toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Dependence of superconducting properties on the size and shape of a nanoscale superconductor: from nanowire to film Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue Pages 024511,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000248496200104 Publication Date 2007-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 54 Open Access  
  Notes Fwo-Vi; Iap; Bof-Top Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69655 Serial 643  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. doi  openurl
  Title Magnetic-field induced quantum-size cascades in superconducting nanowires Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 78 Issue 2 Pages 024505,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000258190200105 Publication Date 2008-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 42 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:70559 Serial 1876  
Permanent link to this record
 

 
Author Shanenko, A.A.; Tempère, J.; Brosens, F.; Devreese, J.T. doi  openurl
  Title Mesoscopic samples: the superconducting condensate via the Gross.Pitaevskii scenario Type A1 Journal article
  Year 2004 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 131 Issue Pages 409-414  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000223011700012 Publication Date 2004-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.554; 2004 IF: 1.523  
  Call Number UA @ lucian @ c:irua:48282 Serial 2000  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. doi  openurl
  Title Nanoscale superconductivity: nanowires and nanofilms Type A1 Journal article
  Year 2008 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 468 Issue 7/10 Pages 593-598  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000257355300021 Publication Date 2008-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.404; 2008 IF: 0.740  
  Call Number UA @ lucian @ c:irua:69623 Serial 2273  
Permanent link to this record
 

 
Author Peeters, F.M.; Croitoru, M.D.; Shanenko, A.A. doi  openurl
  Title Nanowires and nanofilms: superconductivity in quantum-size regime Type A1 Journal article
  Year 2008 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 468 Issue 4 Pages 326-330  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000254816500017 Publication Date 2007-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.404; 2008 IF: 0.740  
  Call Number UA @ lucian @ c:irua:69621 Serial 2283  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Mints, R.G.; Peeters, F.M. url  doi
openurl 
  Title New Andreev-type states in superconducting nanowires Type A1 Journal article
  Year 2007 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 99 Issue Pages 067007,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000248664700056 Publication Date 2007-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 30 Open Access  
  Notes Fwo -Vi; Bof-Top; Iap Approved Most recent IF: 8.462; 2007 IF: 6.944  
  Call Number UA @ lucian @ c:irua:69664 Serial 2304  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. url  doi
openurl 
  Title Oscillations of the superconducting temperature induced by quantum well states in thin metallic films: numerical solution of the Bogoliubov-de Gennes equations Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 1 Pages 014519,1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000243894600126 Publication Date 2007-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 85 Open Access  
  Notes Fwo-Vi; Bof-Top; Iap Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:63749 Serial 2535  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. url  doi
openurl 
  Title Quantum-size effects on T-c in superconducting nanofilms Type A1 Journal article
  Year 2006 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 76 Issue 3 Pages 498-504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000241434300022 Publication Date 2006-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 31 Open Access  
  Notes Approved Most recent IF: 1.957; 2006 IF: 2.229  
  Call Number UA @ lucian @ c:irua:61463 Serial 2788  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D. doi  openurl
  Title Shape resonances in the superconducting order parameter of ultrathin nanowires Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue 1 Pages 012510,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000235009000033 Publication Date 2006-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:56613 Serial 2990  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Zgirski, M.; Peeters, F.M.; Arutyunov, K. url  doi
openurl 
  Title Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 5 Pages 052502,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000240238400015 Publication Date 2007-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 95 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:60806 Serial 3034  
Permanent link to this record
 

 
Author Shanenko, A.A.; Smondyrev, M.A.; Devreese, J.T. openurl 
  Title Stabilisation of bipolarons by polaron environment Type A1 Journal article
  Year 1996 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 98 Issue Pages 1091  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1996UT02900012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 11 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:16186 Serial 3115  
Permanent link to this record
 

 
Author Smondyrev, M.A.; Shanenko, A.A.; Devreese, J.T. openurl 
  Title Stability criterion for large bipolarons in a polaron-gas background Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 63 Issue Pages 024302,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:34310 Serial 3122  
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Vinokur, V.M.; Aguiar, J.A.; Peeters, F.M. url  doi
openurl 
  Title Superconductivity between standard types: Multiband versus single-band materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375527500001 Publication Date 2016-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes Conselho Nacional de Desenvolvimento Científico e Tecnológico, 307552/2012-8 141911/2012-3 ; Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-0589-1.05/08 ; U.S. Department of Energy; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:141732 Serial 4480  
Permanent link to this record
 

 
Author Orlova, N.V.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.; Vagov, A.V.; Axt, V.M. url  doi
openurl 
  Title Ginzburg-Landau theory for multiband superconductors : microscopic derivation Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134510-134518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard Gor'kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken time-reversal symmetry. DOI: 10.1103/PhysRevB.87.134510  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317586700002 Publication Date 2013-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 57 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). A.A.S. acknowledges useful discussions with D. Neilson. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108464 Serial 1344  
Permanent link to this record
 

 
Author Shanenko, A.A. url  doi
openurl 
  Title Imperfect fermi gas : kinetic and interaction energies Type A1 Journal article
  Year 2004 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 70 Issue 6 Pages 063618-13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) A uniform ground-state three-dimensional Fermi gas with short-range repulsive pairwise interaction is under consideration. Its kinetic and interaction energies are calculated up to the second order of the expansion in the gas parameter. Similar to recent results for an interacting Bose gas, the quantities in question are found to depend on the pairwise interaction through two characteristic lengths: the former, a, is the s-wave scattering length, and the latter, b, is related to a by b=a-m(partial derivativea/partial derivativem), where m stands for the fermion mass. To control the results, we proceed in two independent ways. The first involves the Hellmann-Feynman theorem applied to derive the kinetic and interaction energies from the total-energy expansion in the gas parameter first found by Huang and Yang. The second way operates with in-medium pair wave functions and allows one to calculate the quantities of interest “from scratch.” The results of the present investigation, taken together with those of the recent consideration of a dilute Bose gas, make it possible to conclude that the pairwise interaction in a quantum gas has an essential and nontrivial effect on the kinetic energy, which is not the case for a classical many-particle system.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000226418900116 Publication Date 2004-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.925 Times cited Open Access  
  Notes Approved Most recent IF: 2.925; 2004 IF: 2.902  
  Call Number UA @ lucian @ c:irua:103196 Serial 1562  
Permanent link to this record
 

 
Author Vagov, A.V.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Extended Ginzburg-Landau formalism : systematic expansion in small deviation from the critical temperature Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 1 Pages 014502-014502,17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Based on the Gor'kov formalism for a clean s-wave superconductor, we develop an extended version of the single-band Ginzburg-Landau (GL) theory by means of a systematic expansion in the deviation from the critical temperature T(c), i.e., tau = 1 – T/T(c). We calculate different contributions to the order parameter and the magnetic field: the leading contributions (proportional to tau(1/2) in the order parameter and. t in the magnetic field) are controlled by the standard GL theory, while the next-to-leading terms (proportional to tau(3/2) in the gap and proportional to tau(2) in the magnetic field) constitute the extended GL (EGL) approach. We derive the free-energy functional for the extended formalism and the corresponding expression for the current density. To illustrate the usefulness of our formalism, we calculate, in a semianalytical form, the temperature-dependent correction to the GL parameter at which the surface energy becomes zero, and analytically, the temperature dependence of the thermodynamic critical field. We demonstrate that the EGL formalism is not just a mathematical extension to the theory: variations of both the gap and the thermodynamic critical field with temperature calculated within the EGL theory are found in very good agreement with the full BCS results down to low temperatures, which dramatically improves the applicability of the formalism compared to its standard predecessor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298985100002 Publication Date 2012-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 36 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). A. V. V. is grateful to V. Zalipaev for important comments. A. A. S. thanks W. Pogosov for helpful notes. Discussions with E. H. Brandt and A. Perali are appreciated. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:96232 Serial 1155  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Vortex anomaly in low-dimensional fermionic condensates : quantum confinement breaks chirality Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 5 Pages 054513-54515  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Chiral fermions are responsible for low-temperature properties of vortices in fermionic condensates, both superconducting (charged) and superfluid (neutral). One of the most striking consequences of this fact is that the core of a single-quantum vortex collapses at low temperatures, T -> 0 (i.e., the Kramer-Pesch effect for superconductors), due to the presence of chiral quasiparticles in the vortex-core region. We show that the situation changes drastically for fermionic condensates confined in quasi-one-dimensional and quasi-two-dimensional geometries. Here quantum confinement breaks the chirality of in-core fermions. As a result, instead of the ultimate shrinking, the core of a single-quantum vortex extends at low temperatures, and the condensate profile surprisingly mimics the multiquantum vortex behavior. Our findings are relevant for nanoscale superconductors, such as recent metallic nanoislands on silicon, and also for ultracold superfluid Fermi gases in cigar-shaped and pancake-shaped atomic traps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332396800005 Publication Date 2014-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), the Methusalem Program, and the National Science Foundation of China under Grant No. NSFC-11304134. A. A. S. acknowledges the support of Brazilian agencies CNPq and FACEPE (Grant No. APQ-0589-1.05/08). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115822 Serial 3850  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Phonon limited superconducting correlations in metallic nanograins Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 16515  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electronphonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest T-c achievable by quantum confinement.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000364647700001 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 9 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Research Foundation Flanders (FWO), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO. M.D.C. acknowledges fruitful discussions with V. Z. Kresin, S. N. Klimin and V. N. Gladilin. ; Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number UA @ lucian @ c:irua:129543 Serial 4224  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. doi  isbn
openurl 
  Title Tuning the superconducting properties of nanomaterials Type H1 Book chapter
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron continement and its effect on the superconducting-to-normal phase transition driven by a magentic field and/or a current is studied in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We find that in a parallel magneitc field and/or in the presence of a supercurrent the transition from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magentic field exhibits quantum-size oscillations with pronounced resonant enhancements as a function of the wire radius.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor  
  Language Wos 000274282900001 Publication Date 2009-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-6500; ISBN 978-90-481-3118-1 Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99226 Serial 3761  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Superconducting nanowires: interplay of discrete transverse modes with supercurrent Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 2 Pages 024513,1-024513,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up) From a numerical solution of the Bogoliubov-de Gennes equations, we investigate an interplay of the transverse discrete modes with a longitudinal supercurrent in a metallic cylindrical superconducting nanowire. The superconductor-to-normal transition induced by a longitudinal superflow of electrons is found to occur as a cascade of jumps in the order parameter (supercurrent and superfluid density) as a function of the superfluid velocity for diameters d<1015 nm (for Al parameters) and sufficiently low temperatures T<0.30.4Tc, with Tc the critical temperature. When approaching Tc, the jumps are smoothed into steplike but continuous drops. A similar picture occurs for d>1520 nm. Only when the diameter exceeds 5070 nm the quantum-size cascades are fully washed out, and we arrive at the mesoscopic regime. Below this regime the critical current density jc exhibits the quantum-size oscillations with pronounced resonant enhancements: the smaller the diameter, the more significant is the enhancement. Thickness fluctuations of real samples will smooth out such oscillations into an overall growth of jc with decreasing nanowire diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617500092 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77949 Serial 3358  
Permanent link to this record
 

 
Author Croitoru, M.D.; Vagov, A.; Shanenko, A.A.; Axt, V.M. pdf  doi
openurl 
  Title The Cooper problem in nanoscale : enhancement of the coupling due to confinement Type A1 Journal article
  Year 2012 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 25 Issue 12 Pages 124001-124005  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In 1956 Cooper demonstrated (1956 Phys. Rev. 104 1189) that, no matter how weak the attraction is, two electrons in three-dimensional (3D) space just above the Fermi sea could be bound. In this work we investigate the influence of confinement on the binding energy of a Cooper pair. We show that confinement-induced modification of the Fermi sea results in a significant increase of the binding energy, when the bottom of an energy subband is very close to the Fermi surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000311418100004 Publication Date 2012-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 9 Open Access  
  Notes ; MDC acknowledges support by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 2.878; 2012 IF: 2.758  
  Call Number UA @ lucian @ c:irua:105121 Serial 3573  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Metallic nanograins : spatially nonuniform pairing induced by quantum confinement Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214509-214509,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) It is well known that the formation of discrete electron levels strongly influences the pairing in metallic nanograins. Here, we focus on another effect of quantum confinement in superconducting grains that was not studied previously, i.e., spatially nonuniform pairing. This effect is very significant when single-electron levels form bunches and/or a kind of shell structure. We find that, in highly symmetric grains, the order parameter can exhibit variations with position by an order of magnitude. Nonuniform pairing is closely related to a quantum-confinement-induced modification of the pairing-interaction matrix elements and size-dependent pinning of the chemical potential to groups of degenerate or nearly degenerate levels. For illustrative purposes, we consider spherical metallic nanograins and also rectangular shapes. We show that the relevant matrix elements are, as a rule, enhanced in the presence of quantum confinement, which favors spatial variations of the order parameter, compensating the corresponding energy cost. The size-dependent pinning of the chemical potential further increases the spatial variation of the pair condensate. The role of nonuniform pairing is smaller in less symmetric confining geometries and/or in the presence of disorder. However, it always remains of importance when the energy spacing between discrete electron levels δ is approaching the scale of the bulk gap ΔB, i.e., δ>0.10.2 ΔB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291310000006 Publication Date 2011-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Alexander von Humboldt Foundation, the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP). M. D. C. acknowledges support of the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90081 Serial 2010  
Permanent link to this record
 

 
Author Chen, Y.; Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. pdf  doi
openurl 
  Title Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential Type A1 Journal article
  Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 43 Pages 435701,1-435701,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up) It is well known that, in bulk, the solution of the Bogoliubovde Gennes equations is the same whether or not the HartreeFock term is included. Here the HartreeFock potential is position independent and so gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. This is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position-dependent HartreeFock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubovde Gennes equations with the HartreeFock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000270642700012 Publication Date 2009-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:79162 Serial 3360  
Permanent link to this record
 

 
Author Shanenko, A.A.; Vagov, A.; Peeters, F.M.; Aguiar, J.A. doi  openurl
  Title Nanofilms as effectively multiband superconductors: Intraband-pairing approximation and Ginzburg-Landau theory Type A1 Journal article
  Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 455 Issue Pages 3-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) It is well-known that the Ginzburg-Landau (GL) theory is a reliable and powerful theoretical tool to investigate the magnetic response of a superconducting state. However, in its standard form, this approach is not applicable to atomically uniform nano-thin superconducting films which are effective multiband superconductors. Here we discuss a relevant generalization of the GL theory, focusing on the underlying intraband-pairing approximation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000344239200002 Publication Date 2014-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.386 Times cited 1 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-VI), and the Methusalem program. A.A.S. acknowledges the support of the Brazilian agencies CNPq and FACEPE (APQ-0589-1.05/08). ; Approved Most recent IF: 1.386; 2014 IF: 1.319  
  Call Number UA @ lucian @ c:irua:121192 Serial 2256  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Hollow nanocylinder: multisubband superconductivity induced by quantum confinement Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 13 Pages 134523-134523:11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Quantization of the transverse electron motion in high-quality superconducting metallic nanowires and nanofilms results in the formation of well-distinguished single-electron subbands. They shift in energy with changing thickness, which is known to cause quantum-size superconducting oscillations. The formation of multiple subbands results in a multigap structure induced by the interplay between quantum confinement and Andreev mechanism. We investigate multisubband superconductivity in a hollow nanocylinder by numerically solving the Bogoliubov-de Gennes equations. When changing the inner radius and thickness of the hollow nanocylinder, we find a crossover from an irregular pattern of quantum-size superconducting oscillations, typical of nanowires, to an almost regular regime, specific for superconducting nanofilms. At this crossover the multigap structure becomes degenerate. The ratio of the critical temperature to the energy gap increases and approaches its bulk value while being reduced by 20-30% due to Andreev-type states driven by quantum confinement in the irregular regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000277207900098 Publication Date 2010-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles Programme, Belgian States, Belgian Science Policy (IAP) and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:95623 Serial 1481  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Perali, A.; Peeters, F.M. pdf  doi
openurl 
  Title Superconducting nanofilms : molecule-like pairing induced by quantum confinement Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 18 Pages 185701-185701,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Quantum confinement of the perpendicular motion of electrons in single-crystalline metallic superconducting nanofilms splits the conduction band into a series of single-electron subbands. A distinctive feature of such a nanoscale multi-band superconductor is that the energetic position of each subband can vary significantly with changing nanofilm thickness, substrate material, protective cover and other details of the fabrication process. It can occur that the bottom of one of the available subbands is situated in the vicinity of the Fermi level. We demonstrate that the character of the superconducting pairing in such a subband changes dramatically and exhibits a clear molecule-like trend, which is very similar to the well-known crossover from the Bardeen-Cooper-Schrieffer regime to Bose-Einstein condensation (BCS-BEC) observed in trapped ultracold fermions. For Pb nanofilms with thicknesses of 4 and 5 monolayers (MLs) this will lead to a spectacular scenario: up to half of all the Cooper pairs nearly collapse, shrinking in the lateral size (parallel to the nanofilm) down to a few nanometers. As a result, the superconducting condensate will be a coherent mixture of almost molecule-like fermionic pairs with ordinary, extended Cooper pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000303500900018 Publication Date 2012-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 26 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). AAS thanks A Bianconi, M D Croitoru and A V Vagov for useful discussions. AAS acknowledges the hospitality and fruitful interactions with G C Strinati, P Pieri and D Neilson during his visit to the University of Camerino, supported by the School of Advanced Studies of the University of Camerino. ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:98223 Serial 3357  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. url  doi
openurl 
  Title Superconducting nanofilms: Andreev-type states induced by quantum confinement Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 5 Pages 054505,1-054505,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract (up) Quantum confinement of the transverse electron motion is the major effect governing the superconducting properties of high-quality metallic nanofilms, leading to a nonuniform transverse distribution of the superconducting condensate. In this case the order parameter can exhibit significant local enhancements due to these quantum-size effects and, consequently, quasiparticles have lower energies when they avoid the local enhancements of the pair condensate. Such excitations can be considered as new Andreev-type quasiparticles but now induced by quantum confinement. By numerically solving the Bogoliubovde Gennes equations and using Anderson's approximate solution to these equations, we: (a) formulate a criterion for such new Andreev-type states (NATS) and (b) study their effect on the superconducting characteristics in metallic nanofilms. We also argue that nanofilms made of low-carrier-density materials, e.g., of superconducting semiconductors, can be a more optimal choice for the observations of NATS and other quantum-size superconducting effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000259368200109 Publication Date 2008-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76526 Serial 3356  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.V.; Axt, V.M.; Perali, A.; Peeters, F.M. url  doi
openurl 
  Title Atypical BCS-BEC crossover induced by quantum-size effects Type A1 Journal article
  Year 2012 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 86 Issue 3 Pages 033612  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Quantum-size oscillations of the basic physical characteristics of a confined fermionic condensate are a well-known phenomenon. Its conventional understanding is based on the single-particle physics, whereby the oscillations follow variations in the single-particle density of states driven by the size quantization. Here we present a study of a cigar-shaped ultracold superfluid Fermi gas, which demonstrates an important many-body aspect of the quantum-size coherent effects, overlooked previously. The many-body physics is revealed here in the atypical crossover from the Bardeen-Cooper-Schrieffer (BCS) superfluid to the Bose-Einstein condensate (BEC) induced by the size quantization of the particle motion. The single-particle energy spectrum for the transverse dimensions is tightly bound, whereas for the longitudinal direction it resembles a quasi-free dispersion. This results in the formation of a series of single-particle subbands (shells) so that the aggregate fermionic condensate becomes a coherent mixture of subband condensates. Each time when the lower edge of a subband crosses the chemical potential, the BCS-BEC crossover is approached in this subband, and the aggregate condensate contains both BCS and BEC-like components.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000308639500004 Publication Date 2012-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 34 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). The authors thank C. Salomon and C. Vale for their valuable explications of the experimental situation and interest to our work. We are grateful to G. C. Strinati, D. Neilson, and P. Pieri for useful discussions. M. D. C. acknowledges support of the EU Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). A. P. gratefully acknowledges financial support of the European Science Foundation, POLATOM Research Networking Programme, Ref. No. 4844 for his visit to the University of Antwerp. A. A. S. acknowledges financial support of the European Science Foundation, POLATOM Research Networking Programme, Ref. No. 5200 for his visit to the University of Camerino. ; Approved Most recent IF: 2.925; 2012 IF: 3.042  
  Call Number UA @ lucian @ c:irua:101844 Serial 203  
Permanent link to this record
 

 
Author Shanenko, A.A.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Extended Ginzburg-Landau formalism for two-band superconductors Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 106 Issue 4 Pages 047005-047005,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Recent observation of unusual vortex patterns in MgB2 single crystals raised speculations about possible type-1.5 superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bandsand does not support the type-1.5 behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/Tc parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→Tc. The extended version of the two-band GL formalism improves the validity of GL theory below Tc and suggests revisiting the earlier calculations based on the standard model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000286734100010 Publication Date 2011-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 84 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. Discussions with M. D. Croitoru are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:88038 Serial 1154  
Permanent link to this record
 

 
Author Shanenko, A.A.; Aguiar, J.A.; Vagov, A.; Croitoru, M.D.; Milošević, M.V. pdf  doi
openurl 
  Title Atomically flat superconducting nanofilms: multiband properties and mean-field theory Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 28 Issue 28 Pages 054001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Perot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353015700005 Publication Date 2015-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 23 Open Access  
  Notes This work was supported by the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). AAS acknowledges fruitful discussions with A Perali and D Neilson during his stay in the University of Camerino and is thankful for partial support of his visit by the University of Camerino under the project FAR 'Control and enhancement of superconductivity by engineering materials at the nanoscale'. MDC acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:132501 Serial 3944  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: