|
Record |
Links |
|
Author |
Kong, X.; Li, L.; Leenaerts, O.; Wang, W.; Liu, X.-J.; Peeters, F.M. |
|
|
Title |
Quantum anomalous Hall effect in a stable 1T-YN2 monolayer with a large nontrivial bandgap and a high Chern number |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Nanoscale |
Abbreviated Journal |
Nanoscale |
|
|
Volume |
10 |
Issue |
17 |
Pages |
8153-8161 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
The quantum anomalous Hall (QAH) effect is a topologically nontrivial phase, characterized by a non-zero Chern number defined in the bulk and chiral edge states in the boundary. Using first-principles calculations, we demonstrate the presence of the QAH effect in a 1T-YN2 monolayer, which was recently predicted to be a Dirac half metal without spin-orbit coupling (SOC). We show that the inclusion of SOC opens up a large nontrivial bandgap of nearly 0.1 eV in the electronic band structure. This results in the nontrivial bulk topology, which is confirmed by the calculation of Berry curvature, anomalous Hall conductance and the presence of chiral edge states. Remarkably, a QAH phase of high Chern number C = 3 is found, and there are three corresponding gapless chiral edge states emerging inside the bulk gap. Different substrates are also chosen to study the possible experimental realization of the 1T-YN2 monolayer, while retaining its nontrivial topological properties. Our results open a new avenue in searching for QAH insulators with high temperature and high Chern numbers, which can have nontrivial practical applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Cambridge |
Editor |
|
|
|
Language |
|
Wos |
000432261400033 |
Publication Date |
2018-03-28 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2040-3364 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.367 |
Times cited |
28 |
Open Access |
|
|
|
Notes |
; This work was supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), the National Natural Science Foundation of China (NSFC) (No. 11574008), the Thousand-Young-Talent Program of China, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. W. Wang acknowledges financial support from the National Natural Science Foundation of China (Grant No. 11404214) and the China Scholarship Council (CSC). ; |
Approved |
Most recent IF: 7.367 |
|
|
Call Number |
UA @ lucian @ c:irua:151519UA @ admin @ c:irua:151519 |
Serial |
5040 |
|
Permanent link to this record |