|
Record |
Links |
|
Author |
Carraro, G.; Maccato, C.; Gasparotto, A.; Warwick, M.E.A.; Sada, C.; Turner, S.; Bazzo, A.; Andreu, T.; Pliekhova, O.; Korte, D.; Lavrenčič Štangar, U.; Van Tendeloo, G.; Morante, J.R.; Barreca, D. |
|
|
Title |
Hematite-based nanocomposites for light-activated applications: Synergistic role of TiO2 and Au introduction |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Solar energy materials and solar cells |
Abbreviated Journal |
Sol Energ Mat Sol C |
|
|
Volume |
159 |
Issue |
159 |
Pages |
456-466 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Photo-activated processes have been widely recognized as cost-effective and environmentally friendly routes for both renewable energy generation and purification/cleaning technologies. We report herein on a plasma- assisted approach for the synthesis of Fe 2 O 3 -TiO 2 nanosystems functionalized with Au nanoparticles. Fe 2 O 3 nanostructures were grown by plasma enhanced-chemical vapor deposition, followed by the sequential sputtering of titanium and gold under controlled conditions, and final annealing in air. The target nanosystems were subjected to a thorough multi-technique characterization, in order to elucidate the interrelations between their chemico-physical properties and the processing conditions. Finally, the functional performances were preliminarily investigated in both sunlight-assisted H 2 O splitting and photocatalytic activity tests in view of self- cleaning applications. The obtained results highlight the possibility of tailoring the system behaviour and candidate the present Fe 2 O 3 -TiO 2 -Au nanosystems as possible multi-functional low-cost platforms for light-activated processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000388053600053 |
Publication Date |
2016-10-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0927-0248 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.784 |
Times cited |
15 |
Open Access |
Not_Open_Access |
|
|
Notes |
The research leading to these results has received funding from the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as from Padova University ex-60% 2013-2016 projects, grant no. CPDR132937/13 (SOLLEONE) and the post-doc fellowship ACTION. INFINITY project in the framework of the EU Erasmus Mundus Action 2 is also acknowledged to provide a Ph.D. financial support as well as Slovenian Research Agency (program P2-0377). The authors are grateful to Dr. E. Toniato (Department of Chemistry, Padova University, Italy) for synthetic assistance and to Prof. E. Bontempi and Dr. M. Brisotto (Chemistry for Technologies Laboratory, Brescia University, Italy) for XRD analyses. |
Approved |
Most recent IF: 4.784 |
|
|
Call Number |
EMAT @ emat @ c:irua:135833 |
Serial |
4284 |
|
Permanent link to this record |