toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gasparotto, A.; Maccato, C.; Sada, C.; Carraro, G.; Kondarides, D.I.; Bebelis, S.; Petala, A.; La Porta, A.; Altantzis, T.; Barreca, D. url  doi
openurl 
  Title Controlled Surface Modification of ZnO Nanostructures with Amorphous TiO2for Photoelectrochemical Water Splitting Type A1 Journal Article
  Year (down) 2019 Publication Advanced Sustainable Systems Abbreviated Journal Adv. Sustainable Syst.  
  Volume Issue Pages 1900046  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The utilization of solar radiation to trigger photoelectrochemical (PEC) water splitting has gained interest for sustainable energy production. In this study, attention is focused on the development of ZnO–TiO2 nanocomposite photoanodes. The target systems are obtained by growing porous arrays of highly crystalline, elongated ZnO nanostructures on indium tin oxide (ITO) by chemical vapor deposition. Subsequently, the obtained nanodeposits are functionalized with TiO2 via radio frequency-sputtering for different process durations, and subjected to final annealing in air. Characterization results demonstrate the successful formation of high purity composite systems in which the surface of ZnO nanostructures is decorated by ultra-small amounts of amorphous titania, whose content can be conveniently tailored as a function of deposition time. Photocurrent density measurements in sunlight triggered water splitting highlight a remarkable performance enhancement with respect to single-phase zinc and titanium oxides, with up to a threefold photocurrent increase compared to bare ZnO. These results, mainly traced back to the formation of ZnO/TiO2 heterojunctions yielding an improved photocarrier separation, show that the target nanocomposites are attractive photoanodes for efficient PEC water splitting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-7486 ISBN Additional Links  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This work was financially supported by Padova University DOR 2016–2019, P-DiSC #03BIRD2016-UNIPD, and #03BIRD2018-UNIPD projects and ACTION post-doc fellowship. A.G. acknowledges AMGAFoundation and INSTM Consortium. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 5186  
Permanent link to this record
 

 
Author Gasparotto, A.; Maccato, C.; Carraro, G.; Sada, C.; Štangar, U.L.; Alessi, B.; Rocks, C.; Mariotti, D.; La Porta, A.; Altantzis, T.; Barreca, D. url  doi
openurl 
  Title Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications Type A1 Journal Article
  Year (down) 2019 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 11 Issue 17 Pages 15881-15890  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We report on a combined chemical vapor deposition (CVD)/radio frequency (RF) sputtering synthetic strategy for the controlled surface modification of ZnO nanostructures by Ti-containing species. Specifically, the proposed approach consists in the CVD of grown-on-tip ZnO nanopyramids, followed by titanium RF sputtering under mild conditions. The results obtained by a thorough characterization demonstrate the successful ZnO surface functionalization with dispersed Ti-containing species in low amounts. This phenomenon, in turn, yields a remarkable enhancement of photoactivated superhydrophilic behavior, self-cleaning ability, and photocatalytic performances in comparison to bare ZnO. The reasons accounting for such an improvement are unravelled by a multitechnique analysis, elucidating the interplay between material chemico-physical properties and the corresponding functional behavior. Overall, the proposed strategy stands as an amenable tool for the mastering of semiconductor-based functional nanoarchitectures through ad hoc engineering of the system surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466988800078 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links  
  Impact Factor 7.504 Times cited 1 Open Access Not_Open_Access  
  Notes The research leading to these results has received financial support from Padova University ACTION postdoc fellowship, DOR 2016-2018, P-DiSC #03BIRD2016-UNIPD projects, and HERALD COST Action MP1402-37831. The support from EPSRC (awards EP/R008841/1 and EP/M024938/1) as well as from the Slovenian Research Agency (research core funding No. P1-0134) is also recognized. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors are grateful to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ Serial 5185  
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Carraro, G.; Bigiani, L.; Altantzis, T.; Žener, B.; Lavrenčič Štangar, U.; Alessi, B.; Padmanaban, D.B.; Mariotti, D.; Maccato, C. url  doi
openurl 
  Title Multi-functional MnO2nanomaterials for photo-activated applications by a plasma-assisted fabrication route Type A1 Journal article
  Year (down) 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 11 Issue 1 Pages 98-108  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates by plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(II) diamine diketonate precursor. Growth experiments yielded -MnO2 nanosystems with hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation enabled also a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454327500037 Publication Date 2018-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 7 Open Access OpenAccess  
  Notes Padova University DOR 2016–2017, P-DiSC #03BIRD2016-UNIPD projects, HERALD Cost Action MP1402 – 37831 and ACTION post-doc fellowship are acknowledged for financial support. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium), Prof. Romana Cerc Korošec and to Dr. Lev Matoh (University of Ljubljana, Slovenia), and to Prof. Elza Bontempi (Brescia University, Italy). The work was also supported by EPSRC (award EP/R008841/1, EP/M024938/1). Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156388 Serial 5148  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Maccato, C.; Altantzis, T.; Kaunisto, K.; Gasparotto, A. url  doi
openurl 
  Title Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips Type A1 Journal article
  Year (down) 2018 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume Issue Pages acs.cgd.8b00198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High purity porous ZnO nanopyramids with controllable properties are grown on their tips on

Si(100) substrates by means of a catalyst-free vapor phase deposition route in a wet oxygen

reaction environment. The system degree of preferential [001] orientation, as well as

nanopyramid size, geometrical shape and density distribution, can be finely tuned by varying the

growth temperature between 300 and 400°C, whereas higher temperatures lead to more compact

systems with a three-dimensional (3D) morphology. A growth mechanism of the obtained ZnO

nanostructures based on a self-catalytic vapor-solid (VS) mode is proposed, in order to explain

the evolution of nanostructure morphologies as a function of the adopted process conditions. The

results obtained by a thorough chemico-physical characterization enable to get an improved

control over the properties of ZnO nanopyramids grown by this technique. Taken together, they

are of noticeable importance not only for fundamental research on ZnO nanomaterials with

controlled nano-organization, but also to tailor ZnO functionalities in view of various potential

applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000429508200073 Publication Date 2018-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 6 Open Access OpenAccess  
  Notes This work has been supported by Padova University ex-60% 2015–2017, P-DiSC #03BIRD2016-UNIPD projects and ACTION post-doc fellowship. T. A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Rosa Calabrese (Department of Chemical Sciences, Padova University, Italy) and to Dr. T.-P. Ruoko (Department of Chemistry and Bioengineering, Tampere University of Technology, Finland) for skilful technical support. Approved Most recent IF: 4.055  
  Call Number EMAT @ emat @c:irua:149514 Serial 4904  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Altantzis, T.; Sada, C.; Kaunisto, K.; Ruoko, T.-P.; Bals, S. pdf  url
doi  openurl
  Title Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting Type A1 Journal article
  Year (down) 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 4 Issue 4 Pages 1700161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoheterostructures based on metal oxide semiconductors have emerged

as promising materials for the conversion of sunlight into chemical energy.

In the present study, ZnO-based nanocomposites have been developed by

a hybrid vapor phase route, consisting in the chemical vapor deposition

of ZnO systems on fluorine-doped tin oxide substrates, followed by the

functionalization with Fe2O3 or WO3 via radio frequency-sputtering. The

target systems are subjected to thermal treatment in air both prior and after

sputtering, and their properties, including structure, chemical composition,

morphology, and optical absorption, are investigated by a variety of characterization

methods. The obtained results evidence the formation of highly

porous ZnO nanocrystal arrays, conformally covered by an ultrathin Fe2O3

or WO3 overlayer. Photocurrent density measurements for solar-triggered

water splitting reveal in both cases a performance improvement with respect

to bare zinc oxide, that is mainly traced back to an enhanced separation of

photogenerated charge carriers thanks to the intimate contact between the

two oxides. This achievement can be regarded as a valuable result in view of

future optimization of similar nanoheterostructured photoanodes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411525700007 Publication Date 2017-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 30 Open Access OpenAccess  
  Notes The authors kindly acknowledge the financial support under Padova University ex-60% 2013–2016, P-DiSC #SENSATIONAL BIRD2016- UNIPD projects and the post-doc fellowship ACTION. S.B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. Many thanks are also due to Dr. Rosa Calabrese (Department of Chemistry, Padova University, Italy) for experimental assistance. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.279  
  Call Number EMAT @ emat @c:irua:146104UA @ admin @ c:irua:146104 Serial 4731  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Warwick, M.E.A.; Sada, C.; Turner, S.; Bazzo, A.; Andreu, T.; Pliekhova, O.; Korte, D.; Lavrenčič Štangar, U.; Van Tendeloo, G.; Morante, J.R.; Barreca, D. pdf  doi
openurl 
  Title Hematite-based nanocomposites for light-activated applications: Synergistic role of TiO2 and Au introduction Type A1 Journal article
  Year (down) 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 456-466  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Photo-activated processes have been widely recognized as cost-effective and environmentally friendly routes for both renewable energy generation and purification/cleaning technologies. We report herein on a plasma- assisted approach for the synthesis of Fe 2 O 3 -TiO 2 nanosystems functionalized with Au nanoparticles. Fe 2 O 3 nanostructures were grown by plasma enhanced-chemical vapor deposition, followed by the sequential sputtering of titanium and gold under controlled conditions, and final annealing in air. The target nanosystems were subjected to a thorough multi-technique characterization, in order to elucidate the interrelations between their chemico-physical properties and the processing conditions. Finally, the functional performances were preliminarily investigated in both sunlight-assisted H 2 O splitting and photocatalytic activity tests in view of self- cleaning applications. The obtained results highlight the possibility of tailoring the system behaviour and candidate the present Fe 2 O 3 -TiO 2 -Au nanosystems as possible multi-functional low-cost platforms for light-activated processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388053600053 Publication Date 2016-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 15 Open Access Not_Open_Access  
  Notes The research leading to these results has received funding from the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as from Padova University ex-60% 2013-2016 projects, grant no. CPDR132937/13 (SOLLEONE) and the post-doc fellowship ACTION. INFINITY project in the framework of the EU Erasmus Mundus Action 2 is also acknowledged to provide a Ph.D. financial support as well as Slovenian Research Agency (program P2-0377). The authors are grateful to Dr. E. Toniato (Department of Chemistry, Padova University, Italy) for synthetic assistance and to Prof. E. Bontempi and Dr. M. Brisotto (Chemistry for Technologies Laboratory, Brescia University, Italy) for XRD analyses. Approved Most recent IF: 4.784  
  Call Number EMAT @ emat @ c:irua:135833 Serial 4284  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Toniato, E.; Gombac, V.; Sada, C.; Turner, S.; Van Tendeloo, G.; Fornasiero, P.; pdf  doi
openurl 
  Title Iron-titanium oxide nanocomposites functionalized with gold particles : from design to solar hydrogen production Type A1 Journal article
  Year (down) 2016 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 3 Issue 3 Pages 1600348  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hematite-titania nanocomposites, eventually functionalized with gold nanoparticles (NPs), are designed and developed by a plasma-assisted strategy, consisting in: (i) the plasma enhanced-chemical vapor deposition of -Fe2O3 on fluorine-doped tin oxide substrates; the radio frequency-sputtering of (ii) TiO2, and (iii) Au in controlled amounts. A detailed chemicophysical characterization, carried out through a multitechnique approach, reveals that the target materials are composed by interwoven -Fe2O3 dendritic structures, possessing a high porosity and active area. TiO2 introduction results in the formation of an ultrathin titania layer uniformly covering Fe2O3, whereas Au sputtering yields a homogeneous dispersion of low-sized gold NPs. Due to the intimate and tailored interaction between the single constituents and their optical properties, the resulting composite materials are successfully exploited for solar-driven applications. In particular, promising photocatalytic performances in H-2 production by reforming of water-ethanol solutions under simulated solar illumination are obtained. The related insights, presented and discussed in this work, can yield useful guidelines to boost the performances of nanostructured photocatalysts for energy-related applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383783200021 Publication Date 2016-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 15 Open Access  
  Notes Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:137154 Serial 4389  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Fabrication and Characterization of Fe2O3-Based Nanostructures Functionalized with Metal Particles and Oxide Overlayers Type A1 Journal article
  Year (down) 2015 Publication Journal of advanced microscopy research Abbreviated Journal  
  Volume 10 Issue 10 Pages 239-243  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the design of nanosystems based on functionalized -Fe 2 O 3 nanostructures supported on fluorine-doped tin oxide (FTO) substrates. The target materials were developed by means of hybrid vapor phase approaches, combining plasma assisted-chemical vapor deposition (PA-CVD) for the production of iron(III) oxide systems and the subsequent radio frequency (RF)-sputtering or atomic layer deposition (ALD) for the functionalization with Au nanoparticles or TiO 2 overlayers, respectively. The interplay between material characteristics and the adopted processing parameters was investigated by complementary analytical techniques, encompassing X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), and energy dispersive X-ray spectroscopy (EDXS). The obtained results highlight the possibility of fabricating Au/ -Fe 2 O 3 nanocomposites, with a controlled dispersion and distribution of metal particles, and TiO 2 / -Fe 2 O 3 heterostructures, characterized by an intimate coupling between the constituent oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-7573 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge the financial support under the FP7 project “SOLARO- GENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2015 projects, grant n CPDR132937/13 (SOLLEONE), and Regione Lombardia- INSTM ATLANTE program. Stuart Turner acknowledges the FWO Flanders for a post-doctoral scholarship. Thanks are also due to Dr. L. Borgese and Prof. E. Bontempi (Chemistry for Technologies Laboratory, Brescia Univer- sity, Italy) for precious assistance in ALD experiments. Approved Most recent IF: NA  
  Call Number EMAT @ emat @ c:irua:132798 Serial 4058  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Kaunisto, K.; Sada, C.; Turner, S.; Gönüllü, Y.; Ruoko, T.-P.; Borgese, L.; Bontempi, E.; Van Tendeloo, G.; Lemmetyinen, H.; Mathur, S. pdf  url
doi  openurl
  Title Fe2O3-TiO2Nano-heterostructure Photoanodes for Highly Efficient Solar Water Oxidation Type A1 Journal article
  Year (down) 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 2 Issue 2 Pages 1500313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one-sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α-Fe2O3) nanostructures fabricated by plasma enhanced-chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico-physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large-scale generation of renewable energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368914700011 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 56 Open Access  
  Notes The authors kindly acknowledge the fi nancial support under the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2014 projects, Grant No. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S.T. acknowledges the FWO Flanders for a postdoctoral scholarship. Approved Most recent IF: 4.279; 2015 IF: NA  
  Call Number c:irua:129201 Serial 3957  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Warwick, M.E.A.; Kaunisto, K.; Gasparotto, A.; Gombac, V.; Sada, C.; Turner, S.; Van Tendeloo, G.; Maccato, C.; Fornasiero, P.; doi  openurl
  Title Fe2O3-TiO2 nanosystems by a hybrid PE-CVD/ALD approach : controllable synthesis, growth mechanism, and photocatalytic properties Type A1 Journal article
  Year (down) 2015 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 17 Issue 17 Pages 6219-6226  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Supported Fe2O3–TiO2 nanocomposites are fabricated by an original vapor phase synthetic strategy, consisting of the initial growth of Fe2O3 nanosystems on fluorine-doped tin oxide substrates by plasma enhanced-chemical vapor deposition, followed by atomic layer deposition of TiO2 overlayers with variable thickness, and final thermal treatment in air. A thorough characterization of the target systems is carried out by X-ray diffraction, atomic force microscopy, field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. High purity nanomaterials characterized by the co-presence of Fe2O3 (hematite) and TiO2 (anatase), with an intimate Fe2O3–TiO2 contact, are successfully obtained. In addition, photocatalytic tests demonstrate that, whereas both single-phase oxides do not show appreciable activity, the composite systems are able to degrade methyl orange aqueous solutions under simulated solar light, and even visible light, with an efficiency directly dependent on TiO2 overlayer thickness. This finding opens attractive perspectives for eventual applications in wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000358915300018 Publication Date 2015-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited 25 Open Access  
  Notes The research leading to these results has received funding from the FP7 project “SOLAROGENIX” IJNMP4-SL-2012- 310333), as well as from Padova University ex-60% 2012–2015 projects, grant no. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S. T. acknowledges the FWO Flanders for a post-doctoral scholarship. Thanks are also due to Prof. S. Mathur and Dr. Y. Gönüllü (Department of Chemistry, Cologne University, Germany) for their precious help and assistance in ALD depositions, and to Prof. E. Bontempi (Chemistry for Technologies Laboratory, Brescia University, Italy) for XRD analyses. Approved Most recent IF: 3.474; 2015 IF: 4.034  
  Call Number c:irua:127237 Serial 3531  
Permanent link to this record
 

 
Author Warwick, M.E.A.; Kaunisto, K.; Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Sada, C.; Ruoko, T.P.; Turner, S.; Van Tendeloo, G.; pdf  doi
openurl 
  Title Vapor phase processing of \alpha-Fe2O3 photoelectrodes for water splitting : an insight into the structure/property interplay Type A1 Journal article
  Year (down) 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 8667-8676  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Harvesting radiant energy to trigger water photoelectrolysis and produce clean hydrogen is receiving increasing attention in the search of alternative energy resources. In this regard, hematite (alpha-Fe2O3) nanostructures with controlled nano-organization have been fabricated and investigated for use as anodes in photoelectrochemical (PEC) cells. The target systems have been grown on conductive substrates by plasma enhanced-chemical vapor deposition (PE-CVD) and subjected to eventual ex situ annealing in air to further tailor their structure and properties. A detailed multitechnique approach has enabled to elucidate between system characteristics and the generated photocurrent. The present alpha-Fe2O3 systems are characterized by a high purity and hierarchical morphologies consisting of nanopyramids/organized dendrites, offering a high contact area with the electrolyte. PEC data reveal a dramatic response enhancement upon thermal treatment, related to a more efficient electron transfer. The reasons underlying such a phenomenon are elucidated and discussed by transient absorption spectroscopy (TAS) studies of photogenerated charge carrier kinetics, investigated on different time scales for the first time on PE-CVD Fe2O3 nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353931300037 Publication Date 2015-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 51 Open Access  
  Notes 246791 Countatoms; Fwo Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:126059 Serial 3836  
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D. url  doi
openurl 
  Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
  Year (down) 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 94 Pages 52140-52146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200-400 degrees C) is reported. The use of the fluorinated Fe(hfa)(2)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) molecular precursor in Ar/O-2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in gamma-Fe2O3 at 200 degrees C and alpha-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 degrees C the formation of highly oriented alpha-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344389000041 Publication Date 2014-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:121239 Serial 2813  
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D. url  doi
openurl 
  Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
  Year (down) 2014 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume Issue 94 Pages 52140-52146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200400 °C) is reported. The use of the fluorinated Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) molecular precursor in Ar/O2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in γ-Fe2O3 at 200 °C and α-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 °C the formation of highly oriented α-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344389000041 Publication Date 2014-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:119529 Serial 2814  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O.I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D.; Fornasiero, P.; pdf  doi
openurl 
  Title Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs Type A1 Journal article
  Year (down) 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 3 Pages 372-378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sunlight-driven hydrogen production via photoreforming of aqueous solutions containing renewable compounds is an attractive option for sustainable energy generation with reduced carbon footprint. Nevertheless, the absence of photocatalysts combining high efficiency and stability upon solar light activation has up to date strongly hindered the development of this technology. Herein, two scarcely investigated iron(III) oxide polymorphs, β- and ε-Fe2O3, possessing a remarkable activity in sunlight-activated H2 generation from aqueous solutions of renewable oxygenates (i.e., ethanol, glycerol, glucose) are reported. For β-Fe2O3 and ε-Fe2O3, H2 production rates up to 225 and 125 mmol h−1 m−2 are obtained, with significantly superior performances with respect to the commonly investigated α-Fe2O3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000332832500011 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 95 Open Access  
  Notes Countatoms; Hercules; Fwo Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:113090 Serial 1051  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Bontempi, E.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Depero, L.E.; Van Tendeloo, G.; Barreca, D. pdf  doi
openurl 
  Title Insights on growth and nanoscopic investigation of uncommon iron oxide polymorphs Type A1 Journal article
  Year (down) 2013 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume Issue 31 Pages 5454-5461  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si(100)-supported Fe2O3 nanomaterials were developed by a chemical vapor deposition (CVD) approach. The syntheses, which were performed at temperatures between 400 and 550 °C, selectively yielded the scarcely studied β- and ϵ-Fe2O3 polymorphs under O2 or O2 + H2O reaction environments, respectively. Correspondingly, the observed morphology underwent a progressive evolution from interconnected nanopyramids to vertically aligned nanorods. The present study aims to provide novel insights into Fe2O3 nano-organization by a systematic investigation of the system structure/morphology and of their interrelations with growth conditions. In particular, for the first time, the β- and ϵ-Fe2O3 preparation process has been accompanied by a thorough multitechnique investigation, which, beyond X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM), is carried out by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), scanning TEM electron energy-loss spectroscopy (STEM-EELS), and high-angle annular dark-field STEM (HAADF-STEM). Remarkably, the target materials showed a high structural and compositional homogeneity throughout the whole thickness of the nanodeposit. In particular, spatially resolved EELS chemical maps through the spectrum imaging (SI) technique enabled us to gain important information on the local Fe coordination, which is of crucial importance in determining the system reactivity. The described preparation method is in fact a powerful tool to simultaneously tailor phase composition and morphology of iron(III) oxide nanomaterials, the potential applications of which include photocatalysis, magnetic devices, gas sensors, and anodes for Li-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330567000009 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 18 Open Access  
  Notes Fwo; Countatoms Approved Most recent IF: 2.444; 2013 IF: 2.965  
  Call Number UA @ lucian @ c:irua:110946 Serial 1676  
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Turner, S.; Sada, C.; Depero, L.E.; Van Tendeloo, G.; Barreca, D. pdf  doi
openurl 
  Title Fluorine doped Fe2O3 nanostructures by a one-pot plasma-assisted strategy Type A1 Journal article
  Year (down) 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue 45 Pages 23762-23768  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present work reports on the synthesis of fluorine doped Fe2O3 nanomaterials by a single-step plasma enhanced-chemical vapor deposition (PE-CVD) strategy. In particular, Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) was used as molecular source for both Fe and F in Ar/O2 plasmas. The structure, morphology and chemical composition of the synthesized nanosystems were thoroughly analyzed by two-dimensional X-ray diffraction (XRD2), field emission-scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM). A suitable choice of processing parameters enabled the selective formation of α-Fe2O3 nanomaterials, characterized by an homogeneous F doping, even at 100 °C. Interestingly, a simultaneous control of the system nanoscale organization and fluorine content could be achieved by varying the sole growth temperature. The tailored properties of the resulting materials can be favourably exploited for several technological applications, ranging from photocatalysis, to photoelectrochemical cells and gas sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326395800141 Publication Date 2013-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 23 Open Access  
  Notes Fwo Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:111091 Serial 1237  
Permanent link to this record
 

 
Author Maccato, C.; Simon, Q.; Carraro, G.; Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G. doi  openurl
  Title Zinc and copper oxides functionalized with metal nanoparticles : an insight into their nano-organization Type A1 Journal article
  Year (down) 2012 Publication Journal of advanced microscopy research Abbreviated Journal  
  Volume 7 Issue 2 Pages 84-90  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ag/ZnO and Au/CuxO (x = 1, 2) nanocomposites supported on Si(100) and polycrystalline Al2O3 were synthesised by hybrid approaches, combining chemical vapor deposition (either thermal or plasma-assisted) of host oxide matrices and subsequent radio frequency-sputtering of guest metal particles. The influence of the adopted synthetic parameters on the nanocomposite morphological and compositional features was investigated by field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Results confirm the synthesis of ZnO and CuxO nanoarchitectures, characterized by a tailored morphology and an intimate metal/oxide contact. A careful control of the processing conditions enabled a fine tuning of the mutual constituent distribution, opening thus attractive perspectives for the engineering of advanced nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2012-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-7573;2156-7581; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Esteem Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:105298 Serial 3932  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Lebedev, O.I.; Parfenova, A.; Turner, S.; Tondello, E.; Van Tendeloo, G. pdf  doi
openurl 
  Title Tailored vapor-phase growth of CuxO-TiO2(x=1,2) nanomaterials decorated with Au particles Type A1 Journal article
  Year (down) 2011 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 27 Issue 10 Pages 6409-6417  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the fabrication of CuxOTiO2 (x = 1, 2) nanomaterials by an unprecedented vapor-phase approach. The adopted strategy involves the growth of porous CuxO matrices by means of chemical vapor deposition (CVD), followed by the controlled dispersion of TiO2 nanoparticles. The syntheses are performed on Si(100) substrates at temperatures of 400550 °C under wet oxygen atmospheres, adopting Cu(hfa)2·TMEDA (hfa =1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) and Ti(O-iPr)2(dpm)2 (O-iPr = isopropoxy; dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) as copper and titanium precursors, respectively. Subsequently, finely dispersed gold nanoparticles are introduced in the as-prepared systems via radio frequency (RF)-sputtering under mild conditions. The synthesis process results in the formation of systems with chemical composition and nano-organization strongly dependent on the nature of the initial CuxO matrix and on the deposited TiO2 amount. The decoration with low-size gold clusters paves the way to the engineering of hierarchically organized nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000290292900082 Publication Date 2011-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 36 Open Access  
  Notes Fwo Approved Most recent IF: 3.833; 2011 IF: 4.186  
  Call Number UA @ lucian @ c:irua:88940 Serial 3467  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: