toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wanten, B.; Maerivoet, S.; Vantomme, C.; Slaets, J.; Trenchev, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance Type A1 Journal article
  Year (down) 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 56 Issue Pages 101869  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a confined atmospheric pressure glow discharge plasma reactor, with very good performance towards dry reforming of methane, i.e., CO2 and CH4 conversion of 64 % and 94 %, respectively, at an energy cost of 3.5–4 eV/molecule (or 14–16 kJ/L). This excellent performance is among the best reported up to now for all types of plasma reactors in literature, and is due to the confinement of the plasma, which maximizes the fraction of gas passing through the active plasma region. The main product formed is syngas, with H2O and C2H2 as byproducts. We developed a quasi-1D chemical kinetics model, showing good agreement with the experimental results, which provides a thorough insight in the reaction pathways underlying the conversion of CO2 and CH4 and the formation of the different products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740230000002 Publication Date 2021-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes Vlaamse regering; European Research Council, 810182 ; Herculesstichting; European Research Council; Horizon 2020 Framework Programme; Universiteit Antwerpen; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Finally, we thank T. Kenis, J. Van den Hoek, and T. Breugelmans from the University of Antwerp, for per­ forming the liquid analysis. Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:185163 Serial 6899  
Permanent link to this record
 

 
Author Vertongen, R.; Trenchev, G.; Van Loenhout, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Enhancing CO2 conversion with plasma reactors in series and O2 removal Type A1 Journal article
  Year (down) 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 66 Issue Pages 102252  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we take a crucial step towards the industrial readiness of plasma-based CO2 conversion. We present a stepwise method to study plasma reactors in series as a first approach to a recycle flow. By means of this procedure, the CO2 conversion is enhanced by a factor of 3, demonstrating that a single-pass plasma treatment performs far below the optimal capacity of the reactor. Furthermore, we explore the effect of O2 in the mixture with our flexible procedure. Addition of O2 in the mixture has a clear detrimental effect on the conversion, in agreement with other experiments in atmospheric pressure plasmas. O2 removal is however highly beneficial, demonstrating a conversion per pass that is 1.6 times higher than the standard procedure. Indeed, extracting one of the products prevents recombination reactions. Based on these insights, we discuss opportunities for further improvements, especially in the field of specialised separation techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000872550900003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221 N), the Flemish Agency for Innovation and Entrepreneurship (VLAIO) (Grant ID HBC.2021.0251), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). We also thank L. Hollevoet, K. Rouwenhorst, F. Girard-Sahun, B. Wanten and I. Tsonev for the inter­esting discussions and practical help with the experiments. Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:191467 Serial 7111  
Permanent link to this record
 

 
Author Girard-Sahun, F.; Biondo, O.; Trenchev, G.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream Type A1 Journal article
  Year (down) 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 442 Issue Pages 136268  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 conversion by plasma technology is gaining increasing interest. We present a carbon (charcoal) bed placed after a Gliding Arc Plasmatron (GAP) reactor, to enhance the CO2 conversion, promote O/O2 removal and in­ crease the CO fraction in the exhaust mixture. By means of an innovative (silo) system, the carbon is constantly supplied, to avoid carbon depletion upon reaction with O/O2. Using this carbon bed, the CO2 conversion is enhanced by almost a factor of two (from 7.6 to 12.6%), while the CO concentration even increases by a factor of three (from 7.2 to 21.9%), and O2 is completely removed from the exhaust mixture. Moreover, the energy ef­ ficiency of the conversion process drastically increases from 27.9 to 45.4%, and the energy cost significantly drops from 41.9 to 25.4 kJ.L− 1. We also present the temperature as a function of distance from the reactor outlet, as well as the CO2, CO and O2 concentrations and the temperature in the carbon bed as a function of time, which is important for understanding the underlying mechanisms. Indeed, these time-resolved measurements reveal that the initial enhancements in CO2 conversion and in CO concentration are not maintained in our current setup. Therefore, we present a model to study the gasification of carbon with different feed gases (i.e., O2, CO and CO2 separately), from which we can conclude that the oxygen coverage at the surface plays a key role in determining the product composition and the rate of carbon consumption. Indeed, our model insights indicate that the drop in CO2 conversion and in CO concentration after a few minutes is attributed to deactivation of the carbon bed, due to rapid formation of oxygen complexes at the surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797716700002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Horizon 2020 Marie Skłodowska-Curie Actions; European Research Council; This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Inno­vation programme under the Marie Sklodowska-Curie grant agreement No 813393 (PIONEER). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Approved Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:188286 Serial 7052  
Permanent link to this record
 

 
Author Girard-Sahun, F.; Biondo, O.; Trenchev, G.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream Type A1 Journal article
  Year (down) 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 442 Issue Pages 136268  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 conversion by plasma technology is gaining increasing interest. We present a carbon (charcoal) bed placed after a Gliding Arc Plasmatron (GAP) reactor, to enhance the CO2 conversion, promote O/O2 removal and in­ crease the CO fraction in the exhaust mixture. By means of an innovative (silo) system, the carbon is constantly supplied, to avoid carbon depletion upon reaction with O/O2. Using this carbon bed, the CO2 conversion is enhanced by almost a factor of two (from 7.6 to 12.6%), while the CO concentration even increases by a factor of three (from 7.2 to 21.9%), and O2 is completely removed from the exhaust mixture. Moreover, the energy ef­ ficiency of the conversion process drastically increases from 27.9 to 45.4%, and the energy cost significantly drops from 41.9 to 25.4 kJ.L− 1. We also present the temperature as a function of distance from the reactor outlet, as well as the CO2, CO and O2 concentrations and the temperature in the carbon bed as a function of time, which is important for understanding the underlying mechanisms. Indeed, these time-resolved measurements reveal that the initial enhancements in CO2 conversion and in CO concentration are not maintained in our current setup. Therefore, we present a model to study the gasification of carbon with different feed gases (i.e., O2, CO and CO2 separately), from which we can conclude that the oxygen coverage at the surface plays a key role in determining the product composition and the rate of carbon consumption. Indeed, our model insights indicate that the drop in CO2 conversion and in CO concentration after a few minutes is attributed to deactivation of the carbon bed, due to rapid formation of oxygen complexes at the surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797716700002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Horizon 2020 Marie Skłodowska-Curie Actions; European Research Council; This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Inno­vation programme under the Marie Sklodowska-Curie grant agreement No 813393 (PIONEER). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Govern­ment (department EWI) and the UAntwerpen. We also thank R. De Meyer, K. Leyssens and S. Defossé for performing the charcoal characterizations. Approved Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:188286 Serial 7053  
Permanent link to this record
 

 
Author Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
  Year (down) 2021 Publication Sustainable energy & fuels Abbreviated Journal Sustainable Energy Fuels  
  Volume 5 Issue 6 Pages 1786-1800  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631643300013 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177540 Serial 6745  
Permanent link to this record
 

 
Author Dinh, D.K.; Trenchev, G.; Lee, D.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Arc plasma reactor modification for enhancing performance of dry reforming of methane Type A1 Journal article
  Year (down) 2020 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 42 Issue Pages 101352  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Arc plasma technology is gaining increasing interest for a variety of chemical reaction applications. In this study, we demonstrate how modifying the reactor geometry can significantly enhance the chemical reaction perfor­mance. Using dry reforming of methane as a model reaction, we studied different rotating arc reactors (con­ventional rotating arc reactor and nozzle-type rotating arc reactor) to evaluate the effect of attaching a downstream nozzle. The nozzle structure focuses the heat to a confined reaction volume, resulting in enhanced heat transfer from the arc into gas activation and reduced heat losses to the reactor walls. Compared to the conventional rotating arc reactor, this yields much higher CH4 and CO2 conversion (i.e., 74% and 49%, respectively, versus 40% and 28% in the conventional reactor, at 5 kJ/L) as well as energy efficiency (i.e., 53% versus 36%). The different performance in both reactors was explained by both experiments (measurements of temperature and oscillogram of current and voltage) and numerical modelling of the gas flow dynamics, heat transfer and fluid plasma of the reactor chambers. The results provide important insights for design optimization of arc plasma reactors for various chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599717000009 Publication Date 2020-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Korea Institute of Machinery and Materials, NK225F and NG0340) ; This work is supported by the Institutional research program (NK225F and NG0340) of the Korea Institute of Machinery and Materials. Approved Most recent IF: 7.7; 2020 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:173859 Serial 6431  
Permanent link to this record
 

 
Author Kolev, S.; Paunska, T.; Trenchev, G.; Bogaerts, A. url  doi
openurl 
  Title Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge Type P1 Proceeding
  Year (down) 2020 Publication Technologies Abbreviated Journal  
  Volume Issue Pages 012007  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 dissociation and its subsequent conversion into added-value chemicals is a promising strategy for recycling CO2 gas into reusable products. One of the possible methods is direct plasma-induced dissociation. In this work we study the efficiency of CO2 dissociation in pulsed atmospheric-pressure gas discharge between two conducting electrodes by a 0-D numerical plasma model. The purpose of the study is to provide results on the optimal conditions of CO2 conversion with respect to the energy efficiency and dissociation by varying the maximum power density value and the pulse length. The power density is directly related to the discharge current and the reduced electric field in the discharge. We consider pulse lengths in the range from hundreds of nanosecond up to milliseconds. The results obtained show that the dissociation degree and energy efficiency are sensitive to the pulse length (duration) and the power density, so that a considerable improvement of the discharge performance can be achieved by fine-tuning these parameters. The study is intended to provide guidance in designing an experimental set-up and a power supply with the characteristics necessary to achieve optimal conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000593712900007 Publication Date 2020-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 1492 Series Issue Edition  
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174447 Serial 6769  
Permanent link to this record
 

 
Author Zhang, H.; Zhang, H.; Trenchev, G.; Li, X.; Wu, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Multi-dimensional modelling of a magnetically stabilized gliding arc plasma in argon and CO2 Type A1 Journal article
  Year (down) 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 4 Pages 045019  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study focuses on a magnetically stabilized gliding arc (MGA) plasma. Two fully coupled flow-plasma models (in 3D and 2D) are presented. The 3D model is applied to compare the arc dynamics of the MGA with a traditional gas-driven gliding arc. The 2D model is used for a detailed parametric study on the effect of the external magnetic field. The results show that the relative velocity between the plasma and feed gas is generated due to the Lorentz force, which can increase the plasma-treated gas fraction. The magnetic field also helps to decrease the gas temperature by enhancing heat transfer and to increase the electron number density. This work shows the potential of an external magnetic field to control the gliding arc behavior, for enhanced gas conversion at low gas flow rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570241800001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; National Natural Science Foundation of China, 51706204 51707144 ; State Key Laboratory of Electrical Insulation and Power Equipment, EIPE19302 ; The authors acknowledge financial support from the Fund for Scientific Research—Flanders (FWO; Grant G.0383.16 N), National Natural Science Foundation of China under Grant Nos. 51706204, 51707144, and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE19302). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and Universiteit Antwerpen. Finally, Hantian Zhang acknowledges financial support from the China Scholarship Council. Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:169218 Serial 6360  
Permanent link to this record
 

 
Author Trenchev, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Dual-vortex plasmatron: A novel plasma source for CO2 conversion Type A1 Journal article
  Year (down) 2020 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 39 Issue Pages 101152  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atmospheric pressure gliding arc (GA) discharges are gaining increasing interest for CO2 conversion and other gas conversion applications, due to their simplicity and high energy efficiency. However, they are characterized by some drawbacks, such as non-uniform gas treatment, limiting the conversion, as well as the development of a hot cathode spot, resulting in severe electrode degradation. In this work, we built a dual-vortex plasmatron, which is a GA plasma reactor with innovative electrode configuration, to solve the above problems. The design aims to improve the CO2 conversion capability of the GA reactor by elongating the arc in two directions, to increase the residence time of the gas inside the arc, and to actively cool the cathode spot by rotation of the arc and gas convection. The measured CO2 conversion and corresponding energy efficiency indeed look very promising. In addition, we developed a fluid dynamics non-thermal plasma model with argon chemistry, to study the arc behavior in the reactor and to explain the experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000546648400008 Publication Date 2020-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Fund for Scientific Research – Flanders, G.0383.16N 11U53.16N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research – Flanders (FWO); grant numbers G.0383.16N and 11U53.16N. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We would also like to thank G. Van Loon from the University of Antwerp for building the DVP reactor. Approved Most recent IF: 7.7; 2020 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:167593 Serial 6356  
Permanent link to this record
 

 
Author Paunska, T.; Trenchev, G.; Bogaerts, A.; Kolev, S. url  doi
openurl 
  Title A 2D model of a gliding arc discharge for CO2conversion Type P1 Proceeding
  Year (down) 2019 Publication AIP conference proceedings T2 – 10th Jubilee Conference of the Balkan-Physical-Union (BPU), AUG 26-30, 2018, Sofia, BULGARIA Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The study presents a 2D fluid plasma model of a gliding arc discharge for dissociation of CO2 which allows its subsequent conversion into value-added chemicals. The model is based on the balance equations of charged and neutral particles, the electron energy balance equation, the gas thermal balance equation and the current continuity equation. By choosing the modeling domain to be the plane perpendicular to the arc current, the numerical calculations are significantly simplified. Thus, the model allows us to explore the influence of the gas instabilities (turbulences) on the energy efficiency of CO2 conversion. This paper presents results for plasma parameters at different values of the effective turbulent thermal conductivity leading to enhanced energy transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472653800069 Publication Date 2019-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 2075 Series Issue Edition  
  ISSN 978-0-7354-1803-5; 978-0-7354-1803-5; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161422 Serial 6281  
Permanent link to this record
 

 
Author Trenchev, G.; Nikiforov, A.; Wang, W.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Atmospheric pressure glow discharge for CO2 conversion : model-based exploration of the optimum reactor configuration Type A1 Journal article
  Year (down) 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 362 Issue 362 Pages 830-841  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, “confined” configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457863500084 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 4 Open Access Not_Open_Access: Available from 15.10.2019  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157459 Serial 5269  
Permanent link to this record
 

 
Author Trenchev, G. pdf  openurl
  Title Computational modelling of atmospheric DC discharges for CO2 conversion Type Doctoral thesis
  Year (down) 2019 Publication Abbreviated Journal  
  Volume Issue Pages 206 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163986 Serial 6290  
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Trenchev, G.; Wang, W. pdf  url
doi  openurl
  Title Modeling for a Better Understanding of Plasma-Based CO2 Conversion Type H1 Book Chapter
  Year (down) 2018 Publication Plasma Chemistry and Gas Conversion Abbreviated Journal  
  Volume Issue Pages  
  Keywords H1 Book Chapter; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This chapter discusses modeling efforts for plasma-based CO2 conversion, which are needed to obtain better insight in the underlying mechanisms, in order to improve this application. We will discuss two types of (complementary) modeling efforts that are most relevant, that is, (i) modeling of the detailed plasma chemistry by zero-dimensional (0D) chemical kinetic models and (ii) modeling of reactor design, by 2D or 3D fluid dynamics models. By showing some characteristic calculation results of both models, for CO2 splitting and in combination with a H-source, and for packed bed DBD and gliding arc plasma, we can illustrate the type of information they can provide.  
  Address  
  Corporate Author Thesis  
  Publisher IntechOpen Place of Publication Rijeka Editor Britun, N.; Silva, T.  
  Language Wos Publication Date 2018-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @ Bogaerts18c:irua:155915 Serial 5142  
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Wang, W.; Ramakers, M.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency Type A1 Journal article
  Year (down) 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 44 Pages 24470-24479  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The gliding arc plasmatron (GAP) is a highly efficient atmospheric plasma source, which is very promising for CO2 conversion applications. To understand its operation principles and to improve its application, we present here comprehensive modeling results, obtained by means of computational fluid dynamics simulations and plasma modeling. Because of the complexity of the CO2 plasma, a full 3D plasma model would be computationally impractical. Therefore, we combine a 3D turbulent gas flow model with a 2D plasma and gas heating model in order to calculate the plasma parameters and CO2 conversion characteristics. In addition, a complete 3D gas flow and plasma model with simplified argon chemistry is used to evaluate the gliding arc evolution in space and time. The calculated values are compared with experimental data from literature as much as possible in order to validate the model. The insights obtained in this study are very helpful for improving the application of CO2 conversion, as they allow us to identify the limiting factors in the performance, based on which solutions can be provided on how to further improve the capabilities of CO2 conversion in the GAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415140400014 Publication Date 2017-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, 11U5316N G038316N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:147193 Serial 4765  
Permanent link to this record
 

 
Author Ramakers, M.; Medrano, J.A.; Trenchev, G.; Gallucci, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2conversion Type A1 Journal article
  Year (down) 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 12 Pages 125002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc plasmatron (GAP) is very promising for CO2 conversion into value-added chemicals, but to further improve this important application, a better understanding of the arc behavior is indispensable. Therefore, we study here for the first time the dynamic arc behavior of the GAP by means of a high-speed camera, for different reactor configurations and in a wide range of operating conditions. This allows us to provide a complete image of the behavior of the gliding arc. More specifically, the arc body shape, diameter, movement and rotation speed are analyzed and discussed. Clearly, the arc movement and shape relies on a number of factors, such as gas turbulence, outlet diameter, electrode surface, gas contraction and buoyance force. Furthermore, we also compare the experimentally measured arc movement to a state-of-the-art 3D-plasma model, which predicts the plasma movement and rotation speed with very good accuracy, to gain further insight in the underlying mechanisms. Finally, we correlate the arc dynamics with the CO2 conversion and energy efficiency, at exactly the same conditions, to explain the effect of these parameters on the CO2 conversion process. This work is important for understanding and optimizing the GAP for CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414675000001 Publication Date 2017-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 7 Open Access OpenAccess  
  Notes This work was supported by the Belgian Federal Office for Science Policy (BELSPO) and the Fund for Scientific Research Flanders (FWO; grant numbers G.0383.16N and 11U5316N). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:147023 Serial 4761  
Permanent link to this record
 

 
Author Ramakers, M.; Trenchev, G.; Heijkers, S.; Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion Type A1 Journal article
  Year (down) 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 2642-2652  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO2 into chemicals and fuels. Since CO2 is a very stable molecule, a key performance indicator for the research on plasma-based CO2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO2. From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403934400014 Publication Date 2017-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 42 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek, G.0383.16N 11U5316N ; Horizon 2020, 657304 ; Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:144184 Serial 4616  
Permanent link to this record
 

 
Author Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, S.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W. pdf  url
doi  openurl
  Title CO2conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design Type A1 Journal article
  Year (down) 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 063001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000412173700001 Publication Date 2017-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 26 Open Access OpenAccess  
  Notes We would like to thank T Silva, N Britoun, Th Godfroid and R Snyders (Université de Mons and Materia Nova Research Center), A Ozkan, Th Dufour and F Reniers (Université Libre de Bruxelles) andK Van Wesenbeeck and S Lenaerts (University of Antwerp) for providingexperimental data to validate our models. Furthermore, we acknowledge the financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Francqui Research Foundation, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska- Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the Methusalem financing of the University of Antwerp, the Fund for Scientific Research, Flanders (FWO; grant nos. G.0383.16N and 11U5316N) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144429 Serial 4614  
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Kiss’ovski, Z. pdf  url
doi  openurl
  Title Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs Type A1 Journal article
  Year (down) 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study, we present a computational model of a cylindrical electric probe in atmospheric pressure argon plasma. The plasma properties are varied in terms of density and electron temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron energy distribution functions are also obtained and compared. The model is based on the fluid description of plasma within the COMSOL software package. The results for the ion saturation current are compared and show good agreement with existing analytical Langmuir probe theories. A strong dependence between the ion saturation current and electron transport properties was observed, and attributed to the effects of ambipolar diffusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398327900002 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:141914 Serial 4535  
Permanent link to this record
 

 
Author Kolev, S.; Sun, S.; Trenchev, G.; Wang, W.; Wang, H.; Bogaerts, A. pdf  url
doi  openurl
  Title Quasi-Neutral Modeling of Gliding Arc Plasmas: Quasi-Neutral Modeling of Gliding Arc Plasmas Type A1 Journal article
  Year (down) 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600110  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The modelling of a gliding arc discharge (GAD) is studied by means of the quasineutral (QN) plasma modelling approach. The model is first evaluated for reliability and proper description of a gliding arc discharge at atmospheric pressure, by comparing with a more elaborate non-quasineutral (NQN) plasma model in two different geometries – a 2D axisymmetric and a Cartesian geometry. The NQN model is considered as a reference, since it provides a continuous self-consistent plasma description, including the near electrode regions. In general, the results of the QN model agree very well with those obtained from the NQN model. The small differences between both models are attributed to the approximations in the derivation of the QN model. The use of the QN model provides a substantial reduction of the computation time compared to the NQN model, which is crucial for the development of more complex models in three dimensions or with complicated chemistries. The latter is illustrated for (i) a reverse vortex flow(RVF) GAD in argon, and (ii) a GAD in CO2. The RVF discharge is modelled in three dimensions and the effect of the turbulent heat transport on the plasma and gas characteristics is

discussed. The GAD model in CO2 is in a 1D geometry with axial symmetry and provides results for the time evolution of the electron, gas and vibrational temperature of CO2, as well as for the molar fractions of the different species.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403074000011 Publication Date 2016-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access  
  Notes Methusalem financing of the University of Antwerp; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:142982 Serial 4570  
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title A 3D model of a reverse vortex flow gliding arc reactor Type A1 Journal article
  Year (down) 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 035014  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this computational study, a gliding arc plasma reactor with a reverse-vortex flow stabilization is modelled for the first time by a fluid plasma description. The plasma reactor operates with argon gas at atmospheric pressure. The gas flow is simulated using the k-ε Reynolds-averaged Navier–Stokes turbulent model. A quasi-neutral fluid plasma model is used for computing the plasma properties. The plasma arc movement in the reactor is observed, and the results for the gas flow, electrical characteristics, plasma density, electron temperature, and gas temperature are analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376557400022 Publication Date 2016-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 20 Open Access  
  Notes This research was carried out in the framework of the network on Physical Chemistry of Plasma–Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO), and it was also funded by the Fund for Scientific Research Flanders (FWO). Grant number: 11U5316N. Approved Most recent IF: 3.302  
  Call Number c:irua:132888 c:irua:132888 Serial 4063  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: