|
Record |
Links |
|
Author |
Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K. |
|
|
Title |
X-ray diffraction mapping for cultural heritage science : a review of experimental configurations and applications |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Chemistry: a European journal |
Abbreviated Journal |
Chem-Eur J |
|
|
Volume |
26 |
Issue |
26 |
Pages |
1703-1719 |
|
|
Keywords |
A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation) |
|
|
Abstract |
X-ray diffraction (XRD) mapping consists in the acquisition of XRD patterns at each pixel (or voxel) of an area (or volume). The spatial resolution ranges from the micrometer (mu XRD) to the millimeter (MA-XRD) scale, making the technique relevant for tiny samples up to large objects. Although XRD is primarily used for the identification of different materials in (complex) mixtures, additional information regarding the crystallite size, their orientation, and their in-depth distribution can also be obtained. Through mapping, these different types of information can be located on the studied sample/object. Cultural heritage objects are usually highly heterogeneous, and contain both original and later (degradation, conservation) materials. Their structural characterization is required both to determine ancient manufacturing processes and to evaluate their conservation state. Together with other mapping techniques, XRD mapping is increasingly used for these purposes. Here, the authors review applications as well as the various configurations for XRD mapping (synchrotron/laboratory X-ray source, poly-/monochromatic beam, micro/macro beam, 2D/3D, transmission/reflection mode). On-going hardware and software developments will further establish the technique as a key tool in heritage science. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000501927300001 |
Publication Date |
2019-10-14 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0947-6539 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.317 |
Times cited |
|
Open Access |
|
|
|
Notes |
; M.C. thanks the KNAW for supporting her stays in the Netherlands through the Descartes Huygens price. V.G. and M.C. thank the Center of Research and Restoration of French Museums (C2RMF), Paris and in particular Myriam Eveno, for the collaboration on Rembrandt's impastos (Figure 7). M.C. is indebted to the Afghan government, NRICPT and in particular, Yoko Taniguchi for providing samples shown in Figure 5. K.J. and F.V. acknowledge the University of Antwerp Research Council for financial support via GOA project SolarPaint as well as InterReg project Smart*Light. FWO projects G057419N and G056619N are also acknowledged. The authors also wish to acknowledge the Van Gogh and Kroller-Muller museums, the Rijksmuseum, the Royal Museum of Fine Arts Antwerp and the Louvre museum for the constructive and inspiring collaborations in the past decade. Various beam lines and the staff at ESRF and DESY are thanked for providing beam time and support during experiments. ; |
Approved |
Most recent IF: 5.317 |
|
|
Call Number |
UA @ admin @ c:irua:165061 |
Serial |
5911 |
|
Permanent link to this record |