|
Record |
Links |
|
Author |
Chen, Q.; Wang, W.; Peeters, F.M. |
|
|
Title |
Magneto-polarons in monolayer transition-metal dichalcogenides |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Journal of applied physics |
Abbreviated Journal |
J Appl Phys |
|
|
Volume |
123 |
Issue |
21 |
Pages |
214303 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Landau levels (LLs) are modified by the Frohlich interaction which we investigate within the improved Wigner-Brillouin theory for energies both below and above the longitudinal-optical-continuum in monolayer MoS2.., WS2, MoSe2, and WSe2. Polaron corrections to the LLs are enhanced in monolayer MoS2 as compared to WS2. A series of levels are found at h omega(LO) + lh omega(c), and in addition, the Frohlich interaction lifts the degeneracy between the levels nh omega(c) and h omega(LO) + lh omega(c) resulting in an anticrossing. The screening effect due to the environment plays an important role in the polaron energy corrections, which are also affected by the effective thickness r(eff) parameter. The polaron anticrossing energy gap E-gap decreases with increasing effective thickness r(eff). Published by AIP Publishing. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000434775500014 |
Publication Date |
2018-06-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-8979; 1089-7550 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.068 |
Times cited |
19 |
Open Access |
|
|
|
Notes |
; Q. Chen and W. Wang acknowledge the financial support from the China Scholarship Council (CSC). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040), by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042), and by the National Natural Science Foundation of China (Grant No. 11404214). ; |
Approved |
Most recent IF: 2.068 |
|
|
Call Number |
UA @ lucian @ c:irua:151985UA @ admin @ c:irua:151985 |
Serial |
5031 |
|
Permanent link to this record |