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Quantum-size effects on Tc in superconducting nanofilms
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Abstract. – An essential property of a high-quality metallic nanofilm is the quantization of the
electron spectrum due to dimensional confinement in one direction. Quantum confinement has a
substantial impact on the superconducting characteristics and leads to quantum-size variations
of the critical temperature Tc with film thickness. We demonstrate that the Bogoliubov-de
Gennes equations are able to describe the thickness-dependent Tc in nanofilms, and our results
are in good agreement with recent experimental data on Pb flat terraces grown on silicon
(Science, 306 (2004) 1915 and Nature Phys., 2 (2006) 173). We predict that the quantum-size
oscillations of Tc will be more pronounced for Al.

Recent advances in fabrication technology have fuelled a strong interest in the supercon-
ducting properties of nanoscale metallic low-dimensional structures. Systems which are a few
nanometers in size, in one or more directions, exhibit quantum confinement which influences
many physical effects and phenomena like, e.g. superconductivity. For films with thickness
d ≤ le (mean free path) quantization of the electron motion in the direction normal to the film
results in the formation of quantum-well states (QWS). Since the electron motion in the plane
direction remains free, the band structure of the single-electron states is split into a series
of two-dimensional (2D) subbands. Changing the film thickness gives rise to a modification
of the energy (∼ 1/d2) of the QWS. When a QWS passes through the Fermi surface, a new
subband comes into play. For film thicknesses on the nanoscale, this passage is accompanied
by a significant increase of the density of single-electron states at the Fermi level resulting in
strong variations of the physical properties with changing film thickness.

Photo-electron spectroscopy has indeed demonstrated clear signatures of the formation of
such QWS in thin metallic films (see, for instance, the papers [1, 2] about electronic prop-
erties of noble-metal layers). Moreover, recent experiments with Pb(111) nanofilms revealed
that the surface energy [3] and the thermal stability [4] strongly varies with film thickness.
These quantum-size variations were found to follow a damped oscillatory curve which could
be described by a Friedel-like form [3, 4]. Very recently, quantum-size oscillations of the
superconducting temperature Tc and perpendicular upper critical magnetic field Hc2⊥ were
reported [5,6] for Pb(111) flat terraces grown on silicon with atomic-scale uniformity in thick-
ness (5–20 monolayers (ML)). These experiments represent an important advance over earlier
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results on the thickness dependence of Tc in Sn [7] and Pb [8] thin films. For the first time
a solid demonstration was given that the observed variations in Tc are correlated with the
passages of QWS through the Fermi surface. In this letter we present the first quantitative
description of the quantum-size effects on Tc in these Pb nanofilms. Our microscopic study is
based on a numerical solution of the Bogoliubov-de Gennes equations [9], where the important
QWS are included. Earlier works on this subject [10,11] were limited to a simplified multiband
BCS model and did not investigate how the quantum-size variations of Tc are dependent on
the relevant parameters.

A direct consequence of quantum confinement is a nonuniform spatial distribution of the
superconducting order parameter ∆ = ∆(r). It is well known that the Bogoliubov-de Gennes
(BdG) equations are a very powerful formalism which is able to describe a position-dependent
order parameter [9]. In the absence of a magnetic field ∆(r) can be chosen as a real quantity,
and the BdG equations read(

He ∆(r)
∆(r) −He

) (
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
, (1)

where the single-electron Hamiltonian is He = − �
2

2m∇2 − µ with µ the chemical potential.
We investigate a clean nanosize specimen, and the periodic lattice potential is taken into
consideration through the electron band mass m (set to the free electron mass here). The order
parameter is related to the eigenfunctions un(r) and vn(r) through the self-consistency relation
∆(r) = g

∑
n un(r)v∗n(r)(1 − 2fn) with g the electron-phonon coupling and fn = f(En) the

Fermi function. The summation range is over the eigenstates with En > 0 and |ξn| < �ωD,
where ωD is the Debye frequency and ξn =

∫
d3r[u∗

n(r)Heun(r)+ v∗n(r)Hevn(r)] is the single-
electron energy. The BdG equations are solved self-consistently for a given µ determined by
the mean electron density ne = 2

V

∫
d3r

∑
n[|un(r)|2fn+|vn(r)|2(1−fn)] (here the sum is over

all the states with En > 0), where V = LxLyLz is the system volume (d = Lz � Lx = Ly).
In the case of strong deviations of the chemical potential from its bulk value (as is the case
for thin films with thickness less than 1–2 nm), the iterative procedure should be repeated
for various µ until the needed mean electron density is obtained. As the periodic boundary
conditions are used for the x- and y-directions (in the plane of the film), we get ∆(r) = ∆(z)
and, hence, (see eq. (1)),

un(r) =
eikxx

√
Lx

eikyy√
Ly

ukx,ky,j(z), vn(r) =
eikxx

√
Lx

eikyy√
Ly

vkx,ky,j(z), (2)

where n = {kx, ky, j} with kx (ky) the free electron wave vector in x (y)-direction and j the
quantum number related to the electron motion in the z-direction normal to the film. Due to
the electron confinement in the z-direction we have ukx,ky,j(0) = ukx,ky,j(d) = 0, vkx,ky,j(0) =
vkx,ky,j(d) = 0. Thus, ukx,ky,j(z) and vkx,ky,j(z) can be expanded in terms of the states

ϕl(z) =

√
2
d

sin
[
π(l + 1)z

d

]
(3)

with l = 0, 1, 2, . . .. A detailed description of our theoretical approach will be published
elsewhere [12].

In fig. 1 we show numerical results for the superconducting temperature Tc and the density
of single-electron states at the Fermi level (per spin projection and unit volume) as functions
of the film thickness for Al and Pb (in the calculations we kept Lx = Ly > 500 nm such
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Fig. 1 – The critical temperature Tc (the upper panels) in units of the bulk superconducting temper-
ature Tc,bulk and the relative density of single-electron states at the Fermi level per unit volume and
per spin projection (the lower panels).

that the results are valid in the limit Lx, Ly → +∞). For Pb (Al) we used the following
parameters: �ωD/kB = 96 (375)K, gNbulk(0) = 0.39 (0.18) and µbulk = 9.47 (11.7) eV as given
in standard textbooks [9,13,14]. Here kB is the Boltzmann constant, Nbulk(0) = mkF/(2π2

�
2)

denotes the bulk density of single-electron states per unit volume per spin projection and kF

is the 3D Fermi wave number. Temperature dependence of the chemical potential is negligible
for T < Tc, and, hence, we can write kF =

√
2mµbulk/�. As one can see from fig. 1 (the

upper panels), a sawtooth behavior for Tc is obtained. This result is more complicated than
the simple Friedel-like expression ∼ cos(2kFd)/dγ (γ ≈ 1) typical for the surface energy and
thermal stability function [3, 4].

The physics of the above superconducting oscillations can be sketched as follows. Since
the classical papers by Gor’kov [15] and Bogoliubov [16], it is known that the superconducting
order parameter ∆(r) can be interpreted as the wave function describing the center-of-mass
motion of a Cooper pair. The Cooper pairs are influenced by the surrounding electrons of
the Fermi sea so that the single-fermion states with energies well below the Fermi level do
not make any essential contribution to the Cooper-pair wave function and, hence, to the
superconducting order parameter [17]. As a result, the order parameter (and Tc) will be
dependent on the density of the single-electron states situated in the nearest vicinity of the
Fermi level. Quantization of the electron motion in the direction normal to the film leads
to the formation of QWS and results in a splitting of the band of single-electron states in a
series of subbands. When the bottom of a given subband passes through the Fermi surface
when changing film thickness, the density of states increases abruptly (see the lower panels
of fig. 1). For nanofilms, this increase is significant. However, when approaching the bulk
regime, the effect is washed out. Thus, the density of single-electron states per unit volume
and per spin projection shows remarkable sawtooth damped oscillations which are smoothed
for films with thickness fluctuations. The same occurs for the order parameter (spatially
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Fig. 2 – The spatial distribution of the superconducting order parameter in an Al nanofilm at resonant
thicknesses d = 1.21, 1.39, 1.57 and 1.75 nm.

averaged) and Tc. The single-electron states located at the bottom of a subband give almost
the same contributions to the superconducting properties. This plays the role of amplifier: an
increase of Tc is more pronounced than a corresponding increase in the density of states. The
“amplification” factors are about 6 for aluminum and 3 for lead. We remark that, in contrast
to the naive expectation that Tc should be equal to its bulk value when N(0) = Nbulk(0), we
find Tc > Tc,bulk for such cases. Thus, following Blatt and Thompson [10], the enhancement
of superconductivity due to the passage of a QWS through the Fermi surface can be called a
shape superconducting resonance.

Magnitudes of the shape resonances in Tc/Tc,bulk are very sensitive to the governing pa-
rameters ωD, g and µbulk (the chemical potential µ appearing in the BdG equations depends
on the mean electron density and, so, is fully determined by µbulk). Results of a numerical
solution of the BdG equations plotted in fig. 1 show that oscillations of Tc/Tc,bulk are becom-
ing less profound with increase of any of these parameters. The point is that such increase
leads to an increase of the “condensation” energy of the superconducting electrons. So, in
order to produce the same deviations from the bulk value some additional confinement energy
is required. Therefore a systematic shift of the shape superconducting resonances to smaller
film thicknesses is observed (compare Pb results with those of Al in fig. 1).

The distance between two neighboring superconducting shape resonances is about π/kF,
which is one-half of the 3D Fermi wavelength λF (see fig. 1). Because the single-electron
energies are much larger than the energy for Cooper pairing, the period of QWS passages
through the Fermi surface can be explained in terms of the states given by eq. (3). The energy
of the l-state is �

2π2(l + 1)2/(2md2) and, so, this state passes through the Fermi surface for
film thickness �π(l + 1)/

√
2mµ. Then, the distance between two neighboring resonances can

be estimated as �π/
√

2mµ. Though µ increases with decreasing film thickness, this increase
is not very significant for d > 1 nm. Thus, using µ ≈ µbulk, we get λF/2 for the QWS-period
in agreement with the numerical results presented in fig. 1.

The spatial distribution of the superconducting condensate is strongly nonuniform in the
presence of quantum confinement. In fig. 2 the superconducting order parameter ∆(z) is
plotted as a function of the coordinate normal to the film for a sequence of resonance points.
As seen, ∆(z) shows profound oscillations with the period about λF/2. Notice that ∆(z) = 0
at the edge of the film while in the Ginzburg-Landau theory this is not the case [18].
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Using the standard Fermi level for Pb, µbulk = 9.47 eV, one expects that in Pb(111)
nanofilms QWS cross the Fermi surface with a period less than 1ML (for Pb(111) films 1ML
corresponds to 0.286 nm [19]). However, photo-electron spectroscopy demonstrates that this
period is larger and close to 2ML [5]. It is worth noting that photoemission experiments
on thin films made of Cu, Ag, Au, Co and Fe revealed the same disagreements [1, 2]. The
general explanation is that the above discrepancy is an artifact of incorporating the periodic
lattice potential in terms of the band mass [1, 2]. Indeed, first-principle calculations of the
quantized band structure of Pb(111) films have shown that the period in question is about
2.2ML [19]. This is in good agreement with the experimental observation ≈ 2ML [5]. In order
to remedy this we introduce an effective Fermi level µbulk = 1.25 eV (the same can be done by
effective reduction of the band mass) and solve the BdG equations within the single-parabolic
band approximation (i.e., eq. (1)). Note that the introduction of the effective Fermi level
corresponds to a change of the reference point of the Pb band structure as suggested in ref. [19].

In order to observe experimentally clear signatures of the QWS-formation, ultrathin crys-
talline films with atomic-scale uniformity in thickness are needed. In this case film thickness
is an integer number of monolayers N (N = d/a, where the lattice spacing a = 0.286 nm [19]
for Pb(111) films). As mentioned above, in Pb(111) films the periodicity of the Fermi sur-
face QWS-crossing is about 2ML, which results in oscillations [3–6] of the physical properties
between films with even and odd number of monolayers (the even-odd oscillations). A di-
rect consequence of these oscillations is a preference of even or odd number of monolayers
for the occurrence of stable ultrathin films [5]. In experiments Pb films were grown on a
Si(111) substrate [3–6, 20] and protected with an Au [5, 6] or Ge [20] cover layers. Such
substrate and protecting coverage were shown to change the electron-phonon coupling in ul-
trathin films (with respect to bulk) due to an interface effect [21]. For instance, in ultrathin
films (N < 12–16ML) of Ag on Fe(100) and V(100) substrates the electron-phonon coupling
was found to be significantly larger than in bulk and decreases down to the bulk value as
the film thickness increases [21, 22]. Deviations of the coupling constant from its bulk limit
follow approximately an overall 1/N -dependence [21] and exhibit damped oscillations with
film thickness [21, 22]. This 1/N -dependence can be understood (see [23]) as due to the fact
that the relative number of film atoms at the interface is proportional to 1/N . Measurements
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Fig. 3 – The superconducting temperature for the odd-layered (circles) and even-layered (squares)
Pb(111) nanofilms grown on silicon: (a) the experimental data from ref. [5] (empty symbols) and
our theoretical results (filled symbols) for g1(π)Nbulk(0) = 0.204 and g1(2π)Nbulk(0) = 0.26 (inset
highlights the even-odd oscillations); (b) the experimental data from ref. [20] (empty symbols) and
our results (filled symbols) calculated for g1(π)Nbulk(0) = 0.077 and g1(2π)Nbulk(0) = 0.177.
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of the Eliashberg λ-factor in Pb(111) ultrathin flat terraces [5] on silicon showed that in this
case the electron-phonon coupling is lower than in bulk and gradually increases towards the
bulk value as the film gets thicker. Oscillations of the coupling constant with film thickness
are clearly visible here, as well [5]. Keeping in mind these results, we can expect that for the
experimentally interesting case of a Pb(111) film grown on a silicon substrate the dependence
of the electron-phonon coupling constant on film thickness can be approximated by

g = g0 − g1(2kFaN)
N

, (4)

where g0Nbulk(0) = 0.39 (this provides the correct bulk limit) and g1(x) is a function oscil-
lating with the period 2π. The variations of the electron-phonon coupling constant with film
thickness appear due to changes in the density of states at the Fermi level [21]. Therefore the
distance between two neighboring superconducting resonances π/kF determines the oscillat-
ing period for g1(2kFaN). For Pb(111) films π/kF ≈ 2a, then we have g1(2kFaN) ≈ g1(π)
for the odd-layered films and g1(2kF aN) ≈ g1(2π) for the even-layered films. So, instead of
operating with an unknown function g1 we need only two parameters: one for the even-layered
films, another for the odd-layered films.

The experimental results of ref. [5] (empty circles for the odd-layered films and empty
squares for the even-layered films in fig. 3(a)) are in good agreement with our theoretical
predictions if we take g1(π)Nbulk(0) = 0.204 and g1(2π)Nbulk(0) = 0.26. Theoretical results
for the odd-layered (even-layered) films are filled circles (squares) here. Inset in fig. 3(a)
demonstrates that not only experimental trends for odd- and even-layered Pb(111) nanofilms
but also a very fine structure of the even-odd oscillations in Tc are well reproduced. Note
that the superconducting temperature in Pb(111) terraces grown on silicon with a protecting
Au layer (see ref. [5] and fig. 3(a)) is different from Tc found in Pb(111) terraces with an
amorphous Ge protecting cover (see ref. [20]). In fig. 3(b) we demonstrate that our theoretical
data (the solid circles and squares for the odd- and even-layered samples, respectively) agree
with the experimental results of ref. [20] (the empty circles and squares, respectively) when
g1(π)Nbulk(0) = 0.077 and g1(2π)Nbulk(0) = 0.177. There is no available data on the even-odd
oscillations in the latter case.

In conclusion, quantum-size effects on the superconducting temperature in nanofilms were
investigated by a numerical self-consistent solution of the Bogoliubov-de Gennes equations.
We presented the first quantitative description of recent experimental data for the film thick-
ness dependence of Tc in Pb(111) flat terraces grown on silicon with atomical-scale uniformity
in thickness.
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