|
Record |
Links |
|
Author |
Sieger, M.; Pahlke, P.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Ottolinger, R.; Haenisch, J.; Holzapfel, B.; Usoskin, A.; Kursumovic, A.; MacManus-Driscoll, J.L.; Stafford, B.H.; Bauer, M.; Nielsch, K.; Schultz, L.; Huehne, R. |
|
|
Title |
Tailoring microstructure and superconducting properties in thick BaHfO3 and Ba2YNb/Ta)O-6 doped YBCO films on technical templates |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
IEEE transactions on applied superconductivity |
Abbreviated Journal |
|
|
|
Volume |
27 |
Issue |
4 |
Pages |
6601407 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The current transport capability of YBa2Cu3O7-x(YBCO) based coated conductors (CCs) is mainly limited by two features: the grain boundaries of the used textured template, which are transferred into the superconducting film through the buffer layers, and the ability to pin magnetic flux lines by incorporation of defined defects in the crystal lattice. By adjusting the deposition conditions, it is possible to tailor the pinning landscape in doped YBCO in order to meet specific working conditions (T, B) for CC applications. To study these effects, we deposited YBCO layers with a thickness of about 1-2 mu m using pulsed laser deposition on buffered rolling-assisted biaxially textured Ni-W substrates as well as on metal tapes having either an ion-beam-texturedYSZbuffer or an MgO layer textured by inclined substrate deposition. BaHfO3 and the mixed double-perovskite Ba2Y(Nb/Ta)O-6 were incorporated as artificial pinning centers in these YBCO layers. X-ray diffraction confirmed the epitaxial growth of the superconductor on these templates as well as the biaxially oriented incorporation of the secondary phase additions in the YBCO matrix. A critical current density J(c) of more than 2 MA/cm(2) was achieved at 77 K in self-field for 1-2 mu m thick films. Detailed TEM (transmission electron microscopy) studies revealed that the structure of the secondary phase can be tuned, forming c-axis aligned nanocolumns, ab-oriented platelets, or a combination of both. Transport measurements show that the J(c) anisotropy in magnetic fields is reduced by doping and the peak in the J(c) (theta) curves can be correlated to the microstructural features. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000394588100001 |
Publication Date |
2016-12-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-8223 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
12 |
Open Access |
OpenAccess |
|
|
Notes |
; This work was supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/2007-2013) under Grant Agreement no. 280432. ; |
Approved |
Most recent IF: NA |
|
|
Call Number |
UA @ lucian @ c:irua:141961 |
Serial |
4693 |
|
Permanent link to this record |