toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Biscop,; Lin,; Boxem,; Loenhout,; Backer,; Deben,; Dewilde,; Smits,; Bogaerts, url  doi
openurl 
  Title Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment Type A1 Journal article
  Year (down) 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume 11 Issue 9 Pages 1287  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Increasing the selectivity of cancer treatments is attractive, as it has the potential to reduce side-effects of therapy. Cold atmospheric plasma (CAP) is a novel cancer treatment that disrupts the intracellular oxidative balance. Several reports claim CAP treatment to be selective, but retrospective analysis of these studies revealed discrepancies in several biological factors and culturing methods. Before CAP can be conclusively stated as a selective cancer treatment, the importance of these factors must be investigated. In this study, we evaluated the influence of the cell type, cancer type, and cell culture medium on direct and indirect CAP treatment. Comparison of cancerous cells with their non-cancerous counterparts was performed under standardized conditions to determine selectivity of treatment. Analysis of seven human cell lines (cancerous: A549, U87, A375, and Malme-3M; non-cancerous: BEAS-2B, HA, and HEMa) and five different cell culture media (DMEM, RPMI1640, AM, BEGM, and DCBM) revealed that the tested parameters strongly influence indirect CAP treatment, while direct treatment was less affected. Taken together, the results of our study demonstrate that cell type, cancer type, and culturing medium must be taken into account before selectivity of CAP treatment can be claimed and overlooking these parameters can easily result in inaccurate conclusions of selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489719000072 Publication Date 2019-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes the Research Foundation Flanders, 12S9218N – ; Universiteit Antwerpen, – ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:162097 Serial 5360  
Permanent link to this record
 

 
Author Van Loenhout, J.; Flieswasser, T.; Freire Boullosa, L.; De Waele, J.; Van Audenaerde, J.; Marcq, E.; Jacobs, J.; Lin, A.; Lion, E.; Dewitte, H.; Peeters, M.; Dewilde, S.; Lardon, F.; Bogaerts, A.; Deben, C.; Smits, E. url  doi
openurl 
  Title Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells Type A1 Journal article
  Year (down) 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume 11 Issue 10 Pages 1597  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000498826000194 Publication Date 2019-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes Universiteit Antwerpen, NA ; Fonds Wetenschappelijk Onderzoek, 11E7719N 1121016N 1S32316N 12S9218N 12E3916N ; Agentschap Innoveren en Ondernemen, 141433 ; Kom op tegen Kanker, NA ; Stichting Tegen Kanker, STK2014-155 ; The authors express their gratitude to Christophe Hermans, Céline Merlin, Hilde Lambrechts, and Hans de Reu for technical assistance; and to VITO for the use of the MSD reader (Mol, Belgium). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:163328 Serial 5436  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments Type A1 Journal article
  Year (down) 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume 11 Issue 12 Pages 1920  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507382100097 Publication Date 2019-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Figure 4 was created using resources from the ‘Mind the Graph’ platform, free trial version. Spheroid image obtained in collaboration with Sander Bekeschus (INP Greifswald, Germany); organoid image kindly provided by Christophe Deben (Center for Oncological Research, University of Antwerp, Belgium). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:164892 Serial 5437  
Permanent link to this record
 

 
Author Khalilov, U.; Vets, C.; Neyts, E.C. pdf  doi
openurl 
  Title Catalyzed growth of encapsulated carbyne Type A1 Journal article
  Year (down) 2019 Publication Carbon Abbreviated Journal Carbon  
  Volume 153 Issue Pages 1-5  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Carbyne is a novel material of current interest in nanotechnology. As is typically the case for nanomaterials, the growth process determines the resulting properties. While endohedral carbyne has been successfully synthesized, its catalyst and feedstock-dependent growth mechanism is still elusive. We here study the nucleation and growth mechanism of different carbon chains in a Ni-containing double walled carbon nanotube using classical molecular dynamics simulations and first-principles calculations. We find that the understanding the competitive role of the metal catalyst and the hydrocarbon is important to control the growth of 1-dimensional carbon chains, including Ni or H-terminated carbyne. Also, we find that the electronic property of the Ni-terminated carbyne can be tuned by steering the H concentration along the chain. These results suggest catalyst-containing carbon nanotubes as a possible synthesis route for carbyne formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000485054200001 Publication Date 2019-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access Not_Open_Access  
  Notes Fund of Scientific Research Flanders (FWO), Belgium, 12M1318N 1S22516N ; Flemish Supercomputer Centre VSC; Hercules Foundation; Flemish Government; University of Antwerp; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant numbers 12M1318N and 1S22516N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @c:irua:160695 Serial 5187  
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Peeters, F.M. pdf  doi
openurl 
  Title New nanoporous graphyne monolayer as nodal line semimetal : double Dirac points with an ultrahigh Fermi velocity Type A1 Journal article
  Year (down) 2019 Publication Carbon Abbreviated Journal Carbon  
  Volume 141 Issue 141 Pages 712-718  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon materials play an important role in nanomaterials. We propose a new carbon monolayer, named hexagonal-4,4,4-graphyne (H-4,H-4,H-4-graphyne), which is a nanoporous structure composed of rectangular carbon rings and triple bonds of carbon. Using first-principles calculations, we systematically studied the structure, stability, and band structure of this new material. We found that its total energy is lower than that of experimentally synthesized beta-graphdiyne and it is stable at least up to 1500 K. In contrast to the single Dirac point band structure of other 2D carbon monolayers, the band structure of H-4,H-4,H-4-graphyne exhibits double Dirac points along the high-symmetry points and the corresponding Fermi velocities (1.04-1.27 x 10(6) m/s) are asymmetric and higher than that of graphene. The origin of these double Dirac points is traced back to the nodal line states, which can be well explained by a tight-binding model. The H-4,H-4,H-4-graphyne forms a moire superstructure when placed on top of a hexagonal boron nitride substrate. These properties make H-4,H-4,H-4-graphyne a promising semimetal material for applications in high-speed electronic devices. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450312600072 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 38 Open Access  
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA project TRANS2DTMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government -department EWI. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:155364 Serial 5222  
Permanent link to this record
 

 
Author Bogaerts, A.; Zhang, Q.-Z.; Zhang, Y.-R.; Van Laer, K.; Wang, W. pdf  url
doi  openurl
  Title Burning questions of plasma catalysis: Answers by modeling Type A1 Journal article
  Year (down) 2019 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 337 Issue Pages 3-14  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is promising for various environmental, energy and chemical synthesis applications, but the underlying mechanisms are far from understood. Modeling can help to obtain a better insight in these mechanisms. Some burning questions relate to the plasma behavior inside packed bed reactors and whether plasma can penetrate into catalyst pores. In this paper, we try to provide answers to these questions, by means of both fluid modeling and particle-in-cell/Monte Carlo collision simulations. We present a short overview of recent findings obtained in our group by means of modeling, i.e., the enhanced electric field near the contact points and the streamer propagation through the packing in packed bed reactors, as well as the plasma behavior in catalyst pores, to determine the minimum pore size in which plasma streamers can penetrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482179500002 Publication Date 2019-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 7 Open Access  
  Notes University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc”; “CryoEtch” within Horizon2020, 657304 702604 ;We would like to thank H.-H. Kim for performing experiments to validate the modeling of streamer propagation in packed bed reactors. We acknowledge financial support from the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc” and “CryoEtch” within Horizon2020 (Grant Nos. 657304 and 702604). Approved Most recent IF: 4.636  
  Call Number PLASMANT @ plasmant @c:irua:161775 Serial 5356  
Permanent link to this record
 

 
Author Liu, M.; Yi, Y.; Wang, L.; Guo, H.; Bogaerts, A pdf  url
doi  openurl
  Title Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
  Year (down) 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 3 Pages 275  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Due to the increasing emission of carbon dioxide (CO2), greenhouse effects are becoming more and more severe, causing global climate change. The conversion and utilization of CO2 is one of the possible solutions to reduce CO2 concentrations. This can be accomplished, among other methods, by direct hydrogenation of CO2, producing value-added products. In this review, the progress of mainly the last five years in direct hydrogenation of CO2 to value-added chemicals (e.g., CO, CH4, CH3OH, DME, olefins, and higher hydrocarbons) by heterogeneous catalysis and plasma catalysis is summarized, and research priorities for CO2 hydrogenation are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465012800055 Publication Date 2019-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited Open Access OpenAccess  
  Notes Fundamental Research Funds for the Central Universities of China , DUT18JC42 32249 ; National Natural Science Foundation of China , 21503032 ; PetroChina Innovation Foundation , 2018D-5007-0501 ; Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158094 Serial 5162  
Permanent link to this record
 

 
Author Bogaerts, A. pdf  url
doi  openurl
  Title Editorial Catalysts: Special Issue on Plasma Catalysis Type Editorial
  Year (down) 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 2 Pages 196  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, and CH4 conversion into higher hydrocarbons or oxygenates [...]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460702200090 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159153 Serial 5166  
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V. url  doi
openurl 
  Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
  Year (down) 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 1 Pages 51  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459732000051 Publication Date 2019-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.082  
  Call Number UA @ admin @ c:irua:158666 Serial 5268  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Michielsen, I.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion Type A1 Journal article
  Year (down) 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 372 Issue Pages 1253-1264  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma (catalysis) reactors are increasingly being used for gas-based chemical conversions, providing an alternative method of energy delivery to the molecules. In this work we explore whether classical concepts such as

equilibrium constants, (overall) rate coefficients, and catalysis exist under plasma conditions. We specifically

investigate the existence of a so-called partial chemical equilibrium (PCE), and how process parameters and

packing properties influence this equilibrium, as well as the overall apparent rate coefficient, for CO2 splitting in

a DBD plasma reactor. The results show that a PCE can be reached, and that the position of the equilibrium, in

combination with the rate coefficient, greatly depends on the reactor parameters and operating conditions (i.e.,

power, pressure, and gap size). A higher power, higher pressure, or smaller gap size enhance both the equilibrium constant and the rate coefficient, although they cannot be independently tuned. Inserting a packing

material (non-porous SiO2 and ZrO2 spheres) in the reactor reveals interesting gap/material effects, where the

type of material dictates the position of the equilibrium and the rate (inhibition) independently. As a result, no

apparent synergistic effect or plasma-catalytic behaviour was observed for the non-porous packing materials

studied in this reaction. Within the investigated parameters, equilibrium conversions were obtained between 23

and 71%, while the rate coefficient varied between 0.027 s−1 and 0.17 s−1. This method of analysis can provide

a more fundamental insight in the overall reaction kinetics of (catalytic) plasma-based gas conversion, in order

to be able to distinguish plasma effects from true catalytic enhancement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471670400116 Publication Date 2019-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 3 Open Access Not_Open_Access: Available from 05.05.2021  
  Notes European Fund for Regional Development; FWOFWO, G.0254.14N ; University of Antwerp; FWO-FlandersFWO-Flanders, 11V8915N ; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. K. M. B. was funded as a PhD fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant 11V8915N. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159979 Serial 5171  
Permanent link to this record
 

 
Author Trenchev, G.; Nikiforov, A.; Wang, W.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Atmospheric pressure glow discharge for CO2 conversion : model-based exploration of the optimum reactor configuration Type A1 Journal article
  Year (down) 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 362 Issue 362 Pages 830-841  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, “confined” configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457863500084 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 4 Open Access Not_Open_Access: Available from 15.10.2019  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157459 Serial 5269  
Permanent link to this record
 

 
Author Van Hal, M.; Verbruggen, S.W.; Yang, X.-Y.; Lenaerts, S.; Tytgat, T. url  doi
openurl 
  Title Image analysis and in situ FTIR as complementary detection tools for photocatalytic soot oxidation Type A1 Journal article
  Year (down) 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 367 Issue 367 Pages 269-277  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution, especially particulate matter (PM), is an increasingly urgent problem in urban environments, causing both short and long-term health problems, climate interference and aesthetical problems due to building fouling. Photocatalysis has been shown to be a possible solution to that end. In this work two complementary detection methods for photocatalytic soot oxidation are studied and their advantages and disadvantages are discussed. First, a colour-based digital image analysis method is drastically improved towards an accurate, detailed and straightforward detection tool, that enables simultaneous measurement of the degradation of different grades of soot fouling (for instance a shallow soot haze versus condensed soot deposits). In the next part, a second soot oxidation detection method is presented based on in situ FTIR spectroscopy. This method has the additional advantage of providing more insight into the photocatalytic soot degradation process by monitoring both gaseous and adsorbed intermediates as well as reaction products while the reactions are ongoing. As an illustration, the proposed detection strategies were applied on four different commercially available and synthesized photocatalytic materials. The digital image analysis showed that P25 (Evonik) is the fastest photocatalytic soot degrader of all studied materials for both a uniform soot haze as well as concentrated soot spots. Application of the in situ method showed that for all studied materials adsorbed formate-related surface species were formed and that commercially available ZnO nanopowder has the highest specificity towards complete mineralization into CO2. With this we aim to provide a set of complementary experimental tools for the convenient, reliable, realistic and standardised detection of photocatalytic soot degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461380400028 Publication Date 2019-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 1 Open Access  
  Notes ; M.V.H. acknowledges the Research Foundation-Flanders (FWO) for a doctoral fellowship. M.V.H., S.W.V., S.L. and X-Y.Y. thank the FWO and the National Natural Science Foundation of China (NSFC) for funding an international collaboration project. Mr. M. Minjauw is greatly thanked for his help in the AFM measurements. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157789 Serial 5958  
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Proof of concept of an upscaled photocatalytic multi-tube reactor : a combined modelling and experimental study Type A1 Journal article
  Year (down) 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 378 Issue 378 Pages 122038  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Three upscaled multi-tube photocatalytic reactors designed for integration into HVAC (Heating, Ventilation and Air Conditioning) systems were proposed and evaluated using a CFD modelling approach, with emphasis on the flow, irradiation and concentration distribution in the reactor and hence, photocatalytic performance. Based on the obtained insights, the best reactor design was selected, further characterized and improved by an additional proof of concept study and eventually converted into practice. Subsequently, the scaled-up prototype was experimentally tested according to the CEN-EN-16846-1 standard (2017) for volatile organic compound (VOC) removal by an external scientific research center. The combined modelling and experimental approach used in this work, leads to essential insights into the design and assessment of photocatalytic reactors. Therefore, this study provides an essential step towards the optimization and commercialization of photocatalytic reactors for HVAC applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487764800011 Publication Date 2019-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:162190 Serial 5986  
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S. pdf  url
doi  openurl
  Title CFD-modelling of activated carbon fibers for indoor air purification Type A1 Journal article
  Year (down) 2019 Publication Chemical engineering journal Abbreviated Journal  
  Volume 365 Issue Pages 80-87  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Activated carbon fibers for indoor air purification were investigated by means of pressure drop and adsorption capacity. The Darcy-Forchheimer law combined with Computational Fluid Dynamics (CFD) modelling was deployed to simulate the pressure drop over an activated carbon fiber (ACF) filter with varying filter thickness. The CFD model was later combined with adsorption modelling to simulate breakthrough profiles of acetaldehyde adsorption on the ACF-filter. The adsorption model incorporates mass transfer resistance and adsorption equilibrium. It assumes local equilibrium between gas phase and solid phase. The latter was investigated for three different adsorption isotherms: linear, Langmuir and Freundlich adsorption. Successful agreement between model simulations and experimental data was obtained, using the Freundlich adsorption model. The numerical model could provide valuable insights and allows to continuously improve the design of filtration devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459009800009 Publication Date 2019-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156996 Serial 7590  
Permanent link to this record
 

 
Author Bafekry, A.; Ghergherehchi, M.; Shayesteh, S.F.; Peeters, F.M. pdf  doi
openurl 
  Title Adsorption of molecules on C3N nanosheet : a first-principles calculations Type A1 Journal article
  Year (down) 2019 Publication Chemical physics Abbreviated Journal Chem Phys  
  Volume 526 Issue 526 Pages 110442  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations we investigate the interaction of various molecules, including H-2, N-2, CO, CO2, H2O, H2S, NH3, CH4 with a C3N nanosheet. Due to the weaker interaction between H-2, N-2, CO, CO2, H2O, H2S, NH3, and CH4 molecules with C3N, the adsorption energy is small and does not yield any significant distortion of the C3N lattice and the molecules are physisorbed. Calculated charge transfer shows that these molecules act as weak donors. However, adsorption of O-2, NO, NO2 and SO2 molecules are chemisorbed, they receive electrons from C3N and act as a strong acceptor. They interact strongly through hybridizing its frontier orbitals with the p-orbital of C3N, modifying the electronic structure of C3N. Our theoretical studies indicate that C3N-based sensor has a high potential for O-2, NO, NO2 and SO2 molecules detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000481606000006 Publication Date 2019-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-0104 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.767 Times cited 46 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). In addition, this work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.767  
  Call Number UA @ admin @ c:irua:161779 Serial 5405  
Permanent link to this record
 

 
Author Van Velthoven, N.; Waitschat, S.; Chavan, S.M.; Liu, P.; Smolders, S.; Vercammen, J.; Bueken, B.; Bals, S.; Lillerud, K.P.; Stock, N.; De Vos, D.E. url  doi
openurl 
  Title Single-site metal-organic framework catalysts for the oxidative coupling of arenes via C-H/C-H activation Type A1 Journal article
  Year (down) 2019 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 10 Issue 10 Pages 3616-3622  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract C-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (e.g. o-xylene) via C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction. Notably, a threefold higher TON could be achieved for palladium loaded MOF-808 due to increased catalyst stability and the heterogeneous catalyst could efficiently be reused, resulting in a cumulative TON of 1218 after three runs. Additionally, the palladium single-atom active sites on MOF-808 were successfully identified by Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000463759100017 Publication Date 2019-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 68 Open Access OpenAccess  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no. [720996]. N. V. V., S. S., J. V., B. B. and D. E. D. V. thank the FWO for funding (SB, Aspirant and postdoctoral grants). The electron microscopy work was supported by FWO funding G038116. D. E. D. V. is grateful for KU Leuven support in the frame of the CASAS Metusalem project and a C3 type project. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Johnson Matthey and S. Bennett are gratefully acknowledged for providing Smopex-102. ; Approved Most recent IF: 8.668  
  Call Number UA @ admin @ c:irua:159403 Serial 5259  
Permanent link to this record
 

 
Author Akkerman, Q.A.; Bladt, E.; Petralanda, U.; Dang, Z.; Sartori, E.; Baranov, D.; Abdelhady, A.L.; Infante, I.; Bals, S.; Manna, L. url  doi
openurl 
  Title Fully inorganic Ruddlesden-Popper double CI-I and triple CI-Br-I lead halide perovskite nanocrystals Type A1 Journal article
  Year (down) 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 31 Pages 2182-2190  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl3, CsPbBr3, and CsPbI3) or an alloyed mixture of bromide with either Cl- or I- [i.e., CsPb(Br:Cl)(3) or CsPb(Br:I)(3)]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs2PbI2Cl2 NCs and triple halide CsPb(Cl:Br:I)(3) NCs. In the case of Cs2PbI2Cl2, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I)(3) composition, the NCs comprise a CsPbBr2Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I)(3) NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462950400038 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 58 Open Access OpenAccess  
  Notes ; Q.A.A. and L.M. acknowledge funding from the European Union Seventh Framework Programme under grant agreement no. 614897 (ERC Consolidator Grant “TRANS-NANO”). The work of D.B. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 794560. E.B. and S.B. acknowledge funding from the Research Foundation Flanders (G.038116N, G.03691, and funding of a postdoctoral grant to E.B.). I.I. acknowledges The Netherlands Organization of Scientific Research (NWO) for financial support through the Innovational Research Incentive (Vidi) Scheme (grant no. 723.013.002). The computational work was carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative. ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:159414 Serial 5250  
Permanent link to this record
 

 
Author Tan, X.; Stephens, P.W.; Hendrickx, M.; Hadermann, J.; Segre, C.U.; Croft, M.; Kang, C.-J.; Deng, Z.; Lapidus, S.H.; Kim, S.W.; Jin, C.; Kotliar, G.; Greenblatt, M. url  doi
openurl 
  Title Tetragonal Cs1.17In0.81Cl3 : a charge-ordered indium halide perovskite derivative Type A1 Journal article
  Year (down) 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 6 Pages 1981-1989  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of Cs1.17In0.81Cl3 were prepared by annealing a mixture of CsCl, InCl, and InCl3, stoichiometric for the targeted CsInCl3. Synchrotron powder X-ray diffraction refinement and chemical analysis by energy dispersive X-ray indicated that Cs1.17In0.81Cl3, a tetragonal distorted perovskite derivative (I4/m), is the thermodynamically stable product. The refined unit cell parameters and space group were confirmed by electron diffraction. In the tetragonal structure, In+ and In3+ are located in four different crystallographic sites, consistent with their corresponding bond lengths. In1, In2, and In3 are octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl because of the noncooperative octahedral tilting of In4Cl6. The charged-ordered In+ and In3+ were also confirmed by X-ray absorption and Raman spectroscopy. Cs1.17In0.81Cl3 is the first example of an inorganic halide double perovskite derivative with charged-ordered In+ and In3+. Band structure and optical conductivity calculations were carried out with both generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) approach; the GGA calculations estimated the band gap and optical band gap to be 2.27 eV and 2.4 eV, respectively. The large and indirect band gap suggests that Cs1.17In0.81Cl3 is not a good candidate for photovoltaic application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462950400017 Publication Date 2019-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes ; M.G. and X.T. were supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. M.G. also acknowledges support of NSF-DMR-1507252 grant. G.K. and C.-J.K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works at IOPCAS were supported by NSF & MOST of China through research projects. ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:159413 Serial 5262  
Permanent link to this record
 

 
Author Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F. pdf  url
doi  openurl
  Title Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
  Year (down) 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 15 Pages 5900-5908  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480826900060 Publication Date 2019-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:161814 Serial 5291  
Permanent link to this record
 

 
Author Ramachandran, R.K.; Filez, M.; Solano, E.; Poelman, H.; Minjauw, M.M.; Van Daele, M.; Feng, J.-Y.; La Porta, A.; Altantzis, T.; Fonda, E.; Coati, A.; Garreau, Y.; Bals, S.; Marin, G.B.; Detavernier, C.; Dendooven, J. url  doi
openurl 
  Title Chemical and Structural Configuration of Pt Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition Type A1 Journal article
  Year (down) 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 31 Pages 9673-9683  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Pt doped semiconducting metal oxides and Pt metal clusters embedded in an oxide matrix are of interest for applications such as catalysis and gas sensing, energy storage and memory devices. Accurate tuning of the dopant level is crucial for adjusting the properties of these materials. Here, a novel atomic layer deposition (ALD) based method for doping Pt into In2O3 in specific, and metals in metal oxides in general, is demonstrated. This approach combines alternating exposures of Pt and In2O3 ALD processes in a single ‘supercycle’, followed by supercycle repetition leading to multilayered nanocomposites. The atomic level control of ALD and its conformal nature make the method suitable for accurate dopant control even on high surface area supports. Oxidation state, local structural environment and crystalline phase of the embedded Pt dopants were obtained by means of X-ray characterization methods and high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In addition, this approach allows characterization of the nucleation stages of metal ALD processes, by stacking those states multiple times in an oxide matrix. Regardless of experimental conditions, a few Pt ALD cycles leads to the formation of oxidized Pt species due to their highly dispersed nature, as proven by X-ray absorption spectroscopy (XAS). Grazing-incidence small-angle X-ray scattering (GISAXS) and highresolution scanning transmission electron microscopy, combined with energy dispersive X-ray spectroscopy (HR-STEM/EDXS) show that Pt is evenly distributed in the In2O3 metal oxide matrix without the formation of clusters. For a larger number of Pt ALD

cycles, typ. > 10, the oxidation state gradually evolves towards fully metallic, and metallic Pt clusters are obtained within the In2O3 metal oxide matrix. This work reveals how tuning of the ALD supercycle approach for Pt doping allows controlled engineering of the Pt compositional and structural configuration within a metal oxide matrix.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502418000010 Publication Date 2019-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes This research was supported by the Flemish Research Foundation (FWO-Vlaanderen), the Flemish Government (Long term structural funding – Methusalem funding and Medium scale research infrastructure funding-Hercules funding), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the CALIPSO Trans National Access Program funded by the European Commission in supplying financing of travel costs. We are grateful to the SIXS and SAMBA-SOLEIL staff for smoothly running the beamline facilities. J.D. and R.K.R. are postdoctoral fellows of the FWO. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:164056 Serial 5380  
Permanent link to this record
 

 
Author Kirkwood, N.; De Backer, A.; Altantzis, T.; Winckelmans, N.; Longo, A.; Antolinez, F.V.; Rabouw, F.T.; De Trizio, L.; Geuchies, J.J.; Mulder, J.T.; Renaud, N.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Locating and controlling the Zn content in In(Zn)P quantum dots Type A1 Journal article
  Year (down) 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 32 Issue 32 Pages 557-565  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs is debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn-carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high resolution high-angle annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM) with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn-acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn-carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature, and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn-carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507721600056 Publication Date 2019-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO), and which is partly funded by Ministry of Economic Affairs. SB acknowledges funding from the European Research Council (grant 815128 REALNANO). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and a postdoctoral grant to A.D.B. AJH, LM and JM acknowledge support from the H2020 Collaborative Project TEQ (Grant No. 766900).; sygma Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:165234 Serial 5438  
Permanent link to this record
 

 
Author Zankowski, S.P.; Van Hoecke, L.; Mattelaer, F.; de Raedt, M.; Richard, O.; Detavernier, C.; Vereecken, P.M. doi  openurl
  Title Redox layer deposition of thin films of MnO2 on nanostructured substrates from aqueous solutions Type A1 Journal article
  Year (down) 2019 Publication Chemistry of materials Abbreviated Journal  
  Volume 31 Issue 13 Pages 4805-4816  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we report a new method for depositing thin films of MnO2 on planar and complex nanostructured surfaces, with high precision and conformality. The method is based on repeating cycles of adsorption of an unsaturated alcohol on a surface, followed by its oxidation with aqueous KMnO4 and formation of thin, solid MnO2. The amount of manganese oxide formed in each cycle is limited by the quantity of the adsorbed alcohol; thus, the growth exhibits the self-limiting characteristics of atomic layer deposition (ALD). Contrary to the typical ALD, however, the new redox layer deposition is performed in air, at room temperature, using common chemicals and simple laboratory glassware, which greatly reduces its cost and complexity. We also demonstrate application of the method for the fabrication of a nanostructured MnO2/Ni electrode, which was not possible with thermal ALD because of the rapid decomposition of the gaseous precursor on the high surface-area substrate. Thanks to its simplicity, the conformal deposition of MnO2 can be easily upscaled and thus exploited for its numerous (electro)chemical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000475408400021 Publication Date 2019-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161225 Serial 8465  
Permanent link to this record
 

 
Author Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K. pdf  doi
openurl 
  Title X-ray diffraction mapping for cultural heritage science : a review of experimental configurations and applications Type A1 Journal article
  Year (down) 2019 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 26 Issue 26 Pages 1703-1719  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract X-ray diffraction (XRD) mapping consists in the acquisition of XRD patterns at each pixel (or voxel) of an area (or volume). The spatial resolution ranges from the micrometer (mu XRD) to the millimeter (MA-XRD) scale, making the technique relevant for tiny samples up to large objects. Although XRD is primarily used for the identification of different materials in (complex) mixtures, additional information regarding the crystallite size, their orientation, and their in-depth distribution can also be obtained. Through mapping, these different types of information can be located on the studied sample/object. Cultural heritage objects are usually highly heterogeneous, and contain both original and later (degradation, conservation) materials. Their structural characterization is required both to determine ancient manufacturing processes and to evaluate their conservation state. Together with other mapping techniques, XRD mapping is increasingly used for these purposes. Here, the authors review applications as well as the various configurations for XRD mapping (synchrotron/laboratory X-ray source, poly-/monochromatic beam, micro/macro beam, 2D/3D, transmission/reflection mode). On-going hardware and software developments will further establish the technique as a key tool in heritage science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000501927300001 Publication Date 2019-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited Open Access  
  Notes ; M.C. thanks the KNAW for supporting her stays in the Netherlands through the Descartes Huygens price. V.G. and M.C. thank the Center of Research and Restoration of French Museums (C2RMF), Paris and in particular Myriam Eveno, for the collaboration on Rembrandt's impastos (Figure 7). M.C. is indebted to the Afghan government, NRICPT and in particular, Yoko Taniguchi for providing samples shown in Figure 5. K.J. and F.V. acknowledge the University of Antwerp Research Council for financial support via GOA project SolarPaint as well as InterReg project Smart*Light. FWO projects G057419N and G056619N are also acknowledged. The authors also wish to acknowledge the Van Gogh and Kroller-Muller museums, the Rijksmuseum, the Royal Museum of Fine Arts Antwerp and the Louvre museum for the constructive and inspiring collaborations in the past decade. Various beam lines and the staff at ESRF and DESY are thanked for providing beam time and support during experiments. ; Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:165061 Serial 5911  
Permanent link to this record
 

 
Author Castanheiro, A.; Joos, P.; Wuyts, K.; De Wael, K.; Samson, R. pdf  url
doi  openurl
  Title Leaf-deposited semi-volatile organic compounds (SVOCs) : an exploratory study using GCxGC-TOFMS on leaf washing solutions Type A1 Journal article
  Year (down) 2019 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 214 Issue 214 Pages 103-110  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Airborne particulate matter (PM) includes semi-volatile organic compounds (SVOCs), which can be deposited on vegetation matrices such as plant leaves. In alternative to air-point measurements or artificial passive substrates, leaf monitoring offers a cost-effective, time-integrating means of assessing local air quality. In this study, leaf washing solutions from ivy (Hedera hibernica) leaves exposed during one-month at different land use classes were explored via comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS). The composition of leaf-deposited SVOCs, corrected for those of unexposed leaves, was compared against routinely monitored pollutants concentrations (PM10, PM2.5, O3, NO2, SO2) measured at co-located air monitoring stations. The first study on leaf-deposited SVOCs retrieved from washing solutions, herein reported, delivered a total of 911 detected compounds. While no significant land use (rural, urban, industrial, traffic, mixed) effects were observed, increasing exposure time (from one to 28 days) resulted in a higher number and diversity of SVOCs, suggesting cumulative time-integration to be more relevant than local source variations between sites. After one day, leaf-deposited SVOCs were mainly due to alcohols, N-containing compounds, carboxylic acids, esters and lactones, while ketones, diketones and hydrocarbons compounds gained relevance after one week, and phenol compounds after one month. As leaf-deposited SVOCs became overall more oxidized throughout exposure time, SVOCs transformation or degradation at the leaf surface is suggested to be an important phenomenon. This study confirmed the applicability of GCxGC-TOFMS to analyze SVOCs from leaf washing solutions, further research should include validation of the methodology and comparison with atmospheric organic pollutants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000449891300013 Publication Date 2018-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.208 Times cited Open Access  
  Notes ; The authors thank the Flemish Environment Agency (VMM) for their collaboration and air quality data; Sam Dekkers and Jonathan Van Waeyenbergh for their help with sample collection. The study was performed using a study set-up funded by the Special Research Fund of the University of Antwerp (KPBOF 2014, no. FFB 140090 'Tree leaf surface properties as dynamic drivers of particulate matter-leaf interaction and phyllosphere microbial communities'). A.C. acknowledges the Research Foundation Flanders (FWO) for her SB PhD fellowship. ; Approved Most recent IF: 4.208  
  Call Number UA @ admin @ c:irua:153509 Serial 5692  
Permanent link to this record
 

 
Author Van Winckel, T.; Liu, X.; Vlaeminck, S.E.; Takács, I.; Al-Omari, A.; Sturm, B.; Kjellerup, B.V.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Overcoming floc formation limitations in high-rate activated sludge systems Type A1 Journal article
  Year (down) 2019 Publication Chemosphere Abbreviated Journal  
  Volume 215 Issue Pages 342-352  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) is an essential cornerstone of the pursuit towards energy positive sewage treatment through maximizing capture of organics. The capture efficiency heavily relies on the degree of solid separation achieved in the clarifiers. Limitations in the floc formation process commonly emerge in HRAS systems, with detrimental consequences for the capture of organics. This study pinpointed and overcame floc formation limitations present in full-scale HRAS reactors. Orthokinetic flocculation tests were performed with varying shear, sludge concentration, and coagulant or flocculant addition. These were analyzed with traditional and novel settling parameters and extracellular polymeric substances (EPS) measurements. HRAS was limited by insufficient collision efficiency and occurred because the solids retention time (SRT) was short and colloid loading was high. The limitation was predominantly caused by impaired flocculation rather than coagulation. In addition, the collision efficiency limitation was driven by EPS composition (low protein over polysaccharide ratio) instead of total EPS amount. Collision efficiency limitation was successfully overcome by bio-augmenting sludge from a biological nutrient removal reactor operating at long SRT which did not show any floc formation limitations. However, this action brought up a floc strength limitation. The latter was not correlated with EPS composition, but rather EPS amount and hindered settling parameters, which determined floc morphology. With this, an analysis toolkit was proposed that will enable design engineers and operators to tackle activated solid separation challenges found in HRAS systems and maximize the recovery potential of the process. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450383400038 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153978 Serial 8350  
Permanent link to this record
 

 
Author Zhao, L.; Ding, L.; Soete, J.; Idrissi, H.; Kerckhofs, G.; Simar, A. pdf  url
doi  openurl
  Title Fostering crack deviation via local internal stresses in Al/NiTi composites and its correlation with fracture toughness Type A1 Journal article
  Year (down) 2019 Publication Composites: part A: applied science and manufacturing Abbreviated Journal Compos Part A-Appl S  
  Volume 126 Issue 126 Pages 105617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of metal matrix composites, a research gap exists regarding tailoring damage mechanisms. The present work aims at developing an Al/NiTi composite incorporating internal stresses in the vicinity of reinforcements. The composite is manufactured by friction stir processing which allows a homogenous NiTi distribution and a good Al/NiTi interface bonding. The internal stresses are introduced via shape memory effect of the embedded NiTi particles. The induced internal strain field is confirmed by digital image correlation and the corresponding stress field is evaluated by finite element simulation. It is found that the damage mechanism is modified in the presence of internal stresses. The consequent enhancement of fracture toughness arises by the fact that the internal stresses foster discrete damages shifted from the fracture ligament line. These damages release the stress concentration at the main crack tip and lead to a deviated crack path when coalescing to accommodate fracture propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489350600025 Publication Date 2019-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-835x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.075 Times cited Open Access  
  Notes ; This research work has been exclusively supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no 716678). The X-ray computed,tomography facilities of the Department of Materials Engineering of the KU Leuven are financed by the Hercules Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). The authors acknowledge Professor F. Delannay from UCLouvain for fruitful discussions. ; Approved Most recent IF: 4.075  
  Call Number UA @ admin @ c:irua:163706 Serial 5387  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C. pdf  doi
openurl 
  Title Effects of silicon doping on strengthening adhesion at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year (down) 2019 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 159 Issue 159 Pages 228-234  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper we employ first-principles calculations to investigate the effect of substitutional Si doping in the amorphous calcium-phosphate (a-HAP) structure on the work of adhesion, integral charge transfer, charge density difference and theoretical tensile strengths between an a-HAP coating and amorphous titanium dioxide (a-TiO2) substrate systemically. Our calculations demonstrate that substitution of a P atom by a Si atom in a-HAP (a-Si-HAP) with the creation of OH-vacancies as charge compensation results in a significant increase of the bonding strength of the coating to the substrate. The work of adhesion of the optimized Si-doped interfaces reaches a value of up to -2.52 J m(-2), which is significantly higher than for the stoichiometric a-HAP/a-TiO2. Charge density difference analysis indicates that the dominant interactions at the interface have significant covalent character, and in particular two Ti-O and three Ca-O bonds are formed for a-Si-HAP/a-TiO2 and one Ti-O and three Ca-O bonds for a-HAP/a-TiO2. From the stress-strain curve, the Young's modulus of a-Si-HAP/a-TiO2 is calculated to be about 25% higher than that of the a-HAP/a-TiO2, and the yielding stress is about 2 times greater than that of the undoped model. Our calculations therefore demonstrate that the presence of Si in the a-HAP structure strongly alters not only the bioactivity and resorption rates, but also the mechanical properties of the a-HAP/a-TiO2 interface. The results presented here provide an important theoretical insight into the nature of the chemical bonding at the a-HAP/a-TiO2 interface, and are particularly significant for the practical medical applications of HAP-based biomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457856900023 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.292  
  Call Number UA @ admin @ c:irua:157480 Serial 5272  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Delville, R.; Verwerft, M.; Lambrinou, K.; Schryvers, D. pdf  url
doi  openurl
  Title Transmission electron microscopy study of complex oxide scales on DIN 1.4970 steel exposed to liquid Pb-Bi eutectic Type A1 Journal article
  Year (down) 2019 Publication Corrosion science Abbreviated Journal Corrosion Science  
  Volume 147 Issue Pages 22-31  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The deployment of Gen-IV lead-cooled fast reactors requires a good compatibility between the selected structural/cladding steels and the inherently corrosive heavy liquid metal coolant. An effective liquid metal corrosion mitigation strategy involves the in-situ steel passivation in contact with the oxygen-containing Pb-alloy coolant. Transmission electron microscopy was used in this work to study the multi-layered oxide scales forming on an austenitic stainless steel fuel cladding exposed to oxygen-containing (CO ≈ 10−6 mass%) static liquid leadbismuth eutectic (LBE) for 1000 h between 400 and 500 °C. The oxide scale constituents were analyzed, including the intertwined phases comprising the innermost biphasic layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456902100003 Publication Date 2018-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access OpenAccess  
  Notes The authors would like to thank J. Joris for the technical support during corrosion testing and J. Lim for the manufacturing and calibration of the oxygen sensors and oxygen pumps used in this work. E. Charalampopoulou personally thanks H. Heidari, S. Pourbabak, A. Orekhov (EMAT) and N. Cautaerts (EMAT, SCK•CEN), for their valuable help with the training of the FEI Tecnai Osiris S/TEM and Jeol 3000 S/ TEM, respectively, as well as S. Van den Broeck (EMAT), J. Pakarinen (SCK•CEN) and W. Van Renterghem (SCK•CEN) for FIB sample preparation. Moreover, the authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157541 Serial 5164  
Permanent link to this record
 

 
Author Morozov, V.A.; Posokhova, S.M.; Deyneko, D., V; Savina, A.A.; Morozov, A., V; Tyablikov, O.A.; Redkin, B.S.; Spassky, D.A.; Hadermann, J.; Lazoryak, B., I doi  openurl
  Title Influence of annealing conditions on the structure and luminescence properties of KGd1-xEux(MoO4)2(0\leq x\leq1) Type A1 Journal article
  Year (down) 2019 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 21 Issue 42 Pages 6460-6471  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study describes the influence of annealing temperature on the structure and luminescence properties of KGd1-xEux(MoO4)(2) (0 <= x <= 1). Compounds with the general formula (A ', A '')(n)[(W, Mo)O-4](m) are investigated as luminescent materials for photonic applications such as phosphor-converted LEDs (light-emitting diodes). Herein, the KGd0.8Eu0.2(MoO4)(2) light-rose crystal was grown by the Czochralski technique. Moreover, three polymorphs of KGd1-xEux(MoO4)(2) were present in the 923-1223 K range of annealing temperatures under ambient pressure: a triclinic alpha-phase, a disproportionately modulated monoclinic beta-phase and an orthorhombic gamma-phase with a KY(MoO4)(2)-type structure. The different behaviors of KGd(MoO4)(2) and KEu(MoO4)(2) were revealed by DSC studies. The number and the character of phase transitions for KGd1-xEux(MoO4)(2) depended on the elemental composition. The formation of a continuous range of solid solutions with the triclinic alpha-KEu(MoO4)(2)-type structure and ordering of K+ and Eu3+/Gd3+ cations were observed only for alpha-KGd1-xEux(MoO4)(2) (0 <= x <= 1) prepared at 923 K. The structures of gamma-KGd1-xEux(MoO4)(2) (x = 0 and 0.2) were studied using electron diffraction and refined using the powder X-ray diffraction data. The luminescence properties of KGd1-xEux(MoO4)(2) prepared at different annealing temperatures were studied and related to their different structures. The maxima of the D-5(0) -> F-7(2) integral emission intensities were found under excitation at lambda(ex) = 300 nm and lambda(ex) = 395 nm for triclinic scheelite-type alpha-KGd0.6Eu0.4(MoO4)(2) and monoclinic scheelite-type beta-KGd0.4Eu0.6(MoO4)(2) prepared at 1173 K, respectively. The latter shows the brightest red light emission among the KGd1-xEux(MoO4)(2) phosphors. The maximum and integral emission intensity of beta-KGd0.4Eu0.6(MoO4)(2) in the D-5(0) -> F-7(2) transition region is similar to 20% higher than that of the commercially used red phosphor Gd2O2S:Eu3+. Thus, beta-KGd0.4Eu0.6(MoO4)(2) is very attractive for application as a near-UV convertible red-emitting phosphor for LEDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493072200015 Publication Date 2019-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited Open Access  
  Notes Approved Most recent IF: 3.474  
  Call Number UA @ admin @ c:irua:164603 Serial 6304  
Permanent link to this record
 

 
Author Moro, G.; De Wael, K.; Moretto, L.M. pdf  url
doi  openurl
  Title Challenges in the electrochemical (bio)sensing of non-electroactive food and environmental contaminants Type A1 Journal article
  Year (down) 2019 Publication Current opinion in electrochemistry Abbreviated Journal  
  Volume 16 Issue 16 Pages 57-65  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The electrochemical detection of non-electroactive contaminants can be successfully faced via the use of indirect detection strategies. These strategies can provide sensitive and selective responses often coupled with portable and user-friendly analytical tools. Indirect detection strategies are usually based on the change in the signal of an electroactive probe, induced by the presence of the target molecule at a modified electrode. This critical review aims at addressing the developments in indirect electro-sensing strategies for non-electroactive contaminants in food and environmental analysis in the last years (2017-2019). Emphasis is given to the strategy design, the electrode modifiers used and the feasibility of technological transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000485814400010 Publication Date 2019-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159574 Serial 5498  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: