological Dirac semimetals. The different nontrivial surface states and surface Fermi arcs are identified. Our work will substantially enrich the family of 3D Dirac semimetals which are within the reach of experimental realization. Published by AIP Publishing.  
  Address (up)  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000435987400013 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; This work was supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-VI), and the FLAG-ERA Project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:151970UA @ admin @ c:irua:151970 Serial 5045  
Permanent link to this record
 

 
Author Hu, S.; Gopinadhan, K.; Rakowski, A.; Neek-Amal, M.; Heine, T.; Grigorieva, I.V.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. pdf  doi
openurl 
  Title Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals Type A1 Journal article
  Year 2018 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 13 Issue 6 Pages 468-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Atoms start behaving as waves rather than classical particles if confined in spaces commensurate with their de Broglie wavelength. At room temperature this length is only about one angstrom even for the lightest atom, hydrogen. This restricts quantum-confinement phenomena for atomic species to the realm of very low temperatures(1-5). Here, we show that van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature. Our transport measurements show that thermal protons experience a notably higher barrier than deuterons when entering van der Waals gaps in hexagonal boron nitride and molybdenum disulfide. This is attributed to the difference in the de Broglie wavelengths of the isotopes. Once inside the crystals, transport of both isotopes can be described by classical diffusion, albeit with unexpectedly fast rates comparable to that of protons in water. The demonstrated angstrom-size channels can be exploited for further studies of atomistic quantum confinement and, if the technology can be scaled up, for sieving hydrogen isotopes.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434715700015 Publication Date 2018-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 32 Open Access  
  Notes ; The authors acknowledge support from the Lloyd's Register Foundation, EPSRC – EP/N010345/1, the European Research Council ARTIMATTER project – ERC-2012-ADG and from Graphene Flagship. M.L.-H. acknowledges a Leverhulme Early Career Fellowship. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:152014UA @ admin @ c:irua:152014 Serial 5046  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: