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Spin- and valley-dependent magnetotransport in periodically modulated silicene
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The low-energy physics of silicene is described by Dirac fermions with a strong spin-orbit interaction
and its band structure can be controlled by an external perpendicular electric field Ez. We investigate the
commensurability oscillations in silicene modulated by a weak periodic potential V = V0 cos(2πy/a0) with
a0 as its period, in the presence of a perpendicular magnetic field B and of a weak sinusoidal electric field
Ez = E0 cos(2πy/b0), where b0 is its period. We show that the spin and valley degeneracy of the Landau levels
is lifted, due to the modulation, and that the interplay between the strong spin-orbit interaction and the potential
and electric field modulations can result in spin- and valley-resolved magnetotransport. At very weak magnetic
fields the commensurability oscillations induced by a weak potential modulation can exhibit a beating pattern
depending on the strength of the homogenous electric field Ez but this is not the case when only Ez is modulated.
The Hall conductivity plateaus acquire a step structure, due to spin and valley intra-Landau-level transitions,
that is absent in unmodulated silicene. The results are critically contrasted with those for graphene and the
two-dimensional electron gas.
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I. INTRODUCTION

Silicene, a monolayer of silicon with honeycomb structure,
has recently attracted considerable attention [1] and several
attempts have been made to synthesize it [2]. Although free-
standing silicene has not yet been observed, its stability was
predicted [3] and recent theoretical studies predict that it can
be stable on nonmetallic surfaces such as graphene [4], boron
nitride or SiC [5], and in graphene-silicene-graphene structures
[6]. Moreover, very recently local formation of high-buckled
silicene nanosheets has been realized on a MoS2 surface [7].

Silicene is known as the low-buckled counterpart of
graphene, but it has gapped Dirac cones. Silicon (Si) and
carbon (C) though belong to the same group of the table of
elements, but Si has a larger ionic radius, which promotes
a sp3 hybridization, whereas the sp2 one is energetically
more favorable in C-layered materials. Therefore, in a two-
dimensional (2D) layer of Si atoms, the bonding is formed
by a mixed sp2-sp3 hybridization. This leads to the buckling
of the structure referred to above, with one sublattice shifted
vertically with respect to the other.

Interestingly, contrary to graphene in which the spin-orbit
interaction (SOI) is very weak, silicene has a strong SOI. In
addition, the low-buckled geometry of silicene together with
strong atomic intrinsic SOIs lead to a gap of 1.55 meV [8]
between the conduction and valence bands. This gap further
distinguishes silicene from other similar 2D materials, e.g.,
gapped graphene or monolayer MoS2, because its gap is
controllable by an external electric field Ez [9,10], which is
facilitated by its buckled structure.

The strong SOI of silicene, its controllable band gap, and its
compatibility with silicon-based electronic technology has led
already to various studies such as the spin-Hall effect [8], the
valley-polarized anomalous Hall effect [9,11], the capacitance
of an electrically tunable silicene device [12], etc.

Since the SOI can lead to spin-resolved transport, pertinent
to spintronics and spin-based quantum computing, it is worth
studying it in silicene and contrasting the results with those

for graphene in which the SOI is very weak. Although other
2D materials, such as MoS2, offer similar possibilities for
the integration of spintronics or valleytronics [13], due to its
strong spin-valley coupling, the tunability of the spin-split
band gap of silicene is attractive. Thus far, several works
studied magnetotransport in silicene [10,14]. In Ref. [10] it
is shown that the spin and valley resolution of the n = 0
Landau level (LL) due to electric field gating of silicene can
result in a polarized magneto-optical conductivity. Motivated
by this, we show that the spin and valley degeneracy of the
next LLs can also be lifted by a periodically modulated electric
field Ez = E0 cos(2y/b0). We then explore the influence of
SOI on the commensurability or Weiss oscillations [15] in
silicene, in the presence of a perpendicular magnetic field B||z
and of a one-dimensional (1D), weak, and periodic potential
V (y) = V0 cos(Cy), or of field modulation. We also consider
the combined action of both modulations.

The present study is similar to those of Refs. [16,17] for the
2D electron gas (2DEG), and to those for monolayer [18,19]
or bilayer [20] graphene in which, contrary to silicene, the
SOI is very weak. However, it is richer in results because
of the electric field modulation, absent in these studies, and
its combination with the potential modulation that leads to
spin and valley splittings. A comparison or contrast with these
graphene results is desirable, e.g., with the large-amplitude
commensurability oscillations reported in Ref. [16]. We make
this contrast and highlight further differences due to the strong
SOI and an external electric field Ez. As will be shown,
a potential or field Ez modulation can create tunable spin-
and valley-polarized commensurability oscillations when the
weak field B is varied. We assess the consequences of such
a resolution on magnetotransport properties, such as the
appearance of new Hall conductivity plateaus, and consider
the case when both modulations are present.

In Sec. II we present the basic expressions for the
unmodulated (V = 0) and periodically modulated (V �= 0 or
Ez �= 0) silicene and the linear-response expressions for the
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FIG. 1. (Color online) Low-buckled structure of silicene with
honeycomb lattice. The vertical distance between the sublattices A
and B is 2�.

conductivities. The results for the case in which V (y) and
Ez(y) both vary sinusoidally are shown in Sec. III for the
diffusive conductivity and the spin and valley polarizations.
The collisional and Hall conductivities and the corresponding
resistivities are also given in this section. We conclude with a
summary in Sec. IV.

II. BASIC FORMALISM

A. Unmodulated silicene

Silicene is a 2D layer of silicon atoms that forms a low-
buckled honeycomb lattice, see Fig. 1. If we neglect the Rashba
SOI, which is very small compared to intrinsic SOI [8], the
effective Hamiltonian of low-energy fermions near the K and
K ′ valleys is given by [8,10]

H = vF (πxσx − τπyσy) − (τszλso − �Ez)σz. (1)

Here vF is the Fermi velocity, τ = +(−) is the valley index
for the K (K ′) valley, and �π is the canonical momentum; σi

(i = x,y,z) denotes the pseudospin Pauli matrices, 2� is the
vertical distance between the two sublattices, and Ez is an
electric field applied perpendicular to the silicene sheet (here,
for brevity, it is assumed that eEz → Ez). Furthermore, λso is
the strength of the intrinsic SOI and sz = 1 (sz = −1) the up
(down) fermion spin. The Hamiltonian matrix H±, with the
+ (−) sign pertaining to the K (K ′) valley, takes the form

H± =
[
λ±(sz) vF π±
vF π∓ −λ±(sz)

]
, (2)

with λ±(sz) = ∓λsosz + �Ez and π± = πx ± iπy ; πμ is the μ

component of the shifted momentum operator �π = p + e �A,
�p is the momentum operator, �A is the vector potential, and
e is the electron charge. Now assume that a perpendicular
magnetic field �B = Bêz is applied to the silicene sheet. We
use the Landau gauge �A = (−By,0,0) and write the wave
function in the ansatz �(x,y) = eikxxψ(y)/

√
Lx . This results

in the reduction of 2D momentum operators into a 1D form as
π± = πx ± iπy = �(kx ± ∂y − y/l2

B ), where lB = √
�/eB is

the magnetic length. In order to achieve a dimensionless form

of the Hamiltonian we set ξ = y/lB − lBkx ; this yields

H± = �ωc

[
λ̄±(sz) −a±
−a∓ −λ̄±(sz)

]
, (3)

where λ̄± = λ±/�ωc (ωc = √
2vF /lB), and a± = (ξ ∓ ∂ξ )/√

2 are the ladder operators that act on the harmonic oscillator
wave functions. The eigenvalues corresponding to Eq. (3) are

E±
n,sz,p

= p�ωc{n + [λ̄±(sz)]
2}1/2. (4)

Here p = +1(−1) labels the electron (hole) states and
n (n � 1) is the Landau-level (LL) index. Note that the energy
is degenerate in the quantum number kx . The associated spatial
eigenfunctions of an electron near the K valley are

ψ+
n (ξ ) =

(
η+

1 φn(ξ )

η+
2 φn−1(ξ )

)
, (5)

with φn(ξ ) as the normalized Harmonic oscillator function and

η+
1 =

[
λ+(sz) + E+

n,sz,p

2E+
n,sz,p

]1/2

,

η+
2 = −p

[
E+

n,sz,p
− λ+(sz)

2E+
n,sz,p

]1/2

. (6)

For an electron near the K ′ valley the eigenfunctions are

ψ−
n (ξ ) =

(
η−

1 φn−1(ξ )

η−
2 φn(ξ )

)
, (7)

with

η−
1 = −p

[
E−

n,sz,p
+ λ−(sz)

2E−
n,sz,p

]1/2

,

η−
2 =

[
E−

n,sz,p
− λ−(sz)

2E−
n,sz,p

]1/2

. (8)

For n = 0 each of the K , K ′ valleys involves only one
solution of the form E±

0,sz
= ±�ωcλ±(sz) and the associated

eigenfunctions are given by ψ+
0 = [φ0(ξ ),0]T and ψ−

0 =
[0,φ0(ξ )]T , respectively, with T denoting the transpose.

The electron energies at the K and K ′ valleys are related
by E+

n,±1,p = E−
n,∓1,p, n � 1, and E+

0,±1 = −E−
0,∓1.

In Fig. 2 we plot the LLs for the K valley (E+
n,sz,p) as a

function of the magnetic field B. The electric field normal to
the silicene sheet is Ez = 0 in Fig. 2(a) and Ez = 3.9 meV/�

in Fig. 2(b). The latter value was chosen to cancel the SOI term
for spin up, as in graphene which has a very weak SOI; we refer
to it as the “graphene” value. The red dashed (blue solid) curves
correspond to the spin-up (spin-down), or sz = 1 (sz = −1),
states. The insets show the Fermi energy EF versus the field B.
Every negative (positive) energy curve corresponds to p = −1
(p = 1) except for the lowest LL n = 0 shown in Fig. 2(b),
which is shared by electrons and holes. For Ez = 0 shown in
Fig. 2(a), all LLs are twice spin degenerate, cf. Eq. (4), and
the n = 0 LL is replaced by two levels, one above and one
below the graphene n = 0 LL with zero energy. If we also take
the K ′ valley into account, the number of degenerate states
corresponding to Landau index n �= 0 is four. In Fig. 2(b)
the energy of the lowest LL (n = 0) is zero for spin up,
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FIG. 2. (Color online) The LLs for the K valley (E+
n,sz,p

) as a
function of the magnetic field. The electric field normal to the silicene
sheet is Ez = 0 in (a) and Ez = 3.9 meV/� in (b). The dashed (solid)
curves correspond to the spin-up (spin-down) states and n is the
LL index. The strength of the intrinsic SOI is λso = 3.9 meV and
vF = 5.42×105 m/s [8]. The insets show EF versus the field B for
the electron density ne = 5×1011 cm−2 together with the LLs.

like the lowest LL in a pristine graphene sheet. The reason is
that the value Ez = 3.9 meV/� cancels the SOI term λso only
for spins up. If we reverse the direction of Ez then this level
will be for spins down. Note that for the K ′ valley the results
are the same but the corresponding spin-up and spin-down
curves are interchanged. Due to spin splitting in the LLs of
Fig. 2(b), small sharp transitions occur in the oscillations
of EF .

B. Modulated silicene

In this section we address the effects arising from an
external modulation potential and/or that from a modulated
field Ez. As in the case of a two-dimensional electron
gas [15,16] or graphene [18,19] the main effect of either
modulation is to broaden the LLs into oscillatory energy bands.
In addition, we show that when both modulations are present
they split the LLs into four branches due to the spin and valley

degrees of freedom. This leads to spin- or valley-polarized
magnetotransport.

Potential modulation. We consider a weak,
one-dimensional, periodic potential V (y) = V0 cos(Cy),
C = 2π/a0, with V0 and a0 as its amplitude and period,
respectively. For V0 weak we can use first-order perturbation
theory to find the energy correction to the eigenvalues (4).
We rewrite V (y) in terms of the dimensionless variable ξ

as V (ξ ) = V0 cos[ClB(ξ + lBkx)]. Using the unperturbed
eigenfunctions of Sec. II A, we find the energy correction for
an electron near the K , K ′ valleys as

�E±
n,sz,p

(kx) = 〈n,sz,p,kx |V (ξ )|n,sz,p,kx〉
= V0 cos(Cx0)e−u/2G±

n,sz,p
; (9)

here x0 = l2
Bkx , u = C2l2

B/2,

G+
n,sz,p

= |η+
1 |2Ln(u) + |η+

2 |2Ln−1(u),

G−
n,sz,p

= |η−
1 |2Ln−1(u) + |η−

2 |2Ln(u), (10)

and Ln(u) are the Laguerre polynomials. The energy correction
depends on the wave vector kx because the potential along the y

direction breaks the x,y spatial symmetry of the unmodulated
case. That is, the periodic potential broadens the LLs, with
constant energy, into bands. Given the oscillatory nature of the
Laguerre polynomials for large n, in addition to cosine function
cos(Cx0), one easily sees that the bandwidths (9) oscillate with
the magnetic field B. For n = 0 the energy correction is

�E±
0,sz

(kx) = V0 cos(Cx0) e−u/2. (11)

Note that the bandwidth variations (9) are distinct for spins
up and down because the coefficients η±

1,2 in Eq. (10) are spin
dependent.

Field modulation. In the presence of a sinusoidal modulated
field Ez(y) = E0 cos(Dy), D = 2π/b0, with E0 and b0 as
its amplitude and period, respectively, the first-order energy
corrections for an electron near the K , K ′ valleys are given by

�′E±
n,sz,p

(kx) = 〈n,sz,p,kx |�Ez(ξ )σz|n,sz,p,kx〉
= �E0 cos(Dx0)e−u′/2G′±

n,sz,p
, (12)

where u′ = D2l2
B/2 and

G′+
n,sz,p

= |η+
1 |2Ln(u′) − |η+

2 |2Ln−1(u′),

G′−
n,sz,p

= |η−
1 |2Ln−1(u′) − |η−

2 |2Ln(u′). (13)

For n = 0 we find

�′E±
0,sz

(kx) = ±�E0 cos(Dx0) e−u′/2. (14)

In contrast to the case of potential modulation, the energy
correction (14) for the n = 0 LL is different at the K and K ′
valleys.

Density of states. The density of states (DOS), as a function
of the energy E, is given by D(E) = ∑

ζ δ(E − Eζ ). To
calculate the DOS we approximate the Dirac δ function by
a Gaussian, i.e., δ[E − E±

n,sz,p
(kx)] ≈ (1/�

√
π ) exp{−[E −

E±
n,sz,p

(kx)]2/�2}, with � as the broadening parameter. In the
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FIG. 3. (Color online) (a) Landau fan diagram for electron-hole
states in the presence of a sinusoidal field with period b0 = 300 nm
and amplitude E0 = 1 meV/�. The wave vector parallel to the
modulation is kx = 108 m−1. As shown, the modulated field Ez lift
the spin and valley degeneracy of the LLs. Every LL with n � 1 is
split into four branches, while the n = 0 LL splits in two. (b) The
DOS for up (solid curve) and down (dotted curve) spin states, in units
of D0 = (2π 3/2l2

B�)−1, for B = 0.11 T and � = 0.02 �ωc. Notice that
the peaks corresponding to the n = 0 LL are fully spin polarized.

presence of a weak periodic modulation this yields

D(E)

S0D0
= 1

2π

∫ 2π

0
dθ

∑
n,sz,p,±

e−[E−E±
n,sz,p−�E±

n,sz,p(θ)]2/�2
, (15)

where D0 = (2π3/2l2
B�)−1, θ = Cx0 (for potential modula-

tion), and S0 = a0Lx .
In Figs. 3(a) and 4(a) we show the broadened LLs versus

the magnetic field B, for kx = 108 m−1, respectively in the
presence of a sinusoidal field modulation, with period b0 =
300 nm and strength E0 = 1 meV/�, and of a sinusoidal
potential modulation with period a0 = 300 nm and amplitude
V0 = 1 meV. The DOS related to each case is separately shown
for the up and down spin states in Figs. 3(b) and 4(b). As
shown, the oscillatory Ez lifts the spin and valley degeneracy
of the LLs, however for V0 modulation and Ez = 0 the LLs are
still valley degenerate. For modulated Ez, shown in Fig. 3(a),
every LL is split into four branches except for certain values of
B for which cos(Dx0) = 0 and the bandwidth vanishes. That
occurs at fields B = Bc/(2m + 1), with Bc = 2(h/e)kx/πb0

and m is a nonnegative integer. Notice that the n = 0 LL
splits in two valley branches that have the same spin as can
be seen from the eigenvalue E±

0,sz
= −�ωcλsosz + �′E±

0,sz
. For

positive (negative) energies this spin is the down (up); also see
the DOS for up and down spins shown in Figs. 3(b) and 4(b).

The lifting of the spin and valley degeneracy results from
the fact that for �E0 = 0 the unperturbed eigenvalues (4)
are spin and valley degenerate, E+

n,sz=±1,p = E−
n,sz=±1,p =

p�ωc(n + λ̄2
so)1/2, whereas the coefficients η±

1,2 depend on the
spin and valley: we have, e.g., (η+

1 )2|sz=±1 = (η−
2 )2|sz=∓1 =

[(∓λso + E+
n,sz,p

)/2E+
n,sz,p

], etc. Accordingly, all energy cor-

FIG. 4. (Color online) (a) Landau fan diagram for electron-hole
states in the presence of a single potential modulation with period
a0 = 300 nm and amplitude V0 = 1 meV/�. The wave vector parallel
to the modulation is kx = 108 m−1. The LLs are valley degenerate.
(b) The DOS for up (solid curve) and down (dashed curve) spin states,
in units of D0 = (2π 3/2l2

B�)−1, for B = 0.11 T and � = 0.02 �ωc.

rections evaluated with Eq. (12) are neither spin nor valley
degenerate anymore. Notice that compared to the spin or valley
splitting induced by the field modulation, the LL splitting due
to the potential modulation is very small. The reason is that
for λ̄so � n the η±

1,2 coefficients are approximately equal and
then G+

n,sz,p
≈ G−

n,sz,p
, while G′+

n,sz,p
= −G′−

n,sz,p
. This means

that for a potential modulation the LL broadening for the two
valleys is the same, whereas for the field modulation the band
broadening at the K , K ′ valleys is opposite. The amplitude of
the bandwidth oscillations decreases for higher LLs because
the modulations are very weak and perturb mostly the
lowest LLs.

At very low fields B the function cos(Cx0) in Eq. (9) fluc-
tuates rapidly but the function e−u/2 decreases the oscillation
amplitude and causes the bandwidth oscillations to disappear.
The same holds for the function cos(Dx0). This explains
the form of the n = 0 LL. Moreover, the argument of Dx0

decreases for very large fields B. For B larger than a critical
value Bc, we have Dx0 < π/2 and the cosine does not oscillate.
That is, for B > Bc, the energies increase monotonically (or
decrease for hole states) and the bandwidth ceases to oscillate.

To assess more the effect of broadening on the DOS we
plot in Fig. 5 the DOS calculated per area S0 for different
parameters shown in the caption. One sees the usual van
Hove peaks but their heights are finite due to the width
� �= 0 especially when it is large. For fixed electric field
Ez = 3.9 meV/lz, pertaining to the graphenelike case, there
is a zero-energy LL available for spins up in the K valley
and similarly for spins down in the K ′ valley. Therefore, there
is a finite DOS at zero energy available for both electrons
and holes. For Ez = 0, with spectrum shown in Fig. 4(a), the
LLs are valley degenerate and so the DOS oscillations are
sharper and stronger. Note that one obtains the same DOS

125444-4



SPIN- AND VALLEY-DEPENDENT MAGNETOTRANSPORT . . . PHYSICAL REVIEW B 90, 125444 (2014)

FIG. 5. (Color online) DOS per area S0 = a0Lx , in units of D0 = (2π 3/2l2
B�)−1, as a function of the energy E in the presence of a periodic

modulation of amplitude V0 = 1 meV and period a0 = 300 nm. The results are shown for electric fields (a) Ez = 0 and (b) Ez = 3.9 meV/�.
In (c) a sinusoidal field, with amplitude E0 = 1 meV/� and period b0 = 200 nm, is present. The broadening parameter is � = 0.02 �ωc.

by approximating the Dirac δ function by a Lorentzian of
width �.

C. Linear-response conductivity expressions

To evaluate the transport coefficients we adopt the for-
malism of Ref. [21]. In this approach one considers a
many-body system described by the Hamiltonian H = H0 +
HI − R · F(t), where H0 is the unperturbed part, HI is a
binary-type interaction (e.g., between electrons and impurities
or phonons), and −R · F(t) is the interaction of the system with
the external field F (t). For conductivity problems we have
F(t) = eE(t), where E(t) is the electric field, e is the electron
charge, R = ∑

ri
, and ri is the position operator ri of electron i.

In the representation in which H0 is diagonal the many-body
density operator ρ = ρd + ρnd has a diagonal part ρd and
a nondiagonal part ρnd. For weak electric fields and weak
scattering potentials, for which the first Born approximation
applies, the conductivity tensor has a diagonal part σd

μν

and a nondiagonal part σ nd
μν with total σμν = σd

μν + σ nd
μν ,

μ,ν = x,y.
In general we have two kinds of currents, diffusive and

hopping, but usually only one of them is dominant. In the
unmodulated case, for instance, of Sec. II A, 〈ζ |vx |ζ 〉 =
〈ζ |vy |ζ 〉 = 0 and the diffusive current is absent. In the
modulated case though, as shown by Eqs. (16) and (17),
〈ζ |vx |ζ 〉 �= 0 and this results in a diffusive current contribution.
The general dc expression for the diffusive conductivity σ dif

μν ,
assuming quasielastic scattering, is given by

σ dif
μν = βe2

S0

∑
ζ

τζ fζ (1 − fζ )vνζ vμζ , (16)

where τζ is the momentum relaxation time and vμζ are the di-
agonal matrix elements of the velocity operator. Furthermore,
fζ = [1 + exp β(Eζ − EF )]−1 is the Fermi-Dirac function
with β = 1/kBT and T is the temperature.

In the presence of a magnetic field, with or without
modulation, there exists a collisional or hopping contribution.
It is given by [21]

σ col
μμ = βe2

2S0

∑
ζ,ζ ′

Wζ,ζ ′f (Eζ )[1 − f (Eζ ′)]
(
αζ

μ − αζ ′
μ

)2
. (17)

Here Wζ,ζ ′ is the scattering rate between the perturbed states
|ζ 〉 and |ζ ′〉, and αζ

μ denotes the expectation value of the
position operator αμ. Wζ,ζ ′ will be specified later in Sec. III D.

Regarding the contribution σ nd
μν one can use [22] the iden-

tity fζ (1 − fζ ′ )[1 − exp β(Eζ − Eζ ′)] = fζ − fζ ′ and cast the
original form [21] in the more familiar one

σ nd
μν = i�e2

S0

∑
ζ �=ζ ′

(fζ − fζ ′) vνζζ ′ vμζ ′ζ

(Eζ − Eζ ′)(Eζ − Eζ ′ + i�ζ )
, (18)

where vνζζ ′ and vμζζ ′ are the nondiagonal matrix elements
of the velocity operator and μ,ν = x,y. The sum runs
over all quantum numbers |ζ 〉 = |n,kx,sz,p,τ 〉 and |ζ ′〉 =
|n′,k′

x,s
′
z,p

′,τ ′〉 provided ζ �= ζ ′. The infinitesimal quantity
ε in the original form [21] has been replaced by �ζ to account
for the broadening of the energy levels.

In the following we will evaluate expressions (16)–(18) for
electron scattering by diluted impurities.

III. RESULTS

A. Weak 1D periodic modulation

In the presence of a weak periodic modulation the x,y

spatial symmetry of unmodulated silicene is perturbed, giving
rise to a broadening of the LLs into bands, cf. Eqs. (9)–
(14). This broadening induces a group velocity proportional
to the corresponding bandwidth of each LL, that results
in a diffusive conductivity. The electron velocity in the
nth Landau band induced by the modulation is given by
[v±

x,n,sz,p
(kx) = (∂/∂kx)�E±

n,sz,p
/�]

v±
x,n,sz,p

(kx) = −V0Cl2
B

�
sin(Cx0)e−u/2G±

n,sz,p
(u), (19)

and that by the field modulation

v′±
x,n,sz,p

(kx) = −�E0Dl2
B

�
sin(Dx0)e−u′/2G′±

n,sz,p
(u′). (20)

When temperature is sufficiently low, the relaxation time is ap-
proximately constant and equal to its value at the Fermi energy
τζ ≈ τF . In addition, βf (Eζ )[1 − f (Eζ )] = −∂f/∂E|E=Eζ

.
Since the modulation is very weak, the variation of kx does
not affect much the Fermi distribution at low magnetic fields.
The magnetic field-induced flux density [23] B/φ0 = 1/2πl2

B

(φ0 = h/e is the flux quantum) decreases linearly for low
fields B and the resulting capacity of each LL for filling with
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FIG. 6. (Color online) Diffusive conductivity induced by only
weak V (y) modulation, in units of σ0 = (e2/h)(βV 2

0 τ/h), versus the
magnetic field B for different temperatures. The contributions of both
spin states and valleys are included. The parameters used are V0 =
1 meV, a0 = 300 nm, ne = 5×1011 cm−2, and vF = 5.42×105 m/s.
The inset shows the same conductivity but in the presence of
field modulation with strength E0 = 1 meV/� and amplitude b0 =
300 nm. Notice that the oscillation amplitude is much smaller in this
case.

electrons diminishes. Therefore, the LL index pertinent to the
Fermi energy nF is larger for lower fields B and, as discussed
in Sec II B, the bandwidth is smaller for higher LLs. Hence,
one can remove the kx dependence from the Fermi functions.
In this case, using the prescription (Ly/l2

B = k0)

∑
ζ

→ Lx

2π

∫ k0

0
dkx

∑
n,sz,p,±

(21)

and from Eqs. (16) and (19) we obtain the diffusive conduc-
tivity due to the potential modulation as

σ dif
xx = e2

h

βV 2
0 τ

�
ue−u

∑
n,sz,p,±

fζ (1 − fζ )
(
G±

n,sz,p

)2
, (22)

where fζ = f (Eζ ) = f (En,sz,p,±). For a field modulation we
obtain Eq. (21) with V0, u, and G replaced by �E0, u′, and G′,
respectively. When n is large we can use the approximation
e−u/2Ln(u) ≈ (π2nu)−1/4 cos(2

√
nu − π/4) + O(n−3/4); and

the zeros of e−u/2Ln(u) are given by u = [π/2(m + 3/4)]2/n.
The longitudinal diffusive conductivity σd

xx induced by
only a sinusoidal potential modulation with amplitude V0 =
1 meV and period a0 = 300 nm is shown in Fig. 6. The
inset displays the results for a Ez modulation with strength
E0 = 1 meV/� and period b0 = 300 nm. In both cases, the
oscillation amplitude increases with temperature because the
main contribution to the diffusive conductivity comes from
the LLs near the Fermi level EF with an energy spacing
smaller than a few kBT . Indeed, an increase in the temperature
broadens the function f (Eζ )[1 − f (Eζ )] and allows more
LLs to contribute to the diffusive conductivity. This results
in an increase of the oscillation amplitude. However, for
higher magnetic fields the oscillations are damped again.
This is due to the increasing LL spacing by the magnetic
field so that the number of LLs captured by the thermal
broadening kBT decreases (e.g., note that at T = 2 K the
thermal broadening is about 0.17 meV, whereas the LL spacing
at high B exceeds several meV). A comparison between the

FIG. 7. (Color online) (a) Diffusive conductivity versus inverse
magnetic field for a potential modulation with V0 = 1 meV and a0 =
300 nm. The curves are for constant electric fields and the one for
Ez = 10 meV/� is shifted up by 2σ0 for clarity. The beating pattern
is best seen only for Ez = 10 meV/�. (b) The same as in (a) for an
electric field modulation with E0 = 1 meV/� and b0 = 300 nm. The
electron density is ne = 5×1011 cm−2 and T = 2 K.

results of the V (y) and Ez modulations demonstrates that
the amplitude of the Weiss oscillations is much larger for a
potential modulation which is a reasonable consequence of
the fact that |G±

n,sz,p
| � |G′±

n,sz,p
|.

When the magnetic field is very weak and the number of
filled LLs is large, an asymptotic analytic expression can be
derived for the commensurability oscillations of the conduc-
tivity similar to the case of 2DEG [16]. As shown in Fig. 7(a)
and in Ref. [14], the commensurability oscillations induced
by a weak potential modulation can exhibit a regular beating
pattern versus the inverse magnetic field B0/B, B0 being the
field where the magnetic length lB is equal to the period a0.
Nevertheless, this occurs for a relatively strong electric field
which has to be even stronger when a0 is decreased. In contrast,
with only the electric field Ez modulation present, not treated
in Ref. [14], no beating pattern is seen in these oscillations and
their amplitude decreases monotonically with B0/B.

The interplay between the SOIs and external modulations
can result in a spin polarization. To show this, we plot in Fig. 8
the spin polarization obtained for the diffusive conductivity,
i.e., ps = (σ dif

xx,↑ − σ dif
xx,↓)/σ dif

xx , as a function of the magnetic
field B. For the case of field modulation, ps exhibits relatively
regular oscillations but the period increases with B because of
the enhancement in the period of the bandwidth oscillations,
cf. Sec. II B. This implies that for field modulation the Weiss
oscillations are spin resolved so that a nearly perfect spin
polarization is achievable in certain ranges of B values.
Note that the valley polarization pv = (σ dif

xx,+ − σ dif
xx,−)/σ dif

xx

vanishes because v′+
x = −v′−

x , i.e., the electrons from the K

and K ′ valleys contribute equally.
With only the V0 modulation present neither a sizable spin

nor valley gap is created in the conductivity oscillations. The ps

oscillations appear as local discontinuities whose size is small
for the shown B range with the exception of a rather large one
near B ≈ 0.43 T. In addition, the valley polarization vanishes

125444-6



SPIN- AND VALLEY-DEPENDENT MAGNETOTRANSPORT . . . PHYSICAL REVIEW B 90, 125444 (2014)

FIG. 8. (Color online) Spin polarization ps versus the magnetic
filed B for a single modulation with E0 = 1 meV/� in (a) and
V0 = 1 meV in (b) for two different modulation periods. The electron
density is ne = 5×1011 cm−2 and T = 2 . For specific fields B the
spin resolution due to field modulation is nearly perfect and this could
be useful for spintronics.

when Ez = 0 since the energy spectrum is valley degenerate
and then v+

x = v−
x . Even by applying a large uniform electric

field the K and K ′ valleys contribute approximately equally
to the diffusive conductivity. The reason is that for large
n the spin-dependent coefficients are (η±

1,2)2 ≈ 1/2 and the
functions G±

n,sz,p pertinent to the different valleys are equal.
This shows that to achieve a valley-polarized diffusive current
the application of a single modulation is not very helpful.

B. Two weak 1D periodic modulations

As discussed above, a weak V0 modulation cannot create
a sizable valley splitting in the Weiss oscillations of the con-
ductivity. On the other hand, by modulating only the electric
field the oscillation amplitude is small and so is the valley
splitting. Here we demonstrate that a certain combination of
field and potential modulations restores the drawbacks when
only a single modulation is present: The field and potential
modulations lead to a spin- and valley-resolved diffusive
current and simultaneously the V0 modulation compensates
for the reduction in oscillation amplitude when only the field
modulation is present. In order to demonstrate this we proceed
as follows.

We first assume that a field modulation with strength E0 =
1 meV/� and period b0 = 300 nm is present. We then calculate
the spin (ps) and valley (pv) polarization by tuning the strength
of the V (y) modulation. The results are summarized in Fig. 9
for temperature T = 2 K, electron density ne = 5×1011 cm−2,
and fields B = 0.5 T in Fig. 9(a) and 0.8 T in Fig. 9(b). As
seen for low values of V0/�E0 with period a0 = b0, pv is
maximal (for B = 0.8 T a nearly 100% valley polarization is
reachable). In contrast, ps is maximal for certain periods a0 �=
b0. In the presence of both modulations the group velocities
at the two valleys are no longer equal, that is |v′+

x + v+
x | �=

|v′−
x + v−

x |, resulting in the valley-resolved Weiss oscillations.
By increasing the strength V0 the polarization pv starts to
fade since the bandwidth induced by the potential modulation
strongly dominates that for the field modulation.

FIG. 9. (Color online) Contour plots of the valley (pv) and spin
(ps) polarizations in terms of the strength V0/�E0 and period a0/b0

ratios for (a) B = 0.5 T and (b) B = 0.8 T; pv is maximal for a0 = b0;
this holds also for other values of B.

C. Hall conductivity

We now treat the dc Hall conductivity σ nd
yx (0) in modulated

silicene by setting ω = 0 in Eq. (18). To better assess the effect
of the modulation we first consider the case where the applied
electric field is uniform. To calculate σyx we need the velocity
operator v̂ = ∇ �πH , which for the two valleys is given by
v̂± = vF σxêx ∓ vF σyêy . Using the basis specified by Eqs. (5)
and (7) we obtain

v+
xζζ ′ v

+
yζ ′ζ = 〈nszpkx |v̂+

x |n′s ′
zp

′k′
x〉〈n′s ′

zp
′k′

x |v̂+
y |nszpkx〉

= iv2
F δkx,k′

x
δsz,s ′

z
[(η+′

1 η+
2 )2δn′,n−1−(η+

1 η+′
2 )2δn,n′−1]

(23)

and

v−
xζζ ′ v

−
yζ ′ζ = 〈nszpkx |v̂−

x |n′s ′
zp

′k′
x〉〈n′s ′

zp
′k′

x |v̂−
y |nszpkx〉

= iv2
F δsz,s ′

z
δkx ,k′

x
[(η−

1 η−′
2 )2δn′,n−1−(η−′

1 η−
2 )2δn,n′−1].

(24)

For transitions to (or from) the zero LL we have

〈0szkx |v̂+
x |n′s ′

zp
′k′

x〉〈n′s ′
zp

′k′
x |v̂+

y |0szkx〉
= −iv2

F (η+′
2 )2δsz,s ′

z
δkx ,k′

x
δn′,1, (25)

〈npszkx |v̂+
x |0s ′

zk
′
x〉〈0s ′

zk
′
x |v̂+

y |nszpkx〉
= iv2

F (η+
2 )2δsz,s ′

z
δkx ,k′

x
δn,1; (26)

the results for the K ′ valley are given by Eqs. (25) and (26)
with v̂+

x and η+
2 replaced by v̂−

x and η−
1 , respectively.
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Notice that all velocity elements are diagonal in the kx

index (because of the presence of δkx,k′
x
) since the LLs are

independent of kx for constant electric field. By substituting
the above terms in Eq. (18) together with the unperturbed
eigenvalues (4) one calculates the dc Hall conductivity.

Hall conductivity with field modulation. An inhomogeneous
weak electric field perturbs the electronic wave functions and
the cyclotron orbits. The perturbed states can be approximated
by the first-order correction to the unperturbed wave functions
as

|ζ 〉 = |ζ 〉0 +
∑
ζ ′ �=ζ

(�E0)ζ ′ζ

Eζ − Eζ ′
|ζ ′〉0, (27)

where |ζ 〉0 ≡ |n,sz,p,kx〉 denotes the unperturbed state (5)
or (7), and

(�E0)ζ ′ζ = 0〈ζ ′|�E0σz|ζ 〉0

= �E0δsz,s ′
z

√
n!/n′!

× u′ n′−n
2 e−u′/2I±

ζ ′,ζ (u′)Re (in
′−neiDx0 ), (28)

with

I+
ζ ′,ζ (u′) = η+

1 η+′
1 Ln′−n

n (u′) − η+
2 η+′

2

√
n′

n
Ln′−n

n−1(u′),

I−
ζ ′,ζ (u′) = −η−

2 η−′
2 Ln′−n

n (u′) + η−
1 η−′

1

√
n′

n
Ln′−n

n−1(u′). (29)

Ignoring second-order perturbation terms we obtain analyti-
cally the off-diagonal velocity matrix elements. For instance,

〈ζ |v̂+
x |ζ ′〉 = vF

0〈ζ |σx |ζ ′〉0

+
∑
ζ ′′ �=ζ ′

vF (�E0)ζ ′′ζ ′

Eζ ′ − Eζ ′′
0〈ζ |σx |ζ ′′〉0

+
∑
ζ ′′ �=ζ

vF (�E0)ζ ′′ζ

Eζ − E′′
ζ

0〈ζ ′′|σx |ζ ′〉0, (30)

where

0〈ζ |σx |ζ ′〉0 = η+
1 η+′

2 δn,n′−1 + η+
2 η+′

1 δn′,n−1. (31)

Similar expressions hold for v̂−
x , v̂+

y , v̂−
y , etc.

Figure 10(a) shows the Hall conductivity σyx versus the
magnetic field B in the presence of a uniform electric field
and of a modulated one. One clearly sees the well-known
plateaus which result from the Landau quantization of the
cyclotron orbits. The transition between the plateaus occur
precisely at the magnetic fields at which the Fermi level EF

and the corresponding Landau index nF change sharply as
indicated by the arrows. (This results in the Shubnikov–de
Haas oscillations.) When a fixed nonzero field Ez is applied,
all LLs split due to the spin and valley degrees of freedom
and, as a result, the number of sharp fluctuations in EF

increases. This leads to new extra plateaus, within the same
integer n LL plateaus. Since the valley splitting is very
weak for fixed Ez, the extra plateaus are mostly due to spin
resolution. In contrast, by applying a modulated Ez field, the
LL splitting due to the valley degree of freedom becomes
wider and comparable to the spin splitting, see Fig. 3(a).
Therefore, the large plateaus related to fixed fields are replaced

FIG. 10. (Color online) (a) Hall conductivity σyx as a function
of the magnetic field B at T = 2 K and ne = 5×1011 cm−2. The
dashed and dotted curves are for the uniform fields Ez = 0 and
Ez = 3.9 meV/�, respectively; the solid curve is for a modulated
field with E0 = 7 cos(Dy) meV/�. The upmost (gray) curve shows
the chemical potential μ versus the field B which corresponds
approximately to the EF variations since T is very low. A constant
electric field doubles the number of plateaus and the modulated field
Ez doubles it again. (b) Hall conductivity versus the electron density
for B = 2 T, T = 2 K and the same field values as in (a).

by a series of steps and small plateaus due to the intra-LL
spin or valley transitions. Since the occupation capacity of
each LL depends only on the magnetic field, through the
flux density 1/2πl2

B , a transition between plateaus occurs
when ne/(1/2πl2

B) becomes an integer. Ideally this occurs
at the fields B = neφ0/m for T = 0 and the LL broadening
vanishingly small. For this ideal case the location of plateaus
transitions is independent of the modulation features such
as period, amplitude, etc. A change in the modulation
features affects only the height of the steps between the new
plateaus.

Figure 10(b) shows the Hall conductivity σyx versus the
electron density ne for a magnetic field B = 2 T. By applying
a uniform nonzero electric field the number of plateaus doubles
and interestingly, with a modulated field Ez a series of steps and
small plateaus are created. As discussed, these plateaus result
from the sharp changes in EF and from the intra-LL transitions
when the LL splitting is strong. The distance between the
plateaus is δne = 1/2πl2

B ≈ 0.1 n0, with n0 = 5×1011 cm−2

(see the width of the steps shown by the solid curve). Note that
the new plateaus can be observed in the experiment as long as
the broadening of LLs due to the scattering mechanisms, e.g.,
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by impurities or phonons, is much smaller than the spin and
valley splitting induced by the modulated field Ez.

D. Magnetoresistivity

We now turn to the evaluation of the magnetoresistivity
in modulated silicene by calculating its longitudinal and
transverse components. To this end we need to evaluate
the collisional contribution to the conductivity along and
perpendicular to the direction of the modulation. For a
2D electron system, the magnetoresistivity tensor, with
S = σxxσyy − σxyσyx , takes the form

ρ =
[
ρxx ρxy

ρyx ρyy

]
= 1

S

[
σyy −σxy

−σyx σxx

]
. (32)

The collisional conductivity is given by Eq. (17). Ignoring
scattering by phonons at very low temperatures, σ col

μμ is mainly
determined from scattering by impurities. We assume that the
impurities are randomly distributed and their density is ni .
Then the transition rate Wζ,ζ ′ is

Wζ,ζ ′ = 2πni

�S0

∑
q

|Uq |2|〈ζ |eiq·r|ζ ′〉|2δ(Eζ − Eζ ′), (33)

where q = k − k′ is the scattered wave vector, Uq is the
Fourier transform of the impurity potential, and r is the
electron’s position vector. We take the screened impurity
potential as U (r) = U0e

−qsr/r , where U0 = e2/4πεrε0, εr is
the dielectric constant, ε0 is the vacuum permittivity, and qs is
the screening wave vector which characterizes the potential
range of the scatterers. The Fourier transform of U (r) is
Uq = 2πU0(q2 + q2

s )−1/2, which for short-range scattering
q � qs , is approximately equal to 2πU0/qs .

The matrix elements in Eq. (33) can be calculated using
standard formulas. For the K valley, with � = l2

Bqy(kx −
qx/2) and γ = l2

Bq2/2, we obtain

0〈ζ |eiq·r|ζ ′〉0 = δkx,k′
x+qx

δsz,s ′
z
ei�−γ /2

× (η+
1 η+′

1 Fn,n′ + η+
2 η+′

2 Fn−1,n′−1), (34)

and for the K ′ one

0〈ζ |eiq·r|ζ ′〉0 = δkx,k′
x+qx

δsz,s ′
z
ei�−γ /2

× (η−
2 η−′

2 Fn,n′ + η−
1 η−′

1 Fn−1,n′−1), (35)

where

Fn,n′ =
⎧⎨
⎩

√
2nn′!
2n′

n!
(−v∗)n−n′

Ln−n′
n (γ ), n′ � n,√

2n′
n!

2nn′!v
n′−nLn′−n

n′ (γ ), n � n′,
(36)

with v = lB(iqy + qx)/2. Note that in calculating the transition
rate Wζζ ′ , the major contribution results from the unperturbed
state |ζ 〉0 = |n,sz,p,kx〉0, that is, 〈ζ |eiq·r|ζ ′〉 ≈ 0〈ζ |eiq·r|ζ ′〉0.
Therefore, by defining n< ≡ min(n,n′) and n> ≡ max(n,n′)
we find

W 0
ζ ζ ′ ≈ 2πni

�S0

∑
q

|Uq |2δkx,k′
x+qx

δsz,s ′
z
|J±

nn′,pp′ (sz)|2δ(Eζ − Eζ ′),

(37)

where

|J+
nn′,pp′ (sz)|2 = n>!

n<!
γ n>−n< e−γ

[
η+

1 η+′
1 Ln>−n<

n<
(γ )

+ η+
2 η+′

2

√
n<

n>

L
n>−n<

n<−1 (γ )

]2

(38)

and

|J−
nn′,pp′ (sz)|2 = n>!

n<!
γ n>−n< e−γ

[
η−

2 η−′
2 Ln>−n<

n<
(γ )

+ η−
1 η−′

1

√
n<

n>

L
n>−n<

n<−1 (γ )

]2

. (39)

Using Eqs. (37) and yζ − yζ ′ = l2
B(kx − k′

x) = l2
Bqx , the colli-

sional conductivity Eq. (17) takes the form

σ col
yy = e2

h

2βπ2nil
4
B

S2
0

∑
n,n′

∑
p,p′

∑
kx ,sz,±

∑
q

|Uq |2q2
xf

(
E±

n,sz,p

)
× [

1−f (E±
n′,sz,p′ )

]|J±
nn′,pp′ (sz)|2

× δ
(
E±

n,sz,p
−E±

n′,sz,p′ +�nn′
)
, (40)

where E±
n,sz,p

is the unperturbed eigenvalue (4) and �nn′

is the difference between the bandwidths of the n and n′
LLs, cf. Eqs. (9)–(14). At sufficiently low temperatures the
dominant scattering is elastic and the transition between
the electron-hole states is usually suppressed (this is further
supported at low magnetic fields by the fact that the SOI gaps
out the electron-hole states even for n = 0). Therefore, we can
approximate the δ function by a Lorentzian broadening of zero
shift and of width �n which peaks around n = n′. Now using
polar coordinates we make the changes qx → q cos ϕ and∑

q → (S0/4π2l2
B)

∫ 2π

0 dϕ
∫ ∞

0 dγ , γ = q2/2�2
B . Eventually,

substituting |J±
nn,pp(sz)|2 = e−γ |G±

n,sz,p
(γ )|2, using

∑
kx

→
Lx

∫ k0

0 dkx/2π , and setting A = 2πniU
2
0 /�

2v2
F q2

s , Eq. (40)
becomes

σ col,0
yy = e2

h
A

∑
n,sz,p

Pn,sz,p

∫ ∞

0
γ e−γ |G±

n,sz,p
(γ )|2 dγ, (41)

with

Pn,sz,p = (�2v2
F /Ly�n)

∫ k0

0
[∂f (E)/∂E]E=E±

n,sz,p
dkx. (42)

For a Thomas-Fermi screening wave vector as large as
qs ≈ 5×108 m−1, an impurity density ni = 1×109 cm−2, and
εr ≈ 4 we attain A ≈ 2.5×10−4. Note that the Thomas-Fermi
wave vector of a screened charge in a 2D Dirac gas is about
e2√ne/

√
πεrε0�vF (in SI units) [24]. The integral over γ in

Eq. (41), denoted as I±, can be calculated analytically using
the orthogonality of the Laguerre polynomials. The result is

I+ = |η+
1 |4(2n + 1) + |η+

2 |4(2n − 1) − 2n|η+
1 |2|η+

2 |2, (43)

for the K valley. Similarly for the K ′ valley the result is

I− = |η−
2 |4(2n + 1) + |η−

1 |4(2n − 1) − 2n|η−
1 |2|η−

2 |2. (44)

The potential due to scattering centers, such as impurities,
also broadens the LLs. Similarly, the induced LL width
differs for every LL depending on the Landau index n. Here,
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FIG. 11. (Color online) (a) The longitudinal conductivities σ col
yy

and σxx as function of the field B for T = 2 K, A = 2.5×10−4,
E0 = 1 meV, V0 = 0.5 meV, and a0 = b0 = 300 nm. The inset
shows the same σμμ components for T = 6 K. For low fields
the collisional and diffusive conductivities oscillate with a phase
difference of 180◦ but upon increasing B this phase difference
gradually decreases and at higher B they oscillate in phase.

for simplicity, we omit this width dependence on n and
kx as it is smaller than that for a weak modulation. The
collisional contribution to the longitudinal conductivity is
shown in Fig. 11 as a function of the magnetic field B for
two low temperatures T = 2 and 6 K. Since the LLs increase
proportional to

√
n for λ̄so � n, the Lorentzian width �n

varies with the Landau index approximately as �n ∝ �ωc/
√

n.
Also, in the calculation of the DOS we assume a slightly
larger broadening in Eq. (15), � = 0.1 �ωc, because of the
LL broadening due to the impurities. As seen, for increasing
B the conductivity decreases, whereas the amplitude of the
tiny oscillations increases, notice the different scales of its two
components. In a strong magnetic field the diffusive motion of
electrons is suppressed because the cyclotron orbits become
smaller and this reduces the conductivity. Notice also that the
decrease in oscillation amplitude is faster in the collisional
than in the diffusive conductivity which is also the case in a
2DEG [16] and in graphene [18,19].

We plot the magnetoresistivity tensor components in Fig. 12
for σ0 = 103 e2/h, using Eq. (32) with the total longitudinal

FIG. 12. (Color online) (a) The longitudinal magnetoresistivity
components as function of the magnetic filed B for T = 2 K,
E0 = 1 meV, V0 = 0.5 meV, and a0 = b0 = 300 nm. The curve
referred to the right axis shows the Hall magnetoresistivity ρxy .

FIG. 13. (Color online) (a) The correction to the longitudinal
conductivity due to the modulation. (b) The same as in (a) but for the
magnetoresistivity components.

conductivity given by σxx = σ dif
xx + σ col

xx and σyy = σ col
yy . In

contrast to the magnetoconductivity, increasing B leads to an
increase in the oscillation amplitude. These commensurability
oscillations in ρμμ originate from the LL broadening due
to a weak modulation, whereas the Shubnikov–de Haas
oscillations, which occur when the Fermi level passes through
successive LLs, start at higher B. As in a 2DEG, the transitions
between plateaus in the magnetoresistivity component ρxy ,
shown on the right axis, coincide with the maxima in ρxx . At
very low B though, ρxy decreases almost linearly with B and
the plateaus disappear.

Finally, for a closer comparison with the usual 2DEG, in
Fig. 13 we show the corrections due to the modulation �σyy ,
�σxx , �ρyy , and �ρxx . As in a 2DEG, the commensurability
oscillations in �σyy and �σxx shown in Fig. 13(a), as well as
in �ρyy and �ρxx shown in Fig. 13(b), differ in phase by 180◦
for B � 0.3 T, whereas for higher B the oscillation pattern,
though similar, is more complex.

IV. CONCLUSIONS

We studied magnetotransport properties of low-energy
fermions in silicene in the presence of a weak field and/or
potential periodic modulations and of a weak magnetic field
normal to the silicene plane. Due to the strong spin-orbit
interaction all LLs split. Without electric field the split LLs
are valley degenerate. Although the application of a constant
electric field lifts this degeneracy, the valley splitting is still
weak.

The weak field and potential modulations broaden the
LLs into bands and lead to a diffusive conductivity in the
modulation direction. At very weak magnetic fields, a weak
potential modulation can induce a beating pattern in the
commensurability oscillations, depending on the strength of
constant Ez, but this is not the case when only Ez is modulated.
We demonstrated that the spin and valley splitting due to only a
potential modulation is very weak. In contrast, a spatially mod-
ulated electric field leads to largely spin-resolved contributions
to the diffusive conductivity. However, the amplitude of the
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corresponding spin-resolved Weiss oscillations is small. To
resolve this, we demonstrated that a combination of field and
potential modulations can result in spin- and valley-resolved
Weiss oscillations and restore the oscillation amplitude. We
also quantified the valley and spin polarizations versus the field
B in Fig. 8 and as functions of the ratios of the modulation
strengths and periods, cf. Fig. 9. One can clearly observe
the same spin gaps in the Weiss oscillations of the diffusive
conductivity as in Fig. 8. This does not occur in graphene
because of its very weak spin-orbit interaction. Furthermore,
by calculating the collisional contribution, we highlighted the
similarities in and the differences from the commensurability
oscillations in the conductivities/resistivities and the corre-
sponding ones in graphene and in a 2DEG.

We also studied the Hall conductivity σyx and showed that
the field modulation creates extra narrow plateaus within the

standard ones or integer n LL plateaus. All plateaus are due
to sharp changes of the Fermi level, as it moves through the
LLs, and the new ones result from the lifting of the spin and
valley degeneracies and the corresponding transitions between
the four (n � 1) or two (n = 1) sublevels. In fact, the step
structure, within the same integer n LL plateaus, replaces the
latter by an inclined series of narrow plateaus and steps. That
is, the standard integer n LL plateaus are destroyed.
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