toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Pearce, P.E.; Perez, A.J.; Rousse, G.; Saubanère, M.; Batuk, D.; Foix, D.; McCalla, E.; Abakumov, A.M.; Van Tendeloo, G.; Doublet, M.-L.; Tarascon, J.-M. url  doi
openurl 
  Title Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3 Type A1 Journal article
  Year 2017 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 16 Issue 5 Pages 580-586  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g(-1). In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a beta-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e(-) per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O-2)(n-) redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, beta-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li-0, as equivalently observed in the layered alpha-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400004200018 Publication Date 2017-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited Open Access Not_Open_Access  
  Notes The authors thank Q. Jacquet for fruitful discussions and V. Pomjakushin for his valuable help in neutron diffraction experiments. This work is based on experiments performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is greatly acknowledged. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. E.M. acknowledges financial support from the Fonds de Recherche du Quebec-Nature et Technologies. Approved Most recent IF: 39.737  
  Call Number EMAT @ emat @c:irua:147502 Serial 4773  
Permanent link to this record
 

 
Author Jacquet, Q.; Perez, A.; Batuk, D.; Van Tendeloo, G.; Rousse, G.; Tarascon, J.-M. url  doi
openurl 
  Title The Li3RuyNb1-yO4 (0 ≤y≤ 1) System: Structural Diversity and Li Insertion and Extraction Capabilities Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 12 Pages 5331-5343  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Searching for novel high-capacity electrode materials combining cationic and anionic redox processes is an ever-growing activity within the field of Li-ion batteries. In this respect, we report on the exploration of the Li3RuyNb1-yO4 (O <= y <= 1) system with an O/M ratio of 4 to maximize the number of oxygen lone pairs, responsible for the anionic redox. We show that this system presents a very rich crystal chemistry with the existence of four structural types, which derive from the rocksalt structure but differ in their cationic arrangement, creating either zigzag, helical, jagged chains or clusters. From an electrochemical standpoint, these compounds are active on reduction via a classical cationic insertion process. The oxidation process is more complex, because of the instability of the delithiated phase. Our results promote the use of the rich Li3MO4 family as a viable platform for a better understanding of the relationships between structure and anionic redox activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404493100036 Publication Date 2017-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 17 Open Access Not_Open_Access  
  Notes The authors thank Paul Pearce, Alexis Grimaud, Matthieu Saubanere, and Marie-Liesse Doublet for fruitful discussions, Vivian Nassif for her help in neutron diffraction experiment at the D1B diffractometer at ILL, and Dominique Foix for XPS analysis. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. and D.B. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant -Project 670116-ARPEMA. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:147506 Serial 4776  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue 6 Pages 1541-1557  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357977300001 Publication Date 2015-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 10 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126857 Serial 2682  
Permanent link to this record
 

 
Author Vidick, D.; Ke, X.; Devillers, M.; Poleunis, C.; Delcorte, A.; Moggi, P.; Van Tendeloo, G.; Hermans, S. pdf  url
doi  openurl
  Title Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue 6 Pages 1287-1297  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru-Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1-3 nm) bimetal Ru-Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355908400001 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 7 Open Access  
  Notes 246791 Countatoms; 262348 Esmi Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126431 Serial 1420  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM Type A1 Journal article
  Year 2013 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 4 Issue Pages 77-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314499700001 Publication Date 2013-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 12 Open Access  
  Notes 262348 ESMI; 246791 COUNTATOMS; FWO G002410N; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 3.127; 2013 IF: 2.332  
  Call Number UA @ lucian @ c:irua:106187 Serial 1848  
Permanent link to this record
 

 
Author Bittencourt, C.; Krüger, P.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Ewels, C.; Umek, P.; Guttmann, P. pdf  url
doi  openurl
  Title Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations Type A1 Journal article
  Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 3 Issue Pages 789-797  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS-TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/Delta E = 104 and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS-TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000311482400001 Publication Date 2012-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.127; 2012 IF: 2.374  
  Call Number UA @ lucian @ c:irua:105140 Serial 3684  
Permanent link to this record
 

 
Author Bittencourt, C.; Hitchock, A.P.; Ke, X.; Van Tendeloo, G.; Ewels, C.P.; Guttmann, P. pdf  url
doi  openurl
  Title X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge Type A1 Journal article
  Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 3 Issue Pages 345-350  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303243400001 Publication Date 2012-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.127; 2012 IF: 2.374  
  Call Number UA @ lucian @ c:irua:97703 Serial 3924  
Permanent link to this record
 

 
Author Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Goeman, J.; Van der Eycken, J.; Detavernier, C.; Van Der Voort, P. url  doi
openurl 
  Title Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst Type A1 Journal article
  Year 2016 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 6 Issue 6 Pages 45  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373533300009 Publication Date 2016-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 19 Open Access  
  Notes Karen Leus acknowledges the financial support from the Ghent University “Bijzonder Onderzoeksfonds” BOF post-doctoral Grant 01P06813T and UGent “Geconcentreeerde Onderzoekacties” GOA Grant 01G00710. Jolien Dendooven and Stuart Turner gratefully acknowledges the “Fonds Wetenschappelijk Onderzoek” FWO Vlaanderen for a post-doctoral scholarship. Christophe Detavernier thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014) for financial support. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the “Belgian Interuniversitaire Attractie Pool-Pôle d'Attraction Interuniversitaire” IAP-PAI network. Approved Most recent IF: 3.553  
  Call Number c:irua:131902 Serial 4015  
Permanent link to this record
 

 
Author Liu, J.; Wang, C.; Yu, W.; Zhao, H.; Hu, Z.-Y.; Liu, F.; Hasan, T.; Li, Y.; Van Tendeloo, G.; Li, C.; Su, B.-L. url  doi
openurl 
  Title Bioinspired noncyclic transfer pathway electron donors for unprecedented hydrogen production Type A1 Journal article
  Year 2023 Publication CCS chemistry Abbreviated Journal  
  Volume 5 Issue 6 Pages 1470-1482  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron donors are widely exploited in visible-light photocatalytic hydrogen production. As a typical electron donor pair and often the first choice for hydrogen production, the sodium sulfide-sodium sulfite pair has been extensively used. However, the resultant thiosulfate ions consume the photogenerated electrons to form an undesirable pseudocyclic electron transfer pathway during the photocatalytic process, strongly limiting the solar energy conversion efficiency. Here, we report novel and bioinspired electron donor pairs offering a noncyclic electron transfer pathway that provides more electrons without the consumption of the photogenerated electrons. Compared to the state-of-the-art electron donor pair Na2S-Na2SO3, these novel Na2S-NaH2PO2 and Na2S-NaNO2 electron donor pairs enable an unprecedented enhancement of up to 370% and 140% for average photocatalytic H-2 production over commercial CdS nanoparticles, and they are versatile for a large series of photocatalysts for visible-light water splitting. The discovery of these novel electron donor pairs can lead to a revolution in photocatalysis and is of great significance for industrial visible-light-driven H-2 production. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001037091900008 Publication Date 2022-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198409 Serial 8837  
Permanent link to this record
 

 
Author Nerantzaki, M.; Filippousi, M.; Van Tendeloo, G.; Terzopoulou, Z.; Bikiaris, D.; Goudouri, O.M.; Detsch, R.; Grueenewald, A.; Boccaccini, A.R. pdf  url
doi  openurl
  Title Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications Type A1 Journal article
  Year 2015 Publication Express polymer letters Abbreviated Journal Express Polym Lett  
  Volume 9 Issue 9 Pages 773-789  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three series of poly(butylene succinate) (PBSu) nanocomposites containing 0.5, 1 and 2.5 wt% strontium hydroxyapatite [Sr-5(PO4)(3)OH] nanorods (SrHAp nrds) were prepared by in situ polymerisation. The structural effects of Sr-5(PO4)(3)OH nanorods, for the different concentrations, inside the polymeric matrix (PBSu), were studied through high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM measurements revealed that the SrHAp nanorods at low concentrations are dispersed inside the polymeric PBSu matrix while in 1 wt% some aggregates are formed. These aggregations affect the mechanical properties giving an enhancement for the concentration of 0.5 wt% SrHAp nrds in tensile strength, while a reduction is recorded for higher loadings of the nanofiller. Studies on enzymatic hydrolysis revealed that all nanocomposites present higher hydrolysis rates than neat PBSu, indicating that nanorods accelerate the hydrolysis degradation process. In vitro bioactivity tests prove that SrHAp nrds promote the formation of hydroxyapatite on the PBSu surface. All nanocomposites were tested also in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility showing SrHAp nanorods support cell attachment.  
  Address  
  Corporate Author Thesis  
  Publisher Budapest University of Technology and Economics Department of Polymer Engineering Place of Publication Budapest, Hungary Editor  
  Language Wos 000357287800004 Publication Date 2015-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1788-618X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.983 Times cited 21 Open Access  
  Notes 262348 Esmi Approved Most recent IF: 2.983; 2015 IF: 2.761  
  Call Number c:irua:127009 Serial 2382  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; de Backer, A.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic resolution electron tomography Type A1 Journal article
  Year 2016 Publication MRS bulletin Abbreviated Journal Mrs Bull  
  Volume 41 Issue 41 Pages 525-530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano) materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos 000382508100012 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.199 Times cited 19 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915, G.0374.13, and funding of postdoctoral grants to B.G. and A.D.B.). S.B. acknowledges the European Research Council, ERC Grant Number 335078-Colouratom. The research leading to these results received funding from the European Union Seventh Framework Program under Grant Agreements 312483 (ESTEEM2). The authors would like to thank the colleagues who have contributed to this work, including K.J. Batenburg, J. De Beenhouwer, R. Erni, M.D. Rossell, W. Van den Broek, L. Liz-Marzan, E. Carbo-Argibay, S. Gomez-Grana, P. Lievens, M. Van Bael, B. Partoens, B. Schoeters, and J. Sijbers. ; ecas_sara Approved Most recent IF: 5.199  
  Call Number UA @ lucian @ c:irua:135690 Serial 4299  
Permanent link to this record
 

 
Author Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V. url  doi
openurl 
  Title Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host Type A1 Journal article
  Year 2011 Publication Optics express Abbreviated Journal Opt Express  
  Volume 19 Issue 17 Pages 15955-15964  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293894900033 Publication Date 2011-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 19 Open Access  
  Notes FWO; Methusalem Approved Most recent IF: 3.307; 2011 IF: 3.587  
  Call Number UA @ lucian @ c:irua:92428 Serial 2776  
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Rodriguez, V.D.; Kutznetsov, D.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V. url  doi
openurl 
  Title Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters Type A1 Journal article
  Year 2010 Publication Optics express Abbreviated Journal Opt Express  
  Volume 18 Issue 21 Pages 22032-22040  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Bulk oxyfluoride glasses doped with Ag nanoclusters have been prepared using the melt quenching technique. When pumped in the absorption band of Ag nanoclusters between 300 to 500 nm, these glasses emit a very broad luminescence band covering all the visible range with a weak tail extending into the near infrared. The maximum of the luminescence band and its color shifts to the blue with a shortening of the excitation wavelength and an increasing ratio of oxide to fluoride components, resulting in white color luminescence at a particular ratio of oxide to fluoride; with a quantum yield above 20%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000283686500057 Publication Date 2010-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 74 Open Access  
  Notes Methusalem Approved Most recent IF: 3.307; 2010 IF: 3.753  
  Call Number UA @ lucian @ c:irua:85802 Serial 2698  
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Takamura, Y.; Siemons, W.; Verbeeck, J.; Van Tendeloo, G.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Direct structural and spectroscopic investigation of ultrathin films of tetragonal CuO: Six-fold coordinated copper Type A1 Journal article
  Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 105 Issue 1 Pages 17003-17005  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Unlike other 3d transition metal monoxides (MnO, FeO, CoO, and NiO), CuO is found in a low-symmetry distorted monoclinic structure rather than the rocksalt structure. We report here of the growth of ultrathin CuO films on SrTiO3 substrates; scanning transmission electron microscopy was used to show the stabilization of a tetragonal rocksalt structure with an elongated c-axis such that c/a similar to 1.34 and the Cu-O-Cu bond angle similar to 180 degrees, pointing to metastable six-fold coordinated Cu. X-ray absorption spectroscopy demonstrates that the hole at the Cu site for the CuO is localized in 3d(x2-y2) orbital unlike the well-studied monoclinic CuO phase. The experimental confirmation of the tetragonal structure of CuO opens up new avenues to explore electronic and magnetic properties of six-fold coordinated Cu. Copyright (C) EPLA, 2014  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000331197100015 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 15 Open Access  
  Notes This work was carried out with financial support from the AFOSR and EOARD projects (project No.: FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No. 246791 – COUNTATOMS, ERC Starting Grant 278510 VORTEX, Grant No. NMP3-LA-2010-246102 IFOX and an Integrated Infrastructure Initiative, reference No. 312483-ESTEEM2. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. YT acknowledges support from the National Science Foundation (DMR-0747896). WS was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. ECASJO_; Approved Most recent IF: 1.957; 2014 IF: 2.095  
  Call Number UA @ lucian @ c:irua:115806UA @ admin @ c:irua:115806 Serial 722  
Permanent link to this record
 

 
Author Boneschanscher, M.P.; Evers, W.H.; Geuchies, J.J.; Altantzis, T.; Goris, B.; Rabouw, F.T.; van Rossum, S.A.P.; van der Zant, H.S.J.; Siebbeles, L.D.A.; Van Tendeloo, G.; Swart, I.; Hilhorst, J.; Petukhov, A.V.; Bals, S.; Vanmaekelbergh, D.; pdf  url
doi  openurl
  Title Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices Type A1 Journal article
  Year 2014 Publication Science Abbreviated Journal Science  
  Volume 344 Issue 6190 Pages 1377-1380  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands like graphene, but also strong spin-orbit coupling. The two-dimensional assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in two-dimensional (2D) metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent, and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000337531700035 Publication Date 2014-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 304 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 37.205; 2014 IF: 33.611  
  Call Number UA @ lucian @ c:irua:117095 Serial 1840  
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Ottolinger, R.; Haenisch, J.; Holzapfel, B.; Usoskin, A.; Kursumovic, A.; MacManus-Driscoll, J.L.; Stafford, B.H.; Bauer, M.; Nielsch, K.; Schultz, L.; Huehne, R. url  doi
openurl 
  Title Tailoring microstructure and superconducting properties in thick BaHfO3 and Ba2YNb/Ta)O-6 doped YBCO films on technical templates Type A1 Journal article
  Year 2017 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 27 Issue 4 Pages 6601407  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The current transport capability of YBa2Cu3O7-x(YBCO) based coated conductors (CCs) is mainly limited by two features: the grain boundaries of the used textured template, which are transferred into the superconducting film through the buffer layers, and the ability to pin magnetic flux lines by incorporation of defined defects in the crystal lattice. By adjusting the deposition conditions, it is possible to tailor the pinning landscape in doped YBCO in order to meet specific working conditions (T, B) for CC applications. To study these effects, we deposited YBCO layers with a thickness of about 1-2 mu m using pulsed laser deposition on buffered rolling-assisted biaxially textured Ni-W substrates as well as on metal tapes having either an ion-beam-texturedYSZbuffer or an MgO layer textured by inclined substrate deposition. BaHfO3 and the mixed double-perovskite Ba2Y(Nb/Ta)O-6 were incorporated as artificial pinning centers in these YBCO layers. X-ray diffraction confirmed the epitaxial growth of the superconductor on these templates as well as the biaxially oriented incorporation of the secondary phase additions in the YBCO matrix. A critical current density J(c) of more than 2 MA/cm(2) was achieved at 77 K in self-field for 1-2 mu m thick films. Detailed TEM (transmission electron microscopy) studies revealed that the structure of the secondary phase can be tuned, forming c-axis aligned nanocolumns, ab-oriented platelets, or a combination of both. Transport measurements show that the J(c) anisotropy in magnetic fields is reduced by doping and the peak in the J(c) (theta) curves can be correlated to the microstructural features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000394588100001 Publication Date 2016-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access OpenAccess  
  Notes ; This work was supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/2007-2013) under Grant Agreement no. 280432. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141961 Serial 4693  
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Ottolinger, R.; Stafford, B.H.; Lao, M.; Meledin, A.; Bauer, M.; Eisterer, M.; Van Tendeloo, G.; Schultz, L.; Nielsch, K.; Hühne, R. url  doi
openurl 
  Title Influence of substrate tilt angle on the incorporation of BaHfO3 in thick YBa2Cu3O7-δ films Type A1 Journal article
  Year 2016 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 27 Issue 27 Pages 1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High critical current densities can be realized in high-temperature superconductors such as YBa2Cu3O7-δ (YBCO) by controlling density, shape, size and direction of a secondary phase. Whereas the dependence on the growth rate and deposition temperature has been widely studied as key parameters for nano-engineering the pinning landscape, the vicinal tilt of the substrate surface might have an additional influence. Therefore, we deposited 6 mol% BaHfO3 (BHO) doped YBCO on SrTiO3 (STO) substrates with vicinal angles α between 0° and 40° to identify the influence of the tilt on the growth mode of BHO. An undisturbed epitaxial growth of the superconductor as well as an epitaxial integration of the BHO phase in the YBCO matrix is observed for all vicinal angles investigated. The critical temperature is constant up to α = 20°, whereas the self-field critical current density at 77 K starts to decrease above 10°. A detailed structural analysis of the film cross sections showed that the growth mode of BHO changes already for a vicinal tilt of 2° from a pure c-axis oriented growth to a layered structure with BHO aligned parallel to the YBCO ab-plane. We identified a strong influence of such a microstructure on the current flow in BHO doped YBCO films on STO substrates as well as on MgO based coated conductors prepared by inclined substrate deposition  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Electrical and Electronics Engineers (IEEE) Place of Publication Editor  
  Language Wos 000418469400001 Publication Date 2016-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes This work was supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement n.280432.The authors would like to thank R. Nast, M. Reitner, M. Kühnel, U. Fiedler and J. Scheiter for technical assistance. Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Sieger_2016a c:irua:138603 Serial 4317  
Permanent link to this record
 

 
Author Pahlke, P.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Hanisch, J.; Sieger, M.; Usoskin, A.; Stromer, J.; Holzapfel, B.; Schultz, L.; Huhne, R. pdf  url
doi  openurl
  Title Reduced Anisotropy and Enhanced In-Field Performance of Thick BaHfO3-Doped Films on ABAD-YSZ Templates Type A1 Journal article
  Year 2016 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 26 Issue 26 Pages 1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pure and 6 mol% BaHfO3 (BHO) doped YBa2Cu3O7-δ (YBCO) films were prepared on CeO2-buffered ABAD-YSZ templates by pulsed laser deposition. The self-field Jc at 77 K reaches 1.1 MA/cm² in the doped sample compared to 2.5 MA/cm² in pure YBCO, at a film thickness of around 1 μm. Above a magnetic field of 2.2 T along B||c, Jc of the BHO-doped sample exceeds the Jc of the undoped film. The maximum pinning force density (FP,max) reaches a value of around 3 GN/cm² for both samples, but B(FP,max) increases from 1.4 T (pure) to a value of 2.9 T (BHO:YBCO). The Jc anisotropy curves of the doped sample show a large and broad peak at B||c and a strongly reduced anisotropy at all temperatures and fields compared to the pure sample. A complex defect structure with YBa2Cu4O8 intergrowths, Y2O3 precipitates and BHO nanocolumns with a fanshaped structure is observed by TEM investigations, which can explain the measured Jc(B,θ) behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376189700001 Publication Date 2016-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 14 Open Access  
  Notes This work was supported by EUROTAPES, a collaborative project funded by the European Union’s Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement n.280432. Approved Most recent IF: NA  
  Call Number c:irua:133779 Serial 4078  
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Hanisch, J.; Sparing, M.; Bianchetti, M.; MacManus-Driscoll, J.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Nast, R.; Schultz, L.; Holzapfel, B.; Huhne, R. pdf  url
doi  openurl
  Title Ba2Y(Nb/Ta)O6–Doped YBCO Films on Biaxially Textured Ni–5at.% W Substrates Type A1 Journal article
  Year 2016 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 26 Issue 26 Pages 1-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The incorporation of nanoscaled pinning centers in superconducting YBa2Cu3O7-d (YBCO) films is one of the core topics to enhance the critical current density Jc(B, Q) of coated conductors. The mixed double-perovskite Ba2Y(Nb/Ta)O6 (BYNTO) can be grown in nanosized columns parallel the YBCO c-axis and in step-like patterns, making it customizable to meet specific working conditions (T, B, Q). We compare a 1.6 μm thick film of pure YBCO and a similar film with additional 5 mol% of BYNTO, grown by pulsed laser deposition with a growth rate of 1.6 nm/s on buffered biaxially textured Ni-5at.% W tape. Our doped sample shows nanosized BYNTO columns parallel cYBCO and plates in the ab-plane containing Y, Nb and Ta. An improved homogeneity of the critical current density Jc over the sample was evaluated from trapped field profiles measured with a scanning Hall probe microscope. The mean Jc in rolling direction of the tape is 1.8 MA/cm² (77 K, self-field) and doubles the value of the undoped sample. Angular dependent measurements of the critical current density, Jc(Q), show a decreased anisotropy of the doped film for various magnetic fields at 77 K as well as 64 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375581500001 Publication Date 2016-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes This work was supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement n.280432. Approved Most recent IF: NA  
  Call Number c:irua:133781 Serial 4079  
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Martinez, G.T.; den Dekker, A.J.; Van Dyck, D.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Advanced electron crystallography through model-based imaging Type A1 Journal article
  Year 2016 Publication IUCrJ Abbreviated Journal Iucrj  
  Volume 3 Issue 3 Pages 71-83  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Engineering Management (ENM)  
  Abstract The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368590900010 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-2525; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.793 Times cited 30 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a PhD grant to ADB. The research leading to these results has received funding from the European Union 7th Framework Program (FP7/20072013) under grant agreement No. 312483 (ESTEEM2). SB and GVT acknowledge the European Research Council under the 7th Framework Program (FP7), ERC grant No. 335078 – COLOURATOMS and ERC grant No. 246791 – COUNTATOMS.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 5.793  
  Call Number c:irua:129589 c:irua:129589 Serial 3965  
Permanent link to this record
 

 
Author Wu, S.; Luo, X.; Turner, S.; Peng, H.; Lin, W.; Ding, J.; David, A.; Wang, B.; Van Tendeloo, G.; Wang, J.; Wu, T.; url  doi
openurl 
  Title Nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures Type A1 Journal article
  Year 2013 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume 3 Issue 4 Pages 041027-14  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures, where the conducting layer near the LaAlO3/SrTiO3 interface serves as the unconventional bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO3/SrTiO3 interface and the creation of defect-induced gap states within the ultrathin LaAlO3 layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos 000328862400001 Publication Date 2013-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited 77 Open Access  
  Notes FWO;FP7;IFOX; Countatoms; Hercules Approved Most recent IF: 12.789; 2013 IF: 8.463  
  Call Number UA @ lucian @ c:irua:112524 Serial 2365  
Permanent link to this record
 

 
Author Samal, D.; Gauquelin, N.; Takamura, Y.; Lobato, I.; Arenholz, E.; Van Aert, S.; Huijben, M.; Zhong, Z.; Verbeeck, J.; Van Tendeloo, G.; Koster, G. url  doi
openurl 
  Title Unusual structural rearrangement and superconductivity in infinite layer cuprate superlattices Type A1 Journal Article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 5 Pages 054803  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041792100007 Publication Date 2023-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Air Force Office of Scientific Research; European Office of Aerospace Research and Development, FA8655-10-1-3077 ; Office of Science, DE-AC02-05CH11231 ; National Science Foundation, DMR-1745450 ; Seventh Framework Programme, 278510 ; Bijzonder Onderzoeksfonds UGent; Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:196973 Serial 8790  
Permanent link to this record
 

 
Author Moshnyaga, V.; Sudheendra, L.; Lebedev, O.I.; Koster, S.A.; Gehrke, K.; Shapoval, O.; Belenchuk, A.; Damaschke, B.; Van Tendeloo, G.; Samwer, K. url  doi
openurl 
  Title A-site ordering versus electronic inhomogeneity in colossally magnetoresistive manganite films Type A1 Journal article
  Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 97 Issue 10 Pages 107205,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000240384300058 Publication Date 2006-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 43 Open Access  
  Notes Approved Most recent IF: 8.462; 2006 IF: 7.072  
  Call Number UA @ lucian @ c:irua:60786 Serial 3029  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G.; Avila-Brande, D. url  doi
openurl 
  Title Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range Type A1 Journal article
  Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 96 Issue 9 Pages 096106,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The local structure of Bi4W2/3Mn1/3O8Cl is determined using quantitative transmission electron microscopy. The electron exit wave, which is closely related to the projected crystal potential, is reconstructed and used as a starting point for statistical parameter estimation. This method allows us to refine all atomic positions on a local scale, including those of the light atoms, with a precision in the picometer range. Using this method one is no longer restricted to the information limit of the electron microscope. Our results are in good agreement with x-ray powder diffraction data demonstrating the reliability of the method. Moreover, it will be shown that local effects can be interpreted using this approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000235905700042 Publication Date 2006-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 69 Open Access  
  Notes Fwo; Iap V Approved Most recent IF: 8.462; 2006 IF: 7.072  
  Call Number UA @ lucian @ c:irua:56977 Serial 3154  
Permanent link to this record
 

 
Author da Pieve, F.; Hogan, C.; Lamoen, D.; Verbeeck, J.; Vanmeert, F.; Radepont, M.; Cotte, M.; Janssens, K.; Gonze, X.; Van Tendeloo, G. url  doi
openurl 
  Title Casting light on the darkening of colors in historical paintings Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 20 Pages 208302-208305  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The degradation of colors in historical paintings affects our cultural heritage in both museums and archeological sites. Despite intensive experimental studies, the origin of darkening of one of the most ancient pigments known to humankind, vermilion (α-HgS), remains unexplained. Here, by combining many-body theoretical spectroscopy and high-resolution microscopic x-ray diffraction, we clarify the composition of the damaged paint work and demonstrate possible physicochemical processes, induced by illumination and exposure to humidity and air, that cause photoactivation of the original pigment and the degradation of the secondary minerals. The results suggest a new path for the darkening process which was never considered by previous studies and prompt a critical examination of their findings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000327244500003 Publication Date 2013-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 30 Open Access  
  Notes Vortex; ERC FP7; COUNTATOMS; ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:111396UA @ admin @ c:irua:111396 Serial 287  
Permanent link to this record
 

 
Author Gou, H.; Dubrovinskaia, N.; Bykova, E.; Tsirlin, A.A.; Kasinathan, D.; Schnelle, W.; Richter, A.; Merlini, M.; Hanfland, M.; Abakumov, A.M.; Batuk, D.; Van Tendeloo, G.; Nakajima, Y.; Kolmogorov, A.N.; Dubrovinsky, L.; url  doi
openurl 
  Title Discovery of a superhard iron tetraboride superconductor Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 15 Pages 157002-157005  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000325371500011 Publication Date 2013-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 127 Open Access  
  Notes Countatoms Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:110820 Serial 729  
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Molegraaf, H.; Kuiper, B.; Siemons, W.; Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Takamura, Y.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Experimental evidence for oxygen sublattice control in polar infinite layer SrCuO2 Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 9 Pages 096102-96105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A recent theoretical study [ Phys. Rev. B 85 121411(R) (2012)] predicted a thickness limit below which ideal polar cuprates turn nonpolar driven by the associated electrostatic instability. Here we demonstrate this possibility by inducing a structural transformation from the bulk planar to chainlike structure upon reducing the SrCuO2 repeat thickness in SrCuO2/SrTiO3 superlattices with unit-cell precision. Our results, based on structural investigation by x-ray diffraction and high resolution scanning transmission electron microscopy, demonstrate that the oxygen sublattice can essentially be built by design. In addition, the electronic structure of the chainlike structure, as studied by x-ray absorption spectroscopy, shows the signature for preferential hole occupation in the Cu 3d3z2-r2 orbital, which is different from the planar case.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000323610800023 Publication Date 2013-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 29 Open Access  
  Notes This work was carried out with financial support from AFOSR and EOARD project (Project No. FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This work was partially funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure No. 312483-ESTEEM2. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Y. T. acknowledges support from the National Science Foundation (DMR-0747896). W. S. was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. D. S. thanks Z. Zhong from Vienna University of Technology, Austria for scientific discussion. ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:109452UA @ admin @ c:irua:109452 Serial 1140  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 25 Pages 259702  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305568700038 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.462 Times cited Open Access  
  Notes Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ admin @ c:irua:100293 Serial 5370  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 107 Issue 10 Pages 107602  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using a combination of high-angle annular dark-field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy in an aberration-corrected transmission electron microscope we demonstrate the possibility of 2D atom by atom valence mapping in the mixed valence compound Mn3O4. The Mn L2,3 energy-loss near-edge structures from Mn2+ and Mn3+ cation sites are similar to those of MnO and Mn2O3 references. Comparison with simulations shows that even though a local interpretation is valid here, intermixing of the inelastic signal plays a significant role. This type of experiment should be applicable to challenging topics in materials science, such as the investigation of charge ordering or single atom column oxidation states in, e.g., dislocations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000294406600018 Publication Date 2011-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 115 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:91265 c:irua:91265 c:irua:91265UA @ admin @ c:irua:91265 Serial 5  
Permanent link to this record
 

 
Author Poltavets, V.V.; Lokshin, K.A.; Nevidomskyy, A.H.; Croft, M.; Tyson, T.A.; Hadermann, J.; Van Tendeloo, G.; Egami, T.; Kotliar, G.; ApRoberts-Warren, N.; Dioguardi, A.P.; Curro, N.J.; Greenblatt, M.; url  doi
openurl 
  Title Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d9/d8) nickelate, isoelectronic with superconducting cuprates Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 104 Issue 20 Pages 206403  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Ni(1+)/Ni(2+) states of nickelates have the identical (3d(9)/3d(8)) electronic configuration as Cu(2+)/Cu(3+) in the high temperature superconducting cuprates, and are expected to show interesting properties. An intriguing question is whether mimicking the electronic and structural features of cuprates would also result in superconductivity in nickelates. Here we report experimental evidence for a bulklike magnetic transition in La(4)Ni(3)O(8) at 105 K. Density functional theory calculations relate the transition to a spin density wave nesting instability of the Fermi surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000277945900033 Publication Date 2010-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 35 Open Access  
  Notes Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:95613 Serial 260  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: