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Superconducting proximity effect in graphene under inhomogeneous strain
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The interplay between quantum Hall states and Cooper pairs is usually hindered by the suppression of the
superconducting state due to the strong magnetic fields needed to observe the quantum Hall effect. From this
point of view, graphene is special since it allows the creation of strong pseudomagnetic fields due to strain. We
show that in a Josephson junction made of strained graphene, Cooper pairs will diffuse into the strained region.
The pair correlation function will be sublattice polarized due to the polarization of the local density of states
in the zero pseudo-Landau level. We uncover two regimes: (1) one in which the cyclotron radius is larger than
the junction length, in which case the supercurrent will be enhanced, and (2) the long junction regime where
the supercurrent is strongly suppressed because the junction becomes an insulator. In the latter case quantized
Hall states form and Andreev scattering at the normal/superconducting interface will induce edge states. Our
numerical calculation has become possible due to an extension of the Chebyshev-Bogoliubov—de Gennes method

to computations on video cards (GPUs).
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In recent years graphene has come into the forefront
of condensed-matter research, not only due to its pecu-
liar electronic properties but also due to its technological
potential."»> The special arrangement of carbon atoms in a
honeycomb lattice has major consequences for its electronic
properties. The particular way of coupling between lattice
deformations and the electronic states results in remarkable
properties. Any strain (either intrinsically due to phonons®
or ripples* or extrinsically due to applied stress>~'%) couples
to the electronic degrees of freedom as a gauge field. The
induced field does not break time-reversal symmetry, because
it has opposite signs in the K and K’ Dirac cones. For this
reason the field is referred to as a pseudomagnetic field.
Electrons with momentum pertaining to different valleys will
feel the effect of a reversed magnetic field by being deflected
in opposite directions.!! More interestingly, it was recently
shown®? that when the pseudomagnetic field is slowly varying,
the electronic spectrum shows the appearance of pseudo-
Landau levels. Another special ingredient in our study is
the existence of superconducting correlations in the graphene
layer. While intrinsic superconductivity was not observed
experimentally and only predicted theoretically in very specific
conditions, e.g., the presence of high doping by adatoms,'?
superconducting correlations can be induced by proximity
to a superconducting contact.'3~'® Putting together these two
effects, one can achieve the coexistence of pseudo-quantum
Hall states and superconducting correlations. Of special
interest are the edge states formed at the interface between
normal and superconducting regions, since for energies below
the superconducting gap quasiparticles will undergo Andreev
scattering.!” The coexistence between superconductivity and
quantum Hall states was observed in superconductor/two-
dimensional electron gas (2DEG) structures in magnetic fields.
In order to observe quantized conductances, the magnetic
length has to be small when compared to the scattering
length but still large when compared to the superconducting
coherence length.'®2 The coexistence between antagonistic
states can be achieved in graphene because the pseudomagnetic
field couples to the electronic orbital degrees of freedom in
the graphene layer while leaving the superconducting contacts
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unaffected. One can envision the generation of edge states
generated by large pseudomagnetic fields (even on the order
of hundreds of tesla) but which undergo Andreev reflections
at the superconducting/graphene interface. From this point of
view, graphene is unique. In this Rapid Communication we
describe a strained graphene Josephson junction and show
how the proximity effect can be tuned by inhomogeneously
straining the junction and how the Josephson current could be
carried either across the junction or by edge states.

We consider a Josephson junction made of strained
graphene. Previous theoretical descriptions of graphene
Joshepson junctions used both the low-energy Dirac
formulation?! and tight-binding Hamiltonians.??> Recently, the
supercurrent in graphene Josephson junctions under uniaxial
strain, for which the pseudo-magnetic field is zero, has
also been studied.”> Our model follows closely Ref. 22,
which considers that graphene under the contacts has an
intrinsic pairing potential, so then the Bogoliubov—de Gennes
equations are solved self-consistently. To solve the problem we
take instead another route by considering three-dimensional
superconducting contacts. Since the inverse proximity effect of
the graphene layer on the contacts will be negligible and since
there are no intrinsic superconducting correlations in graphene,
a non-self-consistent approach is reasonable. Our approach is
also based on tight-binding Hamiltonians, therefore it will give
similar results for the unstrained junction and not shine light in
the conflicting results of Refs. 21 and 22. The system shown in
Fig. 1 has contacts made of multilayer (ten layers) AA-stacked
graphite which is strongly coupled to the two-dimensional
graphene sheet. Also from an experimental point of view, in
order to have a sizable proximity effect the contact resistance
between the contacts and the graphene layer has to be very low.
For the purpose of our calculation, e.g., the superconducting
proximity effect, the specifics of the contact band structure and
coupling to the graphene sheet are not important. A detailed
calculation which takes into account the coupling between a
metallic gate and graphene could in principle be done, but the
quantitative description of the contacts will not add much in
terms of a qualitative description of the system. Such strained
junctions could be experimentally achieved by rotating the
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FIG. 1. (Color online) Strained graphene Josephson junction
obtained from a rectangle by applying linearly varying forces along
the edges. The grayscale (color) code of the interatomic links is given
by the ratio #;; /v and shows that the links along x are stretched while
the ones along y are compressed. Depending on the strength of the
pseudomagnetic field, the cyclotron radius is such that it can take the
quasiparticle across the junction or generate an edge state.

superconducting contacts with respect to the symmetry axis of
the junction.

The electronic properties are described by a tight-binding
Hamiltonian for the 7w carbon orbitals. The minimal Hamilto-
nian needed to describe superconducting correlations has the
following Nambu spinor form:

N Cj
H=3 (cha)H; (f) : (1)

(i,]) Ji

where H;; is a 2 x 2 matrix:

o= (" s+ (7 Yacs) @
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where the sum (i, j) is over nearest and next-nearest neighbors.
The superconducting order parameter A; is of s-wave spin-
singlet type and is nonzero only in the contact region above
the graphene sheet. The strain information is included in the
modified hopping amplitudes ?;; according to the empirical

fij .
relation #;; = yg exp3'37( w " where o = 3 eV and qy is the

equilibrium intercarbon distance.’* This also gives a good ap-
proximation for the next-nearest-neighbor hopping amplitude.
In order to describe the inhomogeneous strain, we consider the
deformed rectangular geometry shown in Fig. 1, which can be
obtained from a rectangle by applying a linearly varying force
ﬁL = (—const y,0) on the left side and I?R = (const y,0) on the
right side.” We obtain the strain tensor by numerically solving
the elasticity problem for an isotropic elastic sheet with the
elastic properties of an ideal flat graphene sheet.

Since we consider three-dimensional contacts and the strain
is inhomogeneous, it is not possible to use any symmetries
in the calculations of the electronic properties. Therefore,
the system size needed to describe this problem becomes
prohibitively large for an exact diagonalization of the Hamil-
tonian. Instead we will numerically obtain an approximation
of the Gorkov Green’s function by using the Chebyshev-
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Bogoliubov—de Gennes (CBdG) method.?’ The 2 x 2 Green’s
function is defined as

_ Cir \ A i

Gij(w) = (vac| ol G(w)(cjycjylvac)), (3

il

where G(w + in) = [w+in —H]~!, |vac) is the vacuum, and
the diagonal (normal) and off-diagonal (anomalous) compo-
nents can be expressed as

(_?iljl(a)) = <CiT|é(w)|Cj‘T>v “4)
Gl ) = (] 1GW)lc],)". 5)

Firsta scaling of the excitation energies is performed, e.g., H =
(H—1b)/a, ® = (w — b)/a, where a = (Epax — Emin)/(2 —
n) and b = (Enax + Emin)/2, where n > 0 is a small number.
Following Refs. 25 and 26, the Green’s function’s components
can be expressed as an expansion written in terms of Cheby-
shev polynomials:

2 &= . .
- — Za,lll(12)(i’j)e—zn»arccos(w), (6)
Vi—ow n=0

where the coefficients a!''?(i,j) can be obtained by an
iterative procedure involving repeated applications of the
Hamiltonian on iterative vectors. The physical properties that
can be straightforwardly extracted from the Green’s functions
are the local density of states (LDOS) N;(w) = — %Im[G}i1 ()]
and the spin-singlet superconducting pair correlation function
(civer) =i [55 GR(E)1 = 2f(E)dE.

Even though it is feasible to use the CBdG method on
parallel computer clusters even for a large number of atoms?
(even up to 1 000 000) we have instead developed codes which
take advantage of the parallel nature of graphics processing
units (GPUs). Significant speedups on the order of 1000 can
be achieved for calculating electronic properties of systems de-
scribed by tight-binding Hamiltonians; the system size is on the
order of hundreds of thousands of atoms. The calculations pre-
sented here have been performed on a system containing three
Nvidia Geforce GTX580 GPU cards which ran in parallel.

In Fig. 2(a) we show the pair correlation function as a
function of position for various strain configurations for u =
0.24y,. The plotis taken along aline y = L, /2. The maximum
strain max(uy,) = €max gives the curvature of the deformed
junction and is a direct measure of the pseudomagnetic
field.”” As expected, under the superconducting contact the
pair correlation is constant, while in the junction it decreases
exponentially. Notice that as the strain increases, the results for
the two sublattices start to differ. While for one sublattice the
pair correlation is enhanced when compared to the unstrained
junction, in the other sublattice it is strongly suppressed. The
chemical potential is chosen such that the zero pseudo-Landau
level is pinned at the Fermi level (since we also consider
next-nearest neighbors it is shifted away from p = 0). The
inset shows the same quantity but for © =0 and shows
no significant difference on the two sublattices. In order to
understand this peculiar behavior, we also plot in Fig. 2(b)
the LDOS for the same configurations. We see a breaking of
the sublattice symmetry which shows that the LDOS is large
in one sublattice and suppressed in the other. The symmetry

~11(12) oy
Gij (@) =
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FIG. 2. (Color online) (a) Absolute value of the pair correlation
function along a line y = L, /2 as a function of position for various
strain configurations for u = 0.24y, (the zero pseudo-Landau level
is at the Fermi level). The inset shows the pair correlation function for
u = 0. (b) Local density of states along the same line as a function
of position for i = 0.24y4. The inset shows the LDOS for u = 0.

breaking of the zero pseudo-Landau level can be observed even
in a strained graphene sheet with no superconducting contacts
and is a direct consequence of the opening of a gap. It can
be induced by breaking either the time-reversal symmetry or
the sublattice symmetry, and since the pseudomagnetic fields
have no net flux (they have alternating sign in the two Dirac
cones), the opening of the gap can be achieved by breaking
the symmetry of the zero pseudo-Landau level. Changes in the
supercurrent flow in strained Josephson junctions are expected;
flow will only occur in one sublattice (A). The inset of Fig. 2(b)
shows the LDOS for = 0, and since the Fermi level is away
from the zero pseudo-Landau level, there is no symmetry
breaking and the proximity effect is a conventional one.

The dependence of the pair correlation at the midpoint
(Ly/2,L,/2) for p = 0.24y, as a function of the length of
the junction is shown in Fig. 3, where two regimes are found.
First, when the junction is shorter than twice the effective
cyclotron radius r, o 4/1/€ma, quasiparticles with energy
lower than the superconducting gap are bound, and after
undergoing Andreev scattering at the normal/superconducting
interface they will scatter between the contacts. In this regime
the pair correlation in the A sublattice is enhanced, because
the LDOS is itself enhanced by the pseudo-quantum-Hall
effect. The diffusion length of Cooper pairs is larger, therefore
enhancing the pair correlations at L,/2. Second, when the
junction is longer than twice the effective cyclotron radius,
quantized states will form in the junction, which becomes
insulating. Andreev scattering will only affect edge states
near the normal/superconducting interface. In this regime the
diffusion length is strongly suppressed and the pair correlation
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FIG. 3. (Color online) Pair correlation at x = L, /2, y =L,/2
as a function of L, for different strain configurations. For the A
sublattice two regimes are found depending on the ratio . /L,. Inset:
The same but now for the B sublattice, where the pair correlation
decays exponentially with L,.

at L, /2 shows an exponential decay. The inset of Fig. 3 shows
that in the B sublattice the diffusion length of the Cooper
pairs decreases monotonically with the strain and the pair
correlation at L, /2 decays exponentially, with L, faster than
the pair correlation in the A sublattice due to the absence of
states localized in the B sublattice.

These two regimes are also present when considering
the formation of quantum Hall states in the presence of
pseudomagnetic fields. This is shown in Fig. 4, where we
plot the LDOS at the Fermi level for the A sublattice for the
same strain configuration €p,x = 0.2 but for different lengths
of the junction. For short junctions the quasiparticles scatter
from both contacts and the formation of quantized orbits is
hindered. For long junctions we observe a plateau in the LDOS,
signaling the appearance of quantized states in the center of
the junctions. In this case the Andreev scattering affects only
a narrow region near the normal/superconducting interface.

To further see how the pseudo-Landau levels disperse near
the interface, we plotin Fig. 5 the LDOS across the junction for
fixed y = L, /2 and atoms in the A sublattice for three strain
configurations. When the pseudo-magnetic field is strong
(€émax = 0.3) we observe the formation of pseudo-Landau
levels (LLs) (up to n = 5) which are localized in the junction.
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FIG. 4. (Color online) LDOS at the Fermi level for the A
sublattice across the junction at y = L, /2 for different L.
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FIG. 5. (Color online) LDOS across the junction at y = L, /2 for
() €max = 0.3 and (b) €5x = 0.1. The value of the order parameter in
the contacts is A = 0.2y, and the chemical potential is u = 0.24yy.
As a guide to the eye we show the position of the LL (ABS)
by horizontal black (red/light gray) lines and the superconducting
gap (A).

They disperse only very close to the normal/superconducting
junctions (L,/ap =75 and L,/ay = 175) and even show
quantized edge states due to Andreev reflections, i.e., these
are Andreev bound states (ABSs). In the B sublattice the
LDOS is similar except at the Fermi level, where the zero
pseudo-Landau level is missing. As the strain is reduced
to €max = 0.2 and 0.15, the pseudo-Landau levels become
dispersive away from the interfaces, and in the latter case
quantized states due to Andreev reflections can be observed
throughout the whole junction.

In conclusion, we have shown that by using an efficient
numerical method (CBdG) which is extended to run on

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 84, 241401(R) (2011)

GPUs with the benefit of large speedups, simulations of
strained graphene junctions with a large number or atoms are
possible. We showed that strained graphene proves to be a
playground for testing the exotic coexistence between strong
pseudomagnetic fields and superconducting correlations. This
is due to the fact that the pseudomagnetic fields only couple to
the orbital motion of electrons in the graphene sheet and not to
their spin. Any superconducting contact will be unaffected
by these strong pseudomagnetic fields. By considering a
Josephson junction made of strained graphene, we showed
that due to the proximity effect Cooper pairs can leak into
the strained region. In addition, due to the peculiar nature
of the pseudo-Landau levels, the pair correlation function
has a broken sublattice symmetry, being enhanced in one
sublattice and suppressed in the other. We have also uncovered
two regimes depending on the ratio between the cyclotron
radius and the junction length; in one regime quasiparticles
will bounce between the superconducting contacts, in which
case the Josephson current would be enhanced, while in the
other regime quasiparticles scatter only from one contact,
thus creating an Andreev bound edge state, in which case
the Josephson current would be strongly suppressed across
the junction. In this case the supercurrent can only propagate
through edge states. From an experimental point of view, the
particular strain configuration considered here would not be
a necessary ingredient. Instead, what is of utmost importance
is the existence of a finite pseudomagnetic field which could
be achieved by any inhomogeneous strain configuration which
generates the pseudo-Landau levels.
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