toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Superconducting proximity effect in graphene under inhomogeneous strain Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 24 Pages 241401-241401,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The interplay between quantum Hall states and Cooper pairs is usually hindered by the suppression of the superconducting state due to the strong magnetic fields needed to observe the quantum Hall effect. From this point of view, graphene is special since it allows the creation of strong pseudomagnetic fields due to strain. We show that in a Josephson junction made of strained graphene, Cooper pairs will diffuse into the strained region. The pair correlation function will be sublattice polarized due to the polarization of the local density of states in the zero pseudo-Landau level. We uncover two regimes: (1) one in which the cyclotron radius is larger than the junction length, in which case the supercurrent will be enhanced, and (2) the long junction regime where the supercurrent is strongly suppressed because the junction becomes an insulator. In the latter case quantized Hall states form and Andreev scattering at the normal/superconducting interface will induce edge states. Our numerical calculation has become possible due to an extension of the Chebyshev-Bogoliubovde Gennes method to computations on video cards (GPUs).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297766600003 Publication Date 2011-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Euro GRAPHENE project CONGRAN. Discussions with Andrey Chaves are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93962 Serial 3364  
Permanent link to this record
 

 
Author Nguyen, N.T.T.; Peeters, F.M. url  doi
openurl 
  Title Phase-diagram for the magnetic states of the Mn-ion subsystem in a magnetic quantum dot Type P1 Proceeding
  Year 2010 Publication Journal of physics : conference series T2 – Conference on Quantum Dots 2010 (QD2010), APR 26-30, 2010, Nottingham, ENGLAND Abbreviated Journal  
  Volume Issue Pages 012032-12034  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) The interplay between two types of spin-spin exchange interaction (namely of the electron with the Mn-ions and the Mn-ions with each other) that are governed by the positions of the Mn-ions and the magnetic field is studied in the case of a Mn-ion doped CdTe quantum dot. We investigate the formation of different magnetic phases and the existence of frustrated magnetic states due to the dominant contribution of the Mn-Mn energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000294907400032 Publication Date 2010-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 245 Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113081 Serial 2582  
Permanent link to this record
 

 
Author Grujić, M.M.; Tadić, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Spin-valley filtering in strained graphene structures with artificially induced carrier mass and spin-orbit coupling Type A1 Journal article
  Year 2014 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 113 Issue 4 Pages 046601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The interplay of massive electrons with spin-orbit coupling in bulk graphene results in a spin-valley dependent gap. Thus, a barrier with such properties can act as a filter, transmitting only opposite spins from opposite valleys. In this Letter we show that a strain induced pseudomagnetic field in such a barrier will enforce opposite cyclotron trajectories for the filtered valleys, leading to their spatial separation. Since spin is coupled to the valley in the filtered states, this also leads to spin separation, demonstrating a spin-valley filtering effect. The filtering behavior is found to be controllable by electrical gating as well as by strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000339620300013 Publication Date 2014-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 90 Open Access  
  Notes ; This work was supported by the Serbian Ministry of Education, Science, and Technological Development, the Flemish Science Foundation (FWO-V1), and the Methusalem program of the Flemish government. ; Approved Most recent IF: 8.462; 2014 IF: 7.512  
  Call Number UA @ lucian @ c:irua:118731 Serial 3104  
Permanent link to this record
 

 
Author Veljkovic, D.; Tadić, M.; Peeters, F.M. openurl 
  Title Intersublevel absorption in stacked n-type doped self-assembled quantum dots Type A1 Journal article
  Year 2005 Publication Materials science forum Abbreviated Journal Mater Sci Forum  
  Volume 494 Issue Pages 37-42  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The intersublevel absorption in n-doped InAs/GaAs self-assembled quantum-dot molecules composed of three quantum dots is theoretically considered. The transition matrix elements and the transition energies are found to vary considerably with the spacer thickness. For s polarized light, decreasing the thickness of the spacer between the dots brings about crossings between the transition matrix elements, but the overall absorption is not affected by the variation of the spacer thickness. For p-polarized light and thick spacers, there are no available transitions in the single quantum dot, but a few of them emerge as a result of the electron state splitting in the stacks of coupled quantum dots, which leads to a considerable increase of the transition matrix elements, exceeding by an order of magnitude values of the matrix elements for s-polarized light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94746 Serial 1715  
Permanent link to this record
 

 
Author Martens, K.; Jeong, J.W.; Aetukuri, N.; Rettner, C.; Shukla, N.; Freeman, E.; Esfahani, D.N.; Peeters, F.M.; Topuria, T.; Rice, P.M.; Volodin, A.; Douhard, B.; Vandervorst, W.; Samant, M.G.; Datta, S.; Parkin, S.S.P. url  doi
openurl 
  Title Field Effect and Strongly Localized Carriers in the Metal-Insulator Transition Material VO(2) Type A1 Journal article
  Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 115 Issue 115 Pages 196401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The intrinsic field effect, the change in surface conductance with an applied transverse electric field, of prototypal strongly correlated VO(2) has remained elusive. Here we report its measurement enabled by epitaxial VO(2) and atomic layer deposited high-kappa dielectrics. Oxygen migration, joule heating, and the linked field-induced phase transition are precluded. The field effect can be understood in terms of field-induced carriers with densities up to approximately 5x10(13) cm(-2) which are trongly localized, as shown by their low, thermally activated mobility ( approximately 1x10(-3) cm(2)/V s at 300 K). These carriers show behavior consistent with that of Holstein polarons and strongly impact the (opto)electronics of VO(2).  
  Address IBM Research-Almaden, San Jose, California 95120, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000364024800013 Publication Date 2015-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 28 Open Access  
  Notes ; The authors acknowledge B. Hughes, K. Roche, L. Gao, C. Lada, J. Van Houdt, M. Heyns, J. P. Locquet, J. Delmotte, L. Krupp, L. Clark, and FWO (K. M.). S. D. and N. S. acknowledge LEAST (Low Energy Systems Technology), one of six SRC STARnet Centers, sponsored by MARCO/DARPA, for financial support. ; Approved Most recent IF: 8.462; 2015 IF: 7.512  
  Call Number c:irua:129547 Serial 4051  
Permanent link to this record
 

 
Author Kocabas, T.; Cakir, D.; Gulseren, O.; Ay, F.; Perkgoz, N.K.; Sevik, C. doi  openurl
  Title A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal  
  Volume 10 Issue 16 Pages 7803-7812  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) The investigation of thermal transport properties of novel two-dimensional materials is crucially important in order to assess their potential to be used in future technological applications, such as thermoelectric power generation. In this respect, the lattice thermal transport properties of the monolayer structures of group VA elements (P, As, Sb, Bi, PAs, PSb, PBi, AsSb, AsBi, SbBi, P3As1, P3Sb1, P1As3, and As3Sb1) with a black phosphorus like puckered structure were systematically investigated by first-principles calculations and an iterative solution of the phonon Boltzmann transport equation. Phosphorene was found to have the highest lattice thermal conductivity, , due to its low average atomic mass and strong interatomic bonding character. As a matter of course, anisotropic was obtained for all the considered materials, owing to anisotropy in frequency values and phonon group velocities calculated for these structures. However, the determined linear correlation between the anisotropy in the values of P, As, and Sb is significant. The results corresponding to the studied compound structures clearly point out that thermal (electronic) conductivity of pristine monolayers might be suppressed (improved) by alloying them with the same group elements. For instance, the room temperature of PBi along the armchair direction was predicted to be as low as 1.5 W m(-1) K-1, whereas that of P was predicted to be 21 W m(-1) K-1. In spite of the apparent differences in structural and vibrational properties, we peculiarly revealed an intriguing correlation between the values of all the considered materials as = c(1) + c(2)/m(2), in particular along the zigzag direction. Furthermore, our calculations on compound structures clearly showed that the thermoelectric potential of these materials can be improved by suppressing their thermal properties. The presence of ultra-low values and high electrical conductivity (especially along the armchair direction) makes this class of monolayers promising candidates for thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431030000054 Publication Date 2018-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193785 Serial 7388  
Permanent link to this record
 

 
Author Verbist, G.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Extended stability region for large bipolarons through interaction with multiple phonon branches Type A1 Journal article
  Year 1992 Publication Ferroelectrics Abbreviated Journal Ferroelectrics  
  Volume 130 Issue 1-3 Pages 27-34  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract (up) The large (bi)polaron is investigated for the case where the electron interacts with multiple LO-phonon branches. Explicit expressions for the groundstate energy and the effective mass are obtained within the Feynman polaron model approximation and they are applied to the material SrTiO3. The results of an effective LO-phonon branch approximation are compared with the results in which all LO-phonon branches are explicitly included. We show how the stability region for large bipolaron formation is enlarged when the electrons interact with multiple LO-phonon branches. The possible relevance of this result for the high-T(c) superconductors is pointed out.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1992JV42600004 Publication Date 2011-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0015-0193;1563-5112; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited 19 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:103065 Serial 1157  
Permanent link to this record
 

 
Author Wang, W.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Intense-terahertz-laser-modulated magnetopolaron effect on shallow-donor states in the presence of magnetic field in the Voigt configuration Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 1 Pages 014114  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The laser-modulated magnetopolaron effect on shallow donors in semiconductors is investigated in the presence of a magnetic field in the Voigt configuration. A nonperturbative approach is used to describe the electron-photon interaction by including the radiation field in an exact way via a laser-dressed interaction potential. Through a variational approach we evaluate the donor binding energy. We find that the interaction strength of the laser-dressed Coulomb potential in the z direction cannot only be enhanced but also weakened by the radiation field, while that in the x-y plane is only weakened. In this way, the binding energy of the states with odd z parity, like 2p(z) can be decreased or increased with respect to its static binding energy by the radiation field, while that of the other states can be only decreased. Furthermore, all binding energies become insensitive to the magnetic field if the radiation field is strong. The magnetopolaron effect on these energies is studied within second-order time-dependent perturbation theory. In the nonresonant region, a laser-modulated magnetopolaron correction, including the effect of single-photon processes, is observed. In the resonant region, a laser-modulated magnetopolaron effect, accompanied by the emission and absorption of a single photon, is found. Moreover, the 1s -> 2p(+) transition, accompanied by the emission of a single photon, is tuned by the radiation field into resonance with the longitudinal-optical phonon branch. This is electrically analogous to the magnetopolaron effect, and therefore we name it the dynamical magnetopolaron effect. Finally, by changing the frequency of the radiation field, these interesting effects can be tuned to be far away from the reststrahlen band and, therefore, can be detected experimentally. This in turn provides a direct measure of the electron-phonon interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457057500001 Publication Date 2019-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China (Grants No. 11404214, No. 11455015, and No. 61504016) and the China Scholarship Council (CSC), and Science and Technology Research Foundation of Jiangxi Provincial Education Department (Grants No. GJJ161062 and No. GJJ180868). B.V.D. was supported by the Research Foundation – Flanders (FWO-Vl) through a postdoctoral fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:157555 Serial 5218  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Theory of rigid-plane phonon modes in layered crystals Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 9 Pages 094303-094303,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of shearing and compression (stretching) modes depend on the layer number N and are presented in the form of fan diagrams. The results for GML and BNML are very similar. In both cases, only the interactions (van der Waals and Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan et al., Nat. Mater., in press, doi: 10.1038/nmat3245, (2012)] is made. Relations with the low-lying rigid-plane phonon dispersions in the bulk materials are established. Master curves, which connect the fan diagram frequencies for any given N, are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301646000006 Publication Date 2012-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; The authors are indebted to J. Maultzsch for bringing Ref. 20 to their attention. They thank D. Lamoen, F.M. Peeters, B. Trauzettel, and C. Van Haesendonck for useful discussions. This work has been financially supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97787 Serial 3619  
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M. url  doi
openurl 
  Title Spin- and valley-dependent magnetotransport in periodically modulated silicene Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 12 Pages 125444  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The low-energy physics of silicene is described by Dirac fermions with a strong spin-orbit interaction and its band structure can be controlled by an external perpendicular electric field E-z. We investigate the commensurability oscillations in silicene modulated by a weak periodic potential V = V-0 cos(2 pi y/a(0)) with a(0) as its period, in the presence of a perpendicular magnetic field B and of a weak sinusoidal electric field E-z = E-0 cos(2 pi y/b(0)), where b(0) is its period. We show that the spin and valley degeneracy of the Landau levels is lifted, due to the modulation, and that the interplay between the strong spin-orbit interaction and the potential and electric field modulations can result in spin- and valley-resolved magnetotransport. At very weak magnetic fields the commensurability oscillations induced by a weak potential modulation can exhibit a beating pattern depending on the strength of the homogenous electric field Ez but this is not the case when only Ez is modulated. The Hall conductivity plateaus acquire a step structure, due to spin and valley intra-Landau-level transitions, that is absent in unmodulated silicene. The results are critically contrasted with those for graphene and the two-dimensional electron gas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342497700008 Publication Date 2014-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes ; Our work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:119946 Serial 3079  
Permanent link to this record
 

 
Author Hai; Studart; Peeters, F.M. doi  openurl
  Title Electron-mobility in 2 coupled delta-layers Type A1 Journal article
  Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 52 Issue 15 Pages 11273-11276  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The low-temperature transport properties are studied for electrons confined in delta-doped semiconductor structures with two sheets in parallel. The subband quantum mobility and transport mobility are calculated numerically for the Si delta-doped GaAs systems. The effect of coupling of the two delta layers on the electron transport is investigated. Our calculations are in good agreement with experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1995TA85200092 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 25 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:95343 Serial 976  
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M. url  doi
openurl 
  Title Shallow donor states near a semiconductor-insulator-metal interface Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 3 Pages 035329,1-035329,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The lowest energy electronic states of a donor located near a semiconductor-insulator-metal interface are investigated within the effective mass approach. The effect of the finite thickness of the insulator between the semiconductor and the metallic gate on the energy levels is studied. The lowest energy states are obtained through a variational approach, which takes into account the influence of all image charges that arise due to the presence of the metallic and the dielectric interfaces. We compare our results with a numerical exact calculation using the finite element technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617800101 Publication Date 2009-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77950 Serial 2989  
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Carbon clusters: from ring structures to nanographene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 19 Pages 195414,1-195414,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) The lowest-energy configurations of Cn(n≤55) clusters are obtained using the energy-minimization technique with the conjugate gradient method where a modified Brenner potential is invoked to describe the carbon and hydrocarbon interaction. We found that the ground-state configuration consists of a single ring for small number of C atoms and multiring structures are found with increasing n, which can be in planar, bowl-like or caplike form. Contrary to previous predictions, the binding energy Eb does not show even-odd oscillations and only small jumps are found in the Eb(n) curve as a consequence of specific types of edges or equivalently the number of secondary atoms. We found that hydrogenation of the edge atoms may change the ground-state configuration of the nanocluster. In both cases we determined the magic clusters. Special attention is paid to trigonal and hexagonal shaped carbon clusters and to clusters having a graphenelike configuration. Trigonal clusters are never the ground state while hexagonal-shaped clusters are only the ground state when they have zigzag edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278142000103 Publication Date 2010-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83385 Serial 278  
Permanent link to this record
 

 
Author Baelus, B.J.; Yampolskii, S.V.; Peeters, F.M. url  doi
openurl 
  Title Coupled mesoscopic superconductors : Ginzburg-Landau theory Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 66 Issue 2 Pages 024517-024517,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetic coupling between two concentric mesoscopic superconductors with nonzero thickness is studied using the nonlinear Ginzburg-Landau theory. We calculated the free energy, the expelled field, the total field profile, the Cooper-pair density, and the current density distribution. By putting a smaller superconducting disk or ring in the center of a larger ring, the properties change drastically. Extra ground-state transitions are found, where the total vorticity stays the same, but the vorticity of the inner superconductor changes by 1. Due to the magnetic coupling, the current in the external ring exhibits extra jumps at the transition fields where the vorticity of the inner superconductor changes. In this case, for certain temperatures, re-entrant behavior and switching on and off of the superconducting behavior of the rings are found as a function of the magnetic field. A H-T phase diagram is obtained for the situation where the inner ring has a higher critical temperature than the outer ring. An analytic expression for the magnetic coupling is obtained for thin rings and extreme type-II superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000177338400112 Publication Date 2002-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:94920 Serial 536  
Permanent link to this record
 

 
Author Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M. url  doi
openurl 
  Title Magnetic flux periodicity in mesoscopic d-wave symmetric and asymmetric superconducting loops Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 14 Pages 144501,1-144501,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetic flux dependence of energy and supercurrent in mesoscopic d-wave symmetric and asymmetric superconducting loops is investigated by numerically solving the Bogoliubov-de Gennes equations self-consistently. For square loops, we find an hc/e-flux periodicity in energy and supercurrent and demonstrate that the flux periodicity is sensitive to the hole size and the superconducting pairing strength as well as temperature. The hc/2e-periodic behavior can be restored almost entirely when we displace the central hole sufficiently out of the center of the sample. In rectangular loops, the discrete current-carrying low-energy spectrum can exist for an odd winding number of the order parameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271351500085 Publication Date 2009-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79994 Serial 1879  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Hernandez-Nieves, A.D.; Peeters, F.M.; Dominguez, D. url  doi
openurl 
  Title Microfluidic manipulation of magnetic flux domains in type-I superconductors : droplet formation, fusion and fission Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 12129  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetic flux domains in the intermediate state of type-I superconductors are known to resemble fluid droplets, and their dynamics in applied electric current is often cartooned as a “dripping faucet”. Here we show, using the time-depended Ginzburg-Landau simulations, that microfluidic principles hold also for the determination of the size of the magnetic flux-droplet as a function of the applied current, as well as for the merger or splitting of those droplets in the presence of the nanoengineered obstacles for droplet motion. Differently from fluids, the flux-droplets in superconductors are quantized and dissipative objects, and their pinning/depinning, nucleation, and splitting occur in a discretized form, all traceable in the voltage measured across the sample. At larger applied currents, we demonstrate how obstacles can cause branching of laminar flux streams or their transformation into mobile droplets, as readily observed in experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000411416700032 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO) and the MINCYT-FWO FW/14/04 bilateral project. A.D.H. and D.D. acknowledge support from CONICET (Grant No. PIP111220150100218), CNEA and ANPCyT (Grant No. PICT2014-1382). ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146743 Serial 4789  
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Clem, J.R.; Tamegai, T. url  doi
openurl 
  Title Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052039  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi2Sr2CaCu2O8+δ disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106137 Serial 3881  
Permanent link to this record
 

 
Author Tran, T.L.A.; Çakir, D.; Wong, P.K.J.; Preobrajenski, A.B.; Brocks, G.; van der Wiel, W.G.; de Jong, M.P. doi  openurl
  Title Magnetic properties of bcc-Fe(001)/C-60 interfaces for organic spintronics Type A1 Journal article
  Year 2013 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 5 Issue 3 Pages 837-841  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetic structure of the interfaces between organic semiconductors and ferromagnetic contacts plays a key role in the spin injection and extraction processes in organic spintronic devices. We present a combined computational (density functional theory) and experimental (X-ray magnetic circular dichroism) study on the magnetic properties of interfaces between bcc-Fe(001) and C-60 molecules. C-60 is an interesting candidate for application in organic spintronics due to the absence of hydrogen atoms and the associated hyperfine fields. Adsorption of C-60 on Fe(001) reduces the magnetic moments on the top Fe layers by similar to 6%, while inducing an antiparrallel magnetic moment of similar to-0.2 mu(B) on C-60. Adsorption of C-60 on a model ferromagnetic substrate consisting of three Fe monolayers on W(001) leads to a different structure but to very similar interface magnetic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315079700050 Publication Date 2013-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 28 Open Access  
  Notes ; The authors acknowledge support from the European project MINOTOR (Grant No. FP7-NMP-228424), the European Research Council (ERC Starting Grant No. 280020), and the NWO VIDI program (Grant No. 10246). The use of supercomputer facilities was sponsored by the “Stichting Nationale Computerfaciliteiten (NCF)”, financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”. ; Approved Most recent IF: 7.504; 2013 IF: 5.900  
  Call Number UA @ lucian @ c:irua:128326 Serial 4599  
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M.; Helm, M. doi  openurl
  Title Landau levels and magnetopolaron effect in dilute GaAs:N Type A1 Journal article
  Year 2010 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 150 Issue 33/34 Pages 1575-1579  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetic-field dependence of the energy spectrum of GaAs doped with nitrogen impurities is investigated. Our theoretical model is based on the phenomenological band anticrossing model (BAC) which we extended in order to include the magnetic field and electronphonon interaction. Due to the highly localized nature of the nitrogen state, we find that the energy levels are very different from those of pure GaAs. The polaron correction results in a lower cyclotron resonance energy as compared to pure GaAs. The magneto-absorption spectrum exhibits series of asymmetric peaks close to the cyclotron energy ħωc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000280949900019 Publication Date 2010-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.554 Times cited Open Access  
  Notes ; This work is supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles Program (IAP)-Belgian State Science Policy. M.H. is grateful to O. Drachenko and H. Schneider for numerous discussions. ; Approved Most recent IF: 1.554; 2010 IF: 1.981  
  Call Number UA @ lucian @ c:irua:84580 Serial 1771  
Permanent link to this record
 

 
Author Li, L.L.; Zarenia, M.; Xu, W.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 045409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391856000006 Publication Date 2017-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grants No. 11304316, No. 11574319, and No. 11604380), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141444 Serial 4555  
Permanent link to this record
 

 
Author Čukarić, N.; Arsoski, V.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Hole states in nanocups in a magnetic field Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 23 Pages 235425-235425,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetic-field dependence of the hole states in a nanocup, which is composed of a ring (the nanocup rim) that surrounds a disk (the nanocup bottom), is obtained within the Luttinger-Kohn model for the unstrained GaAs/(Al,Ga) As and the strained (In,Ga) As/GaAs systems. Aharonov-Bohm oscillations due to angular momentum transitions of the hole ground state appear with periods that vary with the thickness of the disk. The strain in the (In, Ga) As/GaAs nanocup is sensitive to the disk thickness and favors the spatial localization of the heavy holes inside the disk. Therefore, the angular momentum transitions between the valence-band states disappear for much thinner disks than in the case of the unstrained GaAs/(Al, Ga) As nanocups. In both systems, the oscillations in the energy of the hole ground state are found to disappear for thinner inner layer than in the electron ground-state energy. This is due to the different confining potentials and the mixing between the heavy- and light-hole states. As a consequence, magnetization of the single hole is found to strongly depend on the bottom thickness of the strained (In, Ga) As/GaAs nanocup. Furthermore, we found that the strain can lead to a spatial separation of the electron and the hole, as in type-II band alignment, which is advantageous for the appearance of the excitonic Aharonov-Bohm effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305116700005 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; The authors thank B. Partoens for useful discussions. This work was supported by the EU NoE: SANDiE, the Ministry of Education and Science of Serbia, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98906 Serial 1477  
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M. doi  openurl
  Title Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 105 Issue 12 Pages 123507  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000343004400090 Publication Date 2014-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 18 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:121119 Serial 1704  
Permanent link to this record
 

 
Author Chang, K.; Xia, J.B.; Wu, H.B.; Feng, S.L.; Peeters, F.M. doi  openurl
  Title Quantum-confined magneto-Stark effect in diluted magnetic semiconductor coupled quantum wells Type A1 Journal article
  Year 2002 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 80 Issue 10 Pages 1788-1790  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000174181800036 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.411; 2002 IF: 4.207  
  Call Number UA @ lucian @ c:irua:94932 Serial 2775  
Permanent link to this record
 

 
Author Wang, W.; Van Duppen, B.; Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Magnetopolaron effect on shallow-impurity states in the presence of magnetic and intense terahertz laser fields in the Faraday configuration Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 6 Pages 064108  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The magnetopolaron effect on shallow-impurity states in semiconductors is investigated when subjected simultaneously to a magnetic field and an intense terahertz laser field within the Faraday configuration. We use a time-dependent nonperturbative theory to describe electron interactions. The externally applied fields are exactly included via a laser-dressed interaction potential. Through a variational approach we evaluate the binding energy of the shallow-impurity states. We find that the interaction strength of the laser-dressed Coulomb potential can not only be enhanced but also weakened by varying the two external fields. In this way, the binding energy can be tuned by the external fields and red-or blue-shifted with respect to the static binding energy. In the nonresonant polaron region, a magnetopolaron correction that includes the effects of photon process is observed. In the resonant polaron region, moreover, the resonant magnetopolaron effect accompanied by the emission and absorption of a single photon is distinctly observed. This can be modulated to be far away from the reststrahlen band. The intriguing findings of this paper can be observed experimentally and, in turn, provide a way to measure the strength of the electron-phonon interaction.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000426041900004 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grants No. 11404214 and No. 11455015) and the China Scholarship Council (CSC), Anhui Provincial Natural Science Foundation (Grant No. 1408085QA13), Key Projects of Anhui Provincial Department of Education (Grants No. KJ2017A406 and No. KJ2017A401). B.V.D. was financially supported by the Research Science Foundation-Flanders (FWO-Vl) through a postdoctoral fellowship and M.V.d.D. was financially supported by the Research Science Foundation-Flanders (FWO-Vl) through a doctoral fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149906UA @ admin @ c:irua:149906 Serial 4942  
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Majorana zero-energy modes and spin current evolution in mesoscopic superconducting loop systems with spin-orbit interaction Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 094516  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The Majorana zero modes and persistent spin current in mesoscopic d-wave-superconducting loops with spin-orbit (SO) interaction are investigated by numerically solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. For some appropriate strength of the SO coupling, Majorana zero-energy states and sharp jumps of the spin-polarized currents can be observed when the highest energy levels cross the Fermi energy in the spectrum, leading to spin currents with opposite chirality flowing near the inner and outer edges of the sample. When the threaded magnetic flux turns on, four flux-dependent patterns of the persistent spin current with step-like features show up, accompanied by Majorana edge modes at flux values where the energy gap closes. Moreover, the Majorana zero mode is highly influenced by the direction of the Zeeman field. A finite in-plane field can lead to the gap opening since the inversion symmetry is broken. Remarkably, multiple Majorana zero-energy states occur in the presence of an out-of-plane field h(z), and the number of steps in the spin current evolution can be effectively tuned by the field strength due to the shift of Majorana zero modes. Finally, when the loop sample contains surface indentation defects, zero-energy modes can always show up in the presence of an appropriate h(z). Interestingly, multiple Majorana states may be present in the system with a corner defect even if h(z) = 0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362081000002 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020, No. 61271163, and No. 61571277, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132467 Serial 4203  
Permanent link to this record
 

 
Author Raymenants, E.; Bultynck, O.; Wan, D.; Devolder, T.; Garello, K.; Souriau, L.; Thiam, A.; Tsvetanova, D.; Canvel, Y.; Nikonov, D.E.; Young, I.A.; Heyns, M.; Sorée, B.; Asselberghs, I.; Radu, I.; Couet, S.; Nguyen, V.D. url  doi
openurl 
  Title Nanoscale domain wall devices with magnetic tunnel junction read and write Type A1 Journal article
  Year 2021 Publication Nature Electronics Abbreviated Journal  
  Volume 4 Issue 6 Pages 392-398  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) The manipulation of fast domain wall motion in magnetic nanostructures could form the basis of novel magnetic memory and logic devices. However, current approaches for reading and writing domain walls require external magnetic fields, or are based on conventional magnetic tunnel junctions (MTJs) that are not compatible with high-speed domain wall motion. Here we report domain wall devices based on perpendicular MTJs that offer electrical read and write, and fast domain wall motion via spin-orbit torque. The devices have a hybrid free layer design that consists of platinum/cobalt (Pt/Co) or a synthetic antiferromagnet (Pt/Co/Ru/Co) into the free layer of conventional MTJs. We show that our devices can achieve good tunnelling magnetoresistance readout and efficient spin-transfer torque writing that is comparable to current magnetic random-access memory technology, as well as domain wall depinning efficiency that is similar to stand-alone materials. We also show that a domain wall conduit based on a synthetic antiferromagnet offers the potential for reliable domain wall motion and faster write speed compared with a device based on Pt/Co. Domain wall devices based on perpendicular magnetic tunnel junctions with a hybrid free layer design can offer electrical read and write, and fast domain wall motion driven via spin-orbit torque.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000665011500005 Publication Date 2021-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1131 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179673 Serial 7003  
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M. url  doi
openurl 
  Title Energy-momentum dispersion relation of plasmarons in graphene Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 20 Pages 205454-205454,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The many-body correction to the band structure of a quasi-free-standing graphene layer is obtained within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k = 0), which is on the order of 50-150 meV, depending on the electron concentration n(e), and is in semiquantitative agreement with experimental data. The value of the Fermi velocity is renormalized by several percents and decreases with increasing electron concentration as found experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304649900004 Publication Date 2012-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and the Serbian Ministry of Education and Science (project No. TR 32008). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98937 Serial 1043  
Permanent link to this record
 

 
Author Milovanović, S.P.; Covaci, L.; Peeters, F.M. pdf  doi
openurl 
  Title Strain fields in graphene induced by nanopillar mesh Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 8 Pages 082534  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The mechanical and electronic properties of a graphene membrane placed on top of a triangular superlattice of nanopillars are investigated. We use molecular dynamics simulations to access the deformation fields and the tight-binding approaches to calculate the electronic properties. Ripples form in the graphene layer that span across the unit cell, connecting neighboring pillars, in agreement with recent experiments. We find that the resulting pseudo-magnetic field (PMF) varies strongly across the unit cell. We investigate the dependence of PMF on unit cell boundary conditions, height of the pillars, and the strength of the van der Waals interaction between graphene and the substrate. We find direct correspondence with typical experiments on pillars, showing intrinsic “slack” in the graphene membrane. PMF values are confirmed by the local density of states calculations performed at different positions of the unit cell showing pseudo-Landau levels with varying spacings. Our findings regarding the relaxed membrane configuration and the induced strains are transferable to other flexible 2D membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460033800038 Publication Date 2019-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 5 Open Access  
  Notes ; S.P.M. is supported by the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:158605 Serial 5231  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Senger, R.T.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Mechanical properties of monolayer GaS and GaSe crystals Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 245407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The mechanical properties of monolayer GaS and GaSe crystals are investigated in terms of their elastic constants: in-plane stiffness (C), Poisson ratio (nu), and ultimate strength (sigma(U)) by means of first-principles calculations. The calculated elastic constants are compared with those of graphene and monolayer MoS2. Our results indicate that monolayer GaS is a stiffer material than monolayer GaSe crystals due to the more ionic character of the Ga-S bonds than the Ga-Se bonds. Although their Poisson ratio values are very close to each other, 0.26 and 0.25 for GaS and GaSe, respectively, monolayer GaS is a stronger material than monolayer GaSe due to its slightly higher sU value. However, GaS and GaSe crystals are found to be more ductile and flexible materials than graphene and MoS2. We have also analyzed the band-gap response of GaS and GaSe monolayers to biaxial tensile strain and predicted a semiconductor-metal crossover after 17% and 14% applied strain, respectively, for monolayer GaS and GaSe. In addition, we investigated how the mechanical properties are affected by charging. We found that the flexibility of single layer GaS and GaSe displays a sharp increase under 0.1e/cell charging due to the repulsive interactions between extra charges located on chalcogen atoms. These charging-controllable mechanical properties of single layers of GaS and GaSe can be of potential use for electromechanical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389503400008 Publication Date 2016-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 108 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through project 114F397. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:139229 Serial 4356  
Permanent link to this record
 

 
Author Ferreira, W.P.; Farias, G.A.; Peeters, F.M. doi  openurl
  Title A two-component mixture of charged particles confined in a channel: melting Type A1 Journal article
  Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 28 Pages 11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) The melting of a binary system of charged particles confined in a quasi-one-dimensional parabolic channel is studied through Monte Carlo simulations. At zero temperature the particles are ordered in parallel chains. The melting is anisotropic and different melting temperatures are obtained according to the spatial direction, and the different kinds of particles present in the system. Melting is very different for the single-, two- and four-chain configurations. A temperature induced structural phase transition is found between two different four-chain ordered states which is absent in the mono-disperse system. In the mixed regime, where the two kinds of particles are only slightly different, melting is almost isotropic and a thermally induced homogeneous distribution of the distinct kinds of charges is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000279257300023 Publication Date 2010-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 10 Open Access  
  Notes ; This work was supported by CNPq, the Flemish Science Foundation (FWO-V1) and the bilateral program between Flanders and Brazil. ; Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:83862 Serial 3771  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: