toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vervaet, B.A.; Nast, C.C.; Jayasumana, C.; Schreurs, G.; Roels, F.; Herath, C.; Kojc, N.; Samaee, V.; Rodrigo, S.; Gowrishankar, R. url  openurl
  Title Chronic interstitial nephritis in agricultural communities : a toxin-induced proximal tubular nephropathy Type A1 Journal article
  Year (up) 2020 Publication European Medical Journal : Nephrology Abbreviated Journal  
  Volume 8 Issue 1 Pages 40-42  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Pathophysiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-4248 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180862 Serial 6858  
Permanent link to this record
 

 
Author Haug, C.; Ruebeling, F.; Kashiwar, A.; Gumbsch, P.; Kübel, C.; Greiner, C. doi  openurl
  Title Early deformation mechanisms in the shear affected region underneath a copper sliding contact Type A1 Journal article
  Year (up) 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 11 Issue 1 Pages 839-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dislocation mediated plastic deformation decisively influences the friction coefficient and the microstructural changes at many metal sliding interfaces during tribological loading. This work explores the initiation of a tribologically induced microstructure in the vicinity of a copper twin boundary. Two distinct horizontal dislocation traces lines (DTL) are observed in their interaction with the twin boundary beneath the sliding interface. DTL formation seems unaffected by the presence of the twin boundary but the twin boundary acts as an indicator of the occurring deformation mechanisms. Three concurrent elementary processes can be identified: simple shear of the subsurface area in sliding direction, localized shear at the primary DTL and crystal rotation in the layers above and between the DTLs around axes parallel to the transverse direction. Crystal orientation analysis demonstrates a strong compatibility of these proposed processes. Quantitatively separating these different deformation mechanisms is crucial for future predictive modeling of tribological contacts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record  
  Impact Factor 16.6 Times cited Open Access  
  Notes Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:183619 Serial 6863  
Permanent link to this record
 

 
Author Guzzinati, G.; Das, P.P.; Zompra, A., A.; Nicopoulos, S.; Verbeeck, J. doi  openurl
  Title Electron energy loss spectra of several organic compounds Type Dataset
  Year (up) 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract We placed crystals of different compounds to explore the possibility of fingerprinting them through EELS. Here are representative datasets of 7 different compounds: b-cyclodextrin hexacarboxy cyclohexane tannin TH-15 peptide TH-27 peptide two different forms of piroxicam The datasets were collected at EMAT, using a monochromated FEI Titan3 TEM, within the scope of an EUSMI request. More information as well as analysis methodologies adopted for the data are detailed in the paper: Das et al. “Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy”, Polymers 2020, 12(7), 1434.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180654 Serial 6866  
Permanent link to this record
 

 
Author Gorji, S.; Kashiwar, A.; Mantha, L.S.; Kruk, R.; Witte, R.; Marek, P.; Hahn, H.; Kübel, C.; Scherer, T. doi  openurl
  Title Nanowire facilitated transfer of sensitive TEM samples in a FIB Type A1 Journal article
  Year (up) 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 219 Issue Pages 113075  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We introduce a facile approach to transfer thin films and other mechanically sensitive TEM samples inside a FIB with minimal introduction of stress and bending. The method is making use of a pre-synthetized flexible freestanding Ag nanowire attached to the tip of a typical tungsten micromanipulator inside the FIB. The main advantages of this approach are the significantly reduced stress-induced bending during transfer and attachment of the TEM sample, the very short time required to attach and cut the nanowire, the operation at very low dose and ion current, and only using the e-beam for Pt deposition during the transfer of sensitive TEM samples. This results in a reduced sample preparation time and reduced exposure to the ion beam or e-beam for Pt deposition during the sample preparation and thus also reduced contamination and beam damage. The method was applied to a number of thin films and different TEM samples in order to illustrate the advantageous benefits of the concept. In particular, the technique has been successfully tested for the transfer of a thin film onto a MEMS heating chip for in situ TEM experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record  
  Impact Factor 2.2 Times cited Open Access  
  Notes Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number UA @ admin @ c:irua:183618 Serial 6871  
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Cordier, P.; Demouchy, S.; Bollinger, C.; Gasc, J.; Mussi, A.; Schryvers, D.; Idrissi, H. doi  openurl
  Title Research data supporting for Stress-induced amorphization triggers deformation in the lithospheric mantle Type Dataset
  Year (up) 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180668 Serial 6881  
Permanent link to this record
 

 
Author Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
  Year (up) 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue Pages 113191  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600003 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 15 Open Access OpenAccess  
  Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174551 Serial 6660  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year (up) 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Liu, P.; Arslan Irmak, E.; De Backer, A.; De wael, A.; Lobato, I.; Béché, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Three-dimensional atomic structure of supported Au nanoparticles at high temperature Type A1 Journal article
  Year (up) 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well known that the activity of Au NPs depends on their size and surface structure, their three-dimensional (3D) structure at the atomic scale has not been completely characterized as a function of temperature. In this paper, we overcome the limitations of conventional electron tomography by combining atom counting applied to aberration-corrected scanning transmission electron microscopy images and molecular dynamics relaxation. In this manner, we are able to perform an atomic resolution 3D investigation of supported Au NPs. Our results enable us to characterize the 3D equilibrium structure of single NPs as a function of temperature. Moreover, the dynamic 3D structural evolution of the NPs at high temperatures, including surface layer jumping and crystalline transformations, has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612999200029 Publication Date 2020-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A. D. w. and A. D. B. and project funding G.0267.18N.; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:174858 Serial 6665  
Permanent link to this record
 

 
Author Li, C.; Tardajos, A.P.; Wang, D.; Choukroun, D.; Van Daele, K.; Breugelmans, T.; Bals, S. url  doi
openurl 
  Title A simple method to clean ligand contamination on TEM grids Type A1 Journal article
  Year (up) 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue Pages 113195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Colloidal nanoparticles (NPs) including nanowires and nanosheets made by chemical methods involve many organic ligands. When the structure of NPs is investigated via transmission electron microscopy (TEM), the organic ligands act as a source for e-beam induced deposition and this causes substantial build-up of carbon layers in the investigated areas, which is typically referred to as “contamination” in the eld of electron mi- croscopy. This contamination is often more severe for scanning TEM, a technique that is based on a focused electron beam and hence higher electron dose rate. In this paper, we report a simple and effective method to clean drop-cast TEM grids that contain NPs with ligands. Using a combination of activated carbon and ethanol, this method effectively reduces the amount of ligands on TEM grids, and therefore greatly improves the quality of electron microscopy images and subsequent analytical measurements. This ef cient and facile method can be helpful during electron microscopy investigation of different kinds of nanomaterials that suffer from ligand- induced contamination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access OpenAccess  
  Notes This research was funded by the University Antwerp GOA project (ID 33928). DW acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174947 Serial 6666  
Permanent link to this record
 

 
Author Kleshch, V.I.; Porshyn, V.; Orekhov, A.S.; Orekhov, A.S.; Lützenkirchen-Hecht, D.; Obraztsov, A.N. pdf  url
doi  openurl
  Title Carbon single-electron point source controlled by Coulomb blockade Type A1 Journal article
  Year (up) 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 154-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Coulomb blockade effect is commonly used in solid state electronics for the control of electron flow

at the single-particle level. Potentially, it allows the creation of single-electron point sources demanded

for prospective electron microscopy instruments and other vacuum electronics devices. Here we realize

this potential via creation of a stable point electron source composed of a carbon nanowire electrically

coupled to a diamond nanotip by a tunnel junction. Using energy spectroscopy analysis, we characterize

the electrons liberated from the nanometer scale carbon heterostructures in time and energy domains.

Our experimental results demonstrate perfect agreement with theory prediction of Coulomb oscillations

of the Fermi level in the nanowire and allow to determine the mechanisms of their suppression.

Persistence of the oscillations at room temperature, high intensity field emission with currents up to

1 mA, and other characteristics of our emitters are very promising for practical realization of coherent

single-electron guns.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500018 Publication Date 2020-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes The work was supported by Russian Science Foundation (Project No. 19-72-10067). Approved Most recent IF: 6.337  
  Call Number EMAT @ emat @c:irua:175013 Serial 6670  
Permanent link to this record
 

 
Author Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W. url  doi
openurl 
  Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
  Year (up) 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue Pages acsnano.0c09746  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634569100101 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 10 Open Access OpenAccess  
  Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:175872 Serial 6673  
Permanent link to this record
 

 
Author De Meyer, R.; Albrecht, W.; Bals, S. pdf  url
doi  openurl
  Title Effectiveness of reducing the influence of CTAB at the surface of metal nanoparticles during in situ heating studies by TEM Type A1 Journal article
  Year (up) 2021 Publication Micron Abbreviated Journal Micron  
  Volume 144 Issue Pages 103036  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In situ TEM is a valuable technique to offer novel insights in the behavior of nanomaterials under various conditions. However, interpretation of in situ experiments is not straightforward since the electron beam can impact the outcome of such measurements. For example, ligands surrounding metal nanoparticles transform into a protective carbon layer upon electron beam irradiation and may impact the apparent thermal stability during in situ heating experiments. In this work, we explore the effect of different treatments typically proposed to remove such ligands. We found that plasma treatment prior to heating experiments for Au nanorods and nanostars increased the apparent thermal stability of the nanoparticles, while an activated carbon treatment resulted in a decrease of the observed thermal stability. Treatment with HCl barely changed the experimental outcome. These results demonstrate the importance of carefully selecting pre-treatments procedures during in situ heating experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632282600002 Publication Date 2021-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.98 Times cited Open Access OpenAccess  
  Notes H2020; European Research Council; This work was supported by the European Union’s Horizon 2020 research and innovation program [grant agreement No 823717 (ESTEEM3) and No 815128 (REALNANO)]; We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CICbiomaGUNE, Spain for providing the Au nanoparticles.; sygma; esteem3jra; esteem3reported Approved Most recent IF: 1.98  
  Call Number EMAT @ emat @c:irua:175874 Serial 6677  
Permanent link to this record
 

 
Author Geerts, L.; Geerts-Claes, H.; Skorikov, A.; Vermeersch, J.; Vanbutsele, G.; Galvita, V.; Constales, D.; Chandran, C.V.; Radhakrishnan, S.; Seo, J.W.; Breynaert, E.; Bals, S.; Sree, S.P.; Martens, J.A. url  doi
openurl 
  Title Spherical core–shell alumina support particles for model platinum catalysts Type A1 Journal article
  Year (up) 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 7 Pages 4221-4232  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract γ- and δ-alumina are popular catalyst support materials. Using a hydrothermal synthesis method starting from aluminum nitrate and urea in diluted solution, spherical core–shell particles with a uniform particle size of about 1 μm were synthesized. Upon calcination at 1000 °C, the particles adopted a core–shell structure with a γ-alumina core and δ-alumina shell as evidenced by 2D and 3D electron microscopy and<sup>27</sup>Al magic angle spinning nuclear magnetic resonance spectroscopy. The spherical alumina particles were loaded with Pt nanoparticles with an average size below 1 nm using the strong electrostatic adsorption method. Electron microscopy and energy dispersive X-ray spectroscopy revealed a homogeneous platinum dispersion over the alumina surface. These platinum loaded alumina spheres were used as a model catalyst for bifunctional catalysis. Physical mixtures of Pt/alumina spheres and spherical zeolite particles are equivalent to catalysts with platinum deposited on the zeolite itself facilitating the investigation of the catalyst components individually. The spherical alumina particles are very convenient supports for obtaining a homogeneous distribution of highly dispersed platinum nanoparticles. Obtaining such a small Pt particle size is challenging on other support materials such as zeolites. The here reported and well-characterized Pt/alumina spheres can be combined with any zeolite and used as a bifunctional model catalyst. This is an interesting strategy for the examination of the acid catalytic function without the interference of the supported platinum metal on the investigated acid material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621767000026 Publication Date 2021-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 3 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0A5417N G038116N ; Vlaamse regering, Methusalem ; Hercules Foundation, AKUL/13/19 ; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:176021 Serial 6679  
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization Type A1 Journal article
  Year (up) 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 551-559  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The flexoelectric and electronic properties of zig-zag graphene nanoribbons are explored under mechanical bending using state of the art first principles calculations. A linear dependence of the bending induced out of plane polarization on the applied strain gradient is found. The inferior flexoelectric properties of graphene nanoribbons can be improved by more than two orders of magnitude by hydrogen and fluorine functionalization (CH and CF nanoribbons). A large out of plane flexoelectric effect is predicted for CF nanoribbons. The origin of this enhancement lies in the electro-negativity difference between carbon and fluorine atoms, which breaks the out of plane charge symmetry even for a small strain gradient. The flexoelectric effect can be further improved by co-functionalization with hydrogen and fluorine (CHF Janus-type nanoribbon), where a spontaneous out of plane dipole moment is formed even for flat nanoribbons. We also find that bending can control the charge localization of valence band maxima and therefore enables the tuning of the hole effective masses and band gaps. These results present an important advance towards the understanding of flexoelectric and electronic properties of hydrogen and fluorine functionalized graphene nanoribbons, which can have important implications for flexible electronic applications. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500058 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 11 Open Access OpenAccess  
  Notes ; The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Flemish Science Foundation (FWO-VI). T. P. is supported by a postdoctoral research fellowship from BOF-UAntwerpen. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:175014 Serial 6700  
Permanent link to this record
 

 
Author Sanchis-Gual, R.; Susic, I.; Torres-Cavanillas, R.; Arenas-Esteban, D.; Bals, S.; Mallah, T.; Coronado-Puchau, M.; Coronado, E. url  doi
openurl 
  Title The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles Type A1 Journal article
  Year (up) 2021 Publication Chemical Communications Abbreviated Journal Chem Commun  
  Volume 57 Issue 15 Pages 1903-1906  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620719300011 Publication Date 2021-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 5 Open Access OpenAccess  
  Notes European Commission, COST Action MOLSPIN CA15128 ERC Advanced Grant Mol-2D 788222 ERC Consolidator Grant REALNANO 815128 Grant Agreement No. 731019 (EUSMI) ; Ministry of Education and Science of the Russian Federation, No. 14.W03.31.0001 ; Ministerio de Ciencia, Innovación y Universidades, Maria de Maeztu CEX2019-000919-M Project MAT2017-89993-R ; Generalitat Valenciana, PROMETEO/2017/066 iDiFEDER/2018/061 ; sygma; Approved Most recent IF: 6.319  
  Call Number EMAT @ emat @c:irua:176542 Serial 6702  
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of defects at Σ3 grain boundaries in CuGaSe2 Type A1 Journal article
  Year (up) 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume Issue Pages 114263  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract We present a first-principles computational study of cation–Se 3 (112) grain boundaries in CuGaSe. We discuss the structure of these grain boundaries, as well as the effect of native defects and Na impurities on their electronic properties. The formation energies show that the defects will tend to form preferentially at the grain boundaries, rather than in the grain interiors. We find that in Ga-rich growth conditions Cu vacancies as well as Ga at Cu and Cu at Ga antisites are mainly responsible for having the equilibrium Fermi level pinned toward the middle of the gap, resulting in carrier depletion. The Na at Cu impurity in its +1 charge state contributes to this. In Ga-poor growth conditions, on the other hand, the formation energies of Cu vacancies and Ga at Cu antisites are comparatively too high for any significant influence on carrier density or on the equilibrium Fermi level position. Thus, under these conditions, the Cu at Ga antisites give rise to a -type grain boundary. Also, their formation energy is lower than the formation energy of Na at Cu impurities. Thus, the latter will fail to act as a hole barrier preventing recombination at the grain boundary, in contrast to what occurs in CuInSe grain boundaries. We also discuss the effect of the defects on the electronic properties of bulk CuGaSe, which we assume reflect the properties of the grain interiors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652668500013 Publication Date 2021-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access OpenAccess  
  Notes Fwo; We acknowledge the financial support of FWO-Vlaanderen, Belgium through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.554  
  Call Number EMAT @ emat @c:irua:176544 Serial 6703  
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J. pdf  url
doi  openurl
  Title The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
  Year (up) 2021 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 219 Issue Pages 110824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000591683500002 Publication Date 2020-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited Open Access OpenAccess  
  Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved Most recent IF: 4.784  
  Call Number EMAT @ emat @c:irua:174337 Serial 6706  
Permanent link to this record
 

 
Author Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am. pdf  url
doi  openurl
  Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
  Year (up) 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 329 Issue Pages 129035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612060700009 Publication Date 2020-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:176123 Serial 6707  
Permanent link to this record
 

 
Author Lin, A.; Razzokov, J.; Verswyvel, H.; Privat-Maldonado, A.; De Backer, J.; Yusupov, M.; Cardenas De La Hoz, E.; Ponsaerts, P.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma Type A1 Journal article
  Year (up) 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 3 Pages 579  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Non-thermal plasma (NTP) therapy has been emerging as a promising cancer treatment strategy, and recently, its ability to locally induce immunogenic cancer cell death is being unraveled. We hypothesized that the chemical species produced by NTP reduce immunosuppressive surface proteins and checkpoints that are overexpressed on cancerous cells. Here, 3D in vitro tumor models, an in vivo mouse model, and molecular dynamics simulations are used to investigate the effect of NTP on CD47, a key innate immune checkpoint. CD47 is immediately modulated after NTP treatment and simulations reveal the potential oxidized salt-bridges responsible for conformational changes. Umbrella sampling simulations of CD47 with its receptor, signal-regulatory protein alpha (SIRPα), demonstrate that the induced-conformational changes reduce its binding affinity. Taken together, this work provides new insight into fundamental, chemical NTP-cancer cell interaction mechanisms and a previously overlooked advantage of present NTP cancer therapy: reducing immunosuppressive signals on the surface of cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614960600001 Publication Date 2021-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes We thank Erik Fransen (University of Antwerp; Antwerp, Belgium) for his help and guidance on the statistical analysis. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:176455 Serial 6709  
Permanent link to this record
 

 
Author Ejsmont, A.; Andreo, J.; Lanza, A.; Galarda, A.; Macreadie, L.; Wuttke, S.; Canossa, S.; Ploetz, E.; Goscianska, J. pdf  url
doi  openurl
  Title Applications of reticular diversity in metal-organic frameworks : an ever-evolving state of the art Type A1 Journal article
  Year (up) 2021 Publication Coordination Chemistry Reviews Abbreviated Journal Coordin Chem Rev  
  Volume 430 Issue Pages 213655  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) are exciting materials due to their extensive applicability in a multitude of modern technological fields. Their most prominent characteristic and primary origin of their widespread success is the exceptional variety of their structures, which we termed 'reticular diversity'. Naturally, the ever-emerging applications of MOFs made it increasingly common that researchers from various areas delve into reticular chemistry to overcome their scientific challenges. This confers a crucial role to comprehensive overviews capable of providing newcomers with the knowledge of the state of the art, as well as with the key physics and chemistry considerations needed to design MOFs for a specific application. In this review, we commit to this purpose by outlining the fundamental understanding needed to carefully navigate MOFs' reticular diversity in their main fields of application, namely hostguest chemistry, chemical sensing, electronics, photophysics, and catalysis. Such knowledge and a meticulous, open-minded approach to the design of MOFs paves the way for their most innovative and successful applications, and for the global advancement of the research areas they are employed in. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000615299000008 Publication Date 2020-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-8545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.324 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.324  
  Call Number UA @ admin @ c:irua:176731 Serial 6715  
Permanent link to this record
 

 
Author Ding, L.; Zhao, L.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H. pdf  url
doi  openurl
  Title Atomic-scale investigation of the heterogeneous precipitation in the E (Al₁₈Mg₃Cr₂) dispersoid of 7075 aluminum alloy Type A1 Journal article
  Year (up) 2021 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 851 Issue Pages 156890  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The heterogeneous precipitation of the eta (MgZn2) phase on the E (Al18Mg3Cr2) dispersoids of the 7075 aluminum alloy was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX). It is found that coarse B particles are heterogeneously precipitated at the E particle interface after water quenching and isothermal aging at 120 degrees C. The incoherent E/Al interface is responsible for the high tendency of heterogeneous precipitation of the B phase. Two different orientation relationships (ORs) between the eta, E and Al matrix are identified: OR1 [2 (11) over bar0](eta)[011](E)//[(1) over bar 12](Al), (01 (1) over bar0)(eta)//(13 (3) over bar)(E)//(201)(Al), OR2 [(1) over bar 12](E)//[0001](eta)//[011](Al), (01 (1) over bar0 )(eta)//(220)(E)//(34 (4) over bar)(Al). The eta phase is preferential to nucleate along the {111}(E) or the {220}(E) planes, depending on its OR. The heterogeneous nucleation of B phase on the E particle could stabilize the E/Al interface by introducing a coherent E/eta interface, which increases the drive force of heterogeneous precipitation. The reorientation of eta phase and mutual diffusion of solute atoms could assist the coherency of the E/eta interface. The present results suggest that increasing the coherency of the E/Al interface is a promising method to suppress the heterogeneous precipitation of the eta phase. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579868900103 Publication Date 2020-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.133  
  Call Number UA @ admin @ c:irua:173503 Serial 6717  
Permanent link to this record
 

 
Author Zhao, H.; Li, C.-F.; Yong, X.; Kumar, P.; Palma, B.; Hu, Z.-Y.; Van Tendeloo, G.; Siahrostami, S.; Larter, S.; Zheng, D.; Wang, S.; Chen, Z.; Kibria, M.G.; Hu, J. url  doi
openurl 
  Title Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction Type A1 Journal article
  Year (up) 2021 Publication iScience Abbreviated Journal  
  Volume 24 Issue 2 Pages 102109  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Photocatalytic transformation of biomass into value-added chemicals coupled with co-production of hydrogen provides an explicit route to trap sunlight into the chemical bonds. Here, we demonstrate a rational design of Zn1-xCdxS solidsolution homojunction photocatalyst with a pseudo-periodic cubic zinc blende (ZB) and hexagonal wurtzite (WZ) structure for efficient glucose conversion to simultaneously produce hydrogen and lactic acid. The optimized Zn0.6Cd0.4S catalyst consists of a twinning superlattice, has a tuned bandgap, and displays excellent efficiency with respect to hydrogen generation (690 +/- 27.6 mu mol.h(-1).g(cat).(-1)), glucose conversion (similar to 90%), and lactic acid selectivity (similar to 87%) without any co-catalyst under visible light irradiation. The periodic WZ/ZB phase in twinning superlattice facilitates better charge separation, while superoxide radical (center dot O-2(-)) and photogenerated holes drive the glucose transformation and water oxidation reactions, respectively. This work demonstrates that rational photocatalyst design could realize an efficient and concomitant production of hydrogen and value-added chemicals from glucose photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621266700080 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-0042 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176744 Serial 6720  
Permanent link to this record
 

 
Author Samaee, V.; Dupraz, M.; Pardoen, T.; VAn Swygenhoven, H.; Schryvers, D.; Idrissi, H. url  doi
openurl 
  Title Deciphering the interactions between single arm dislocation sources and coherent twin boundary in nickel bi-crystal Type A1 Journal article
  Year (up) 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 962  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The introduction of a well-controlled population of coherent twin boundaries (CTBs) is an attractive route to improve the strength ductility product in face centered cubic (FCC) metals. However, the elementary mechanisms controlling the interaction between single arm dislocation sources (SASs), often present in nanotwinned FCC metals, and CTB are still not well understood. Here, quantitative in-situ transmission electron microscopy (TEM) observations of these mechanisms under tensile loading are performed on submicron Ni bi-crystal. We report that the absorption of curved screw dislocations at the CTB leads to the formation of constriction nodes connecting pairs of twinning dislocations at the CTB plane in agreement with large scale 3D atomistic simulations. The coordinated motion of the twinning dislocation pairs due to the presence of the nodes leads to a unique CTB sliding mechanism, which plays an important role in initiating the fracture process at a CTB ledge. TEM observations of the interactions between non-screw dislocations and the CTB highlight the importance of the synergy between the repulsive force of the CTB and the back stress from SASs when the interactions occur in small volumes. Interactions of dislocations with coherent twin boundaries contribute to strength and ductility in metals, but investigating the interaction mechanisms is challenging. Here the authors unravel these mechanisms through quantitative in-situ transmission electron microscopy observations in nickel bi-crystal samples under tensile loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620142700024 Publication Date 2021-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:176680 Serial 6722  
Permanent link to this record
 

 
Author Chen, L.; Elibol, K.; Cai, H.; Jiang, C.; Shi, W.; Chen, C.; Wang, H.S.; Wang, X.; Mu, X.; Li, C.; Watanabe, K.; Taniguchi, T.; Guo, Y.; Meyer, J.C.; Wang, H. pdf  url
doi  openurl
  Title Direct observation of layer-stacking and oriented wrinkles in multilayer hexagonal boron nitride Type A1 Journal article
  Year (up) 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 2 Pages 024001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hexagonal boron nitride (h-BN) has long been recognized as an ideal substrate for electronic devices due to its dangling-bond-free surface, insulating nature and thermal/chemical stability. These properties of the h-BN multilayer are mainly determined by its lattice structure. Therefore, to analyse the lattice structure and orientation of h-BN crystals becomes important. Here, the stacking order and wrinkles of h-BN are investigated by transmission electron microscopy. It is experimentally confirmed that the layers in the h-BN flakes are arranged in the AA ' stacking. The wrinkles in a form of threefold network throughout the h-BN crystal are oriented along the armchair direction, and their formation mechanism was further explored by molecular dynamics simulations. Our findings provide a deep insight about the microstructure of h-BN and shed light on the structural design/electronic modulations of two-dimensional crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000605937500001 Publication Date 2020-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:174950 Serial 6723  
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries Type A1 Journal article
  Year (up) 2021 Publication Energy technology Abbreviated Journal  
  Volume 9 Issue 4 Pages 2100028  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surface coating is a crucial method to mitigate the aging problem of high-Ni cathode active materials (CAMs). By avoiding the direct contact of the CAM and the electrolyte, side reactions are hindered. Commonly used techniques like wet or ALD coating are time consuming and costly. Therefore, a more cost-effective coating technique is desirable. Herein, a facile and fast dry powder coating process for CAMs with nanostructured fumed metal oxides are reported. As the model case, the coating of high-Ni NMC (LiNi0.7Mn0.15Co0.15O2) by nanostructured fumed Al2O3 is investigated. A high coverage of the CAM surface with an almost continuous coating layer is achieved, still showing some porosity. Electrochemical evaluation shows a significant increase in capacity retention, cycle life and rate performance of the coated NMC material. The coating layer protects the surface of the CAM successfully and prevents side reactions, resulting in reduced solid electrolyte interface (SEI) formation and charge transfer impedance during cycling. A mechanism on how the coating layer enhances the cycling performance is hypothesized. The stable coating layer effectively prevents crack formation and particle disintegration of the NMC. In depth analysis indicates partial formation of LixAl2O3/LiAlO2 in the coating layer during cycling, enhancing lithium ion diffusivity and thus, also the rate performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621000700001 Publication Date 2021-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 25 Open Access OpenAccess  
  Notes The authors would like to thank Erik Peldszus and Steve Rienecker for the support with scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Funding from the Flemish Research Fund (FWO) project G0F1320N is acknowledged.; Open access funding enabled and organized by Projekt DEAL. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176670 Serial 6724  
Permanent link to this record
 

 
Author Greboval, C.; Chu, A.; Vale Magalhaes, D.; Ramade, J.; Qu, J.; Rastogi, P.; Khalili, A.; Chee, S.-S.; Aubin, H.; Vincent, G.; Bals, S.; Delerue, C.; Lhuillier, E. pdf  url
doi  openurl
  Title Ferroelectric gating of narrow band-gap nanocrystal arrays with enhanced light-matter coupling Type A1 Journal article
  Year (up) 2021 Publication Acs Photonics Abbreviated Journal Acs Photonics  
  Volume 8 Issue 1 Pages 259-268  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract As narrow band gap nanocrystals become a considerable building block for the design of infrared sensors, device design needs to match their actual operating conditions. While in the near and shortwave infrared, room-temperature operation has been demonstrated, longer wavelengths still require low-temperature operations and thus specific design. Here, we discuss how field-effect transistors (FETs) can be compatible with low-temperature detection. To reach this goal, two key developments are proposed. First, we report the gating of nanocrystal films from SrTiO3 which leads to high gate capacitance with leakage and breakdown free operation in the 4-100 K range. Second, we demonstrate that this FET is compatible with a plasmonic resonator whose role is to achieve strong light absorption from a thin film used as the channel of the FET. Combining three resonances, broadband absorption from 1.5 to 3 mu m reaching 30% is demonstrated. Finally, combining gate and enhanced light-matter coupling, we show that detectivity can be as high as 10(12) Jones for a device presenting a 3 mu m cutoff wavelength and 30 K operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612567900028 Publication Date 2021-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.756 Times cited 21 Open Access OpenAccess  
  Notes The project is supported by ERC Starting Grant BlackQD (Grant No. 756225) and Consolidator Grant Realnano (815128). This project has received funding from the European Commission (Grant 731019, EUSMI). We acknowledge the use of clean-room facilities from the “Centrale de ProximitéParis-Centre”. This work has been supported by the Region Ile-de-France in the framework of DIM Nano-K (Grant dopQD). This work was supported by French state funds managed by the ANR within the Investissements d’Avenir programme under Reference ANR-11-IDEX-0004-02 and, more specifically, within the framework of the Cluster of Excellence MATISSE and also by the Grant IPER-Nano2 (ANR-18CE30-0023-01), Copin (ANR-19-CE24-0022), Frontal (ANR-19-CE09-0017), Graskop (ANR-19-CE09-0026), and NITQuantum. J.Q. thanks Chinese Scholarship Council for Ph.D. Grant, while A.C. thanks Agence Innovation Defense.; sygma Approved Most recent IF: 6.756  
  Call Number UA @ admin @ c:irua:176708 Serial 6725  
Permanent link to this record
 

 
Author Imran, M.; Peng, L.; Pianetti, A.; Pinchetti, V.; Ramade, J.; Zito, J.; Di Stasio, F.; Buha, J.; Toso, S.; Song, J.; Infante, I.; Bals, S.; Brovelli, S.; Manna, L. url  doi
openurl 
  Title Halide perovskite-lead chalcohalide nanocrystal heterostructures Type A1 Journal article
  Year (up) 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 3 Pages 1435-1446  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the synthesis of colloidal CsPbX3-Pb4S3Br2 (X = Cl, Br, I) nanocrystal heterostructures, providing an example of a sharp and atomically resolved epitaxial interface between a metal halide perovskite and a non-perovskite lattice. The CsPbBr3-Pb4S3Br2 nanocrystals are prepared by a two-step direct synthesis using preformed subnanometer CsPbBr3 clusters. Density functional theory calculations indicate the creation of a quasi-type II alignment at the heterointerface as well as the formation of localized trap states, promoting ultrafast separation of photogenerated excitons and carrier trapping, as confirmed by spectroscopic experiments. Postsynthesis reaction with either Cl- or I- ions delivers the corresponding CsPbCI3-Pb4S3Br2 and CsPbI3-Pb4S3Br2 heterostructures, thus enabling anion exchange only in the perovskite domain. An increased structural rigidity is conferred to the perovskite lattice when it is interfaced with the chalcohalide lattice. This is attested by the improved stability of the metastable gamma phase (or “black” phase) of CsPbI3 in the CsPbI3-Pb4S3Br2 heterostructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614064400024 Publication Date 2021-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 54 Open Access OpenAccess  
  Notes This work was performed on the Dutch national e-infrastructure with the support of SURF Cooperative. L.P. and J.S. are thankful for the support by the National Key R&D Program of China (2018YFC0910600) and the National Natural Science Foundation of China (61775145). F.D.S. and S.B. acknowledge support by the European Research Council via the ERC-StG “NANOLED” (851794) and the ERC-Cog “REALNANO” (815128). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme through Grant Agreement No. 731019 (EUSMI). S.B., A.P., and V.P. gratefully acknowledge the financial support from the Italian Ministry of University and Research (MIUR) through grant “Dipartimenti di Eccellenza2017 Materials For Energy”.; sygma Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:176584 Serial 6726  
Permanent link to this record
 

 
Author Volykhov, A.A.; Frolov, A.S.; Neudachina, V.S.; Vladimirova, N.V.; Gerber, E.; Callaert, C.; Hadermann, J.; Khmelevsky, N.O.; Knop-Gericke, A.; Sanchez-Barriga, J.; Yashina, L.V. pdf  doi
openurl 
  Title Impact of ordering on the reactivity of mixed crystals of topological insulators with anion substitution: Bi₂SeTe₂ and Sb₂SeTe₂ Type A1 Journal article
  Year (up) 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 541 Issue Pages 148490  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional topological insulators are exotic materials with unique properties. Tetradymite type binary chalcogenides of bismuth and antimony, as well as their mixed crystals, belong to prototypical TIs. Potential device applications of these materials require in-depth knowledge of their stability in the ambient atmosphere and other media maintained during their processing. Here we investigated the reactivity of mixed crystals with anion substitution, Bi-2(Se1-xTex)(3) and Sb2(Se1-xTex)(3), towards molecular oxygen using both in situ and ex situ X-ray photoelectron spectroscopy. The results indicate that, in contrast to cation substitution, partial substitution of tellurium by selenium atoms leads to anomalously high surface reactivity, which even exceeds that of the most reactive binary constituent. We attribute this effect to anion ordering that essentially modifies the bond geometry, especially the respective bond angles as modeled by DFT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608492900003 Publication Date 2020-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:176067 Serial 6728  
Permanent link to this record
 

 
Author Kashiwar, A.; Hahn, H.; Kubel, C. url  doi
openurl 
  Title In situ TEM observation of cooperative grain rotations and the Bauschinger effect in nanocrystalline palladium Type A1 Journal article
  Year (up) 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 2 Pages 432  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report on cooperative grain rotation accompanied by a strong Bauschinger effect in nanocrystalline (nc) palladium thin film. A thin film of nc Pd was subjected to cyclic loading-unloading using in situ TEM nanomechanics, and the evolving microstructural characteristics were investigated with ADF-STEM imaging and quantitative ACOM-STEM analysis. ADF-STEM imaging revealed a partially reversible rotation of nanosized grains with a strong out-of-plane component during cyclic loading-unloading experiments. Sets of neighboring grains were shown to rotate cooperatively, one after the other, with increasing/decreasing strain. ACOM-STEM in conjunction with these experiments provided information on the crystallographic orientation of the rotating grains at different strain levels. Local Nye tensor analysis showed significantly different geometrically necessary dislocation (GND) density evolution within grains in close proximity, confirming a locally heterogeneous deformation response. The GND density analysis revealed the formation of dislocation pile-ups at grain boundaries (GBs), indicating the generation of back stresses during unloading. A statistical analysis of the orientation changes of individual grains showed the rotation of most grains without global texture development, which fits to both dislocation- and GB sliding-based mechanisms. Overall, our quantitative in situ experimental approach explores the roles of these different deformation mechanisms operating in nanocrystalline metals during cyclic loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000622951500001 Publication Date 2021-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.553  
  Call Number UA @ admin @ c:irua:176770 Serial 6729  
Permanent link to this record
 

 
Author Li, C.-F.; Zhao, K.; Liao, X.; Hu, Z.-Y.; Zhang, L.; Zhao, Y.; Mu, S.; Li, Y.; Li, Y.; Van Tendeloo, G.; Sun, C. pdf  url
doi  openurl
  Title Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes Type A1 Journal article
  Year (up) 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 36 Issue Pages 115-122  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irreversible release of the lattice oxygen in layered cathodes is one of the major degradation mechanisms of lithium ion batteries, which accounts for a number of battery failures including the voltage/capacity fade, loss of cation ions and detachment of the primary particles, etc. Oxygen release is generally attributed to the stepwise thermodynamic controlled phase transitions from the layered to spinel and rock salt phases. Here, we report a strong kinetic effect from the mobility of cation ions, whose migration barrier can be significantly modulated by the phase epitaxy at the degrading interface. It ends up with a clear oxygen release heterogeneity and completely different reaction pathways between the thin and thick areas, as well as the interparticle valence boundaries, both of which widely exist in the mainstream cathode design with the secondary agglomerates. This work unveils the origin of the heterogenous oxygen release in the layered cathodes. It also sheds light on the rational design of cathode materials with enhanced oxygen stability by suppressing the cation migration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620584300009 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176654 Serial 6730  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: