toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; Raskin, J.-p.; Schryvers, D.; Pardoen, T.; Idrissi, H. url  doi
openurl 
  Title Novel class of nanostructured metallic glass films with superior and tunable mechanical properties Type A1 Journal article
  Year (down) 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume Issue Pages 116955  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A novel class of nanostructured Zr50Cu50 (%at.) metallic glass films with superior and tunable mechanical

properties is produced by pulsed laser deposition. The process can be controlled to synthetize a wide

range of film microstructures including dense fully amorphous, amorphous embedded with nanocrystals

and amorphous nano-granular. A unique dense self-assembled nano-laminated atomic arrangement

characterized by alternating Cu-rich and Zr/O-rich nanolayers with different local chemical enrichment

and amorphous or amorphous-crystalline composite nanostructure has been discovered, while

significant in-plane clustering is reported for films synthetized at high deposition pressures. This unique

nanoarchitecture is at the basis of superior mechanical properties including large hardness and elastic

modulus up to 10 and 140 GPa, respectively and outstanding total elongation to failure (>9%), leading to

excellent strength/ductility balance, which can be tuned by playing with the film architecture. These

results pave the way to the synthesis of novel class of engineered nanostructured metallic glass films

with high structural performances attractive for a number of applications in microelectronics and

coating industry.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670077800004 Publication Date 2021-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 27 Open Access OpenAccess  
  Notes H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant T.0178.19 and Grant CDR– J011320F. We acknowledge funding for the direct electron detector used in the 4D stem studies from the Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government J.V acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. A.O. has received partial funding from the GOA project “Solarpaint” of the University of Antwerp. A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.G. and A.L.B acknowledge Chantelle Ekanem for support in PLD depositions. Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @c:irua:178142 Serial 6761  
Permanent link to this record
 

 
Author Paterson, G.W.; Webster, R.W.H.; Ross, A.; Paton, K.A.; Macgregor, T.A.; McGrouther, D.; MacLaren, I.; Nord, M. url  doi
openurl 
  Title Fast pixelated detectors in scanning transmission electron microscopy. part II : post-acquisition data processing, visualization, and structural characterization Type A1 Journal article
  Year (down) 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume 26 Issue 5 Pages 944-963  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Fast pixelated detectors incorporating direct electron detection (DED) technology are increasingly being regarded as universal detectors for scanning transmission electron microscopy (STEM), capable of imaging under multiple modes of operation. However, several issues remain around the post-acquisition processing and visualization of the often very large multidimensional STEM datasets produced by them. We discuss these issues and present open source software libraries to enable efficient processing and visualization of such datasets. Throughout, we provide examples of the analysis methodologies presented, utilizing data from a 256 x 256 pixel Medipix3 hybrid DED detector, with a particular focus on the STEM characterization of the structural properties of materials. These include the techniques of virtual detector imaging; higher-order Laue zone analysis; nanobeam electron diffraction; and scanning precession electron diffraction. In the latter, we demonstrate a nanoscale lattice parameter mapping with a fractional precision <= 6 x 10(-4) (0.06%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000576859800011 Publication Date 2020-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 3 Open Access OpenAccess  
  Notes ; G.W.P. and M.N. were the principal authors of the fpd and pixStem libraries reported herein (details of all contributions are documented in the repositories) and have made all of these available under open source licence GPLv3 for the benefit of the community. R.W.H.W., A.R., and K.A.P. have also made contributions to the source codes in these libraries. G.W.P and M.N. have led the data acquisition and analysis, and the drafting of this manuscript. The performance of this work was mainly supported by Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (Grant No. EP/M009963/1). G.W.P. received additional support from the EPSRC under Grant No. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 838001. R.W.H.W., A.R., K.A.P., T.A.M., D.McG., and I.M. have all contributed either through acquisition and analysis of data or through participation in the revision of the manuscript. The studentships of R.W.H.W. and T.A.M. were supported by the EPSRC Doctoral Training Partnership Grant No. EP/N509668/1. I.M. and D.McG. were supported by EPSRC Grant No. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (No. ST/ P002471/1) with Quantum Detectors Ltd. as the industrial partner. As an inventor of intellectual property related to the MERLIN detector hardware, D.McG. is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. We thank Diamond Quantum Detectors Ltd. for Medipix3 detector support; Dr. Bruno Humbel from Okinawa Institute of Science and Technology; and Dr. Caroline Kizilyaprak from the University of Lausanne for providing the liver sample; Dr. Ingrid Hallsteinsen and Prof. Thomas Tybell from the Norwegian University of Science and Technology (NTNU) for providing the La0.7Sr0.3MnO3/LaFeO3/SrTiO3 sample shown in Figure 4; and NanoMEGAS for the loan of the DigiSTAR precession system and TopSpin acquisition software. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under Grant No. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891  
  Call Number UA @ admin @ c:irua:172695 Serial 6519  
Permanent link to this record
 

 
Author Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W. pdf  url
doi  openurl
  Title Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning Type A1 Journal article
  Year (down) 2020 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 31 Issue 44 Pages 445702  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561424400001 Publication Date 2020-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited 13 Open Access OpenAccess  
  Notes ; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; Approved Most recent IF: 3.5; 2020 IF: 3.44  
  Call Number UA @ admin @ c:irua:171119 Serial 6649  
Permanent link to this record
 

 
Author Nord, M.; Webster, R.W.H.; Paton, K.A.; McVitie, S.; McGrouther, D.; MacLaren, I.; Paterson, G.W. url  doi
openurl 
  Title Fast pixelated detectors in scanning transmission electron microscopy. Part I: data acquisition, live processing, and storage Type A1 Journal article
  Year (down) 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume 26 Issue 4 Pages Pii S1431927620001713-666  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of fast pixelated detectors and direct electron detection technology is revolutionizing many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualization, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software are available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555537900004 Publication Date 2020-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 4 Open Access OpenAccess  
  Notes ; The performance of this work was mainly supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (grant no. EP/M009963/1). G.W.P. received additional support from the EPSRC under grant no. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 838001. The studentship of R.W.H.W. was supported by the EPSRC Doctoral Training Partnership grant no. EP/N509668/1. S.McV. was supported by EPSRC grant no. EP/M024423/1. I.M. was supported by EPSRC grant no. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (no. ST/P002471/1) with Quantum Detectors Ltd. as the industrial partner. D.McG. was also supported by EPSRC grant no. EP/M009963/1. As an inventor of intellectual property related to the MERLIN detector hardware, he is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under grant no. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891  
  Call Number UA @ admin @ c:irua:171185 Serial 6518  
Permanent link to this record
 

 
Author Velazco, A.; Nord, M.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Evaluation of different rectangular scan strategies for STEM imaging Type A1 Journal article
  Year (down) 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume Issue Pages 113021  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract STEM imaging is typically performed by raster scanning a focused electron probe over a sample. Here we investigate and compare three different scan patterns, making use of a programmable scan engine that allows to arbitrarily set the sequence of probe positions that are consecutively visited on the sample. We compare the typical raster scan with a so-called ‘snake’ pattern where the scan direction is reversed after each row and a novel Hilbert scan pattern that changes scan direction rapidly and provides an homogeneous treatment of both scan directions. We experimentally evaluate the imaging performance on a single crystal test sample by varying dwell time and evaluating behaviour with respect to sample drift. We demonstrate the ability of the Hilbert scan pattern to more faithfully represent the high frequency content of the image in the presence of sample drift. It is also shown that Hilbert scanning provides reduced bias when measuring lattice parameters from the obtained scanned images while maintaining similar precision in both scan directions which is especially important when e.g. performing strain analysis. Compared to raster scanning with flyback correction, both snake and Hilbert scanning benefit from dose reduction as only small probe movement steps occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000544042800007 Publication Date 2020-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 13 Open Access OpenAccess  
  Notes A.V., A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.N. received support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 838001. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:169225 Serial 6369  
Permanent link to this record
 

 
Author Nord, M.; Semisalova, A.; Kákay, A.; Hlawacek, G.; MacLaren, I.; Liersch, V.; Volkov, O.M.; Makarov, D.; Paterson, G.W.; Potzger, K.; Lindner, J.; Fassbender, J.; McGrouther, D.; Bali, R. pdf  url
doi  openurl
  Title Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets Type A1 Journal article
  Year (down) 2019 Publication Small Abbreviated Journal Small  
  Volume Issue Pages 1904738  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000495563400001 Publication Date 2019-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 2 Open Access  
  Notes Deutsche Forschungsgemeinschaft, BA5656/1‐1 ; Engineering and Physical Sciences Research Council, EP/M009963/1 ; Approved Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:164059 Serial 5376  
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J. pdf  doi
openurl 
  Title Towards Reproducible and Transparent Science of (Big) Electron Microscopy Data Using Version Control Type P1 Proceeding
  Year (down) 2019 Publication Microscopy and microanalysis T2 – Microscopy & Microanalysis 2019, 4-8 August, 2019, Portland, Oregon Abbreviated Journal Microsc Microanal  
  Volume 25 Issue S2 Pages 232-233  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891  
  Call Number EMAT @ emat @c:irua:164058 Serial 5377  
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J. pdf  doi
openurl 
  Title Open Source Development Tools for Robust and Reproducible Electron Microscopy Data Analysis Type P3
  Year (down) 2019 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume 25 Issue S2 Pages 138-139  
  Keywords P3; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891  
  Call Number EMAT @ emat @ Serial 5378  
Permanent link to this record
 

 
Author Sharp, J.; Mueller, I.C.; Mandal, P.; Abbas, A.; Nord, M.; Doye, A.; Ehiasarian, A.; Hovsepian, P.; MacLaren, I.; Rainforth, W.M. url  doi
openurl 
  Title Characterisation of a high-power impulse magnetron sputtered C/Mo/W wear resistant coating by transmission electron microscopy Type A1 Journal article
  Year (down) 2019 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 377 Issue 377 Pages 124853  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of C/Mo/W deposited using combined UBM/HIPIMS sputtering show 2-8 nm clusters of material richer in Mo and W than the matrix (found by EDS microanalysis), with structures that resemble graphitic onions with the metal atoms arranged regularly within them. EELS microanalysis showed the clusters to be rich in W and Mo. As the time averaged power used in the pulsed HIPIMS magnetron was increased, the clusters became more defined, larger, and arranged into layers with amorphous matrix between them. Films deposited with average HIPIMS powers of 4 kW and 6 kW also showed a periodic modulation of the cluster density within the finer layers giving secondary, wider stripes in TEM. By analysing the ratio between the finer and coarser layers, it was found that this meta-layering is related to the substrate rotation in the deposition chamber but in a non-straightforward way. Reasons for this are proposed. The detailed structure of the clusters remains unknown and is the subject of further work. Fluctuation electron microscopy results indicated the presence of crystal planes with the graphite interlayer spacing, crystal planes in hexagonal WC perpendicular to the basal plane, and some plane spacings found in Mo2C. Other peaks in the FEM results suggested symmetry-related starting points for future determination of the structure of the clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488417800015 Publication Date 2019-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 1 Open Access  
  Notes ; J.S. thanks the Mercury Centre at the University of Sheffield for funding, which was part funded by the ERDF under grant MERCURY 904467. I.C.M. acknowledges support from CONACyT and RobertoRocca Education Fellowship. We gratefully acknowledge funding from EPSRC for the pixelated STEM detector and the software used in its operation for the fluctuation microscopy (EP/M009963/ 1, EP/K503903/1 & EP/R511705/1). AD was supported by the EPSRC CDT in Integrative Sensing and Measurement, Grant Number EP/L016753/1. Funding sources did not influence the planning or execution of this work except to enable it. ; Approved Most recent IF: 2.589  
  Call Number UA @ admin @ c:irua:163700 Serial 5383  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: