toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume (down) 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume (down) 337 Issue Pages 129819  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386500001 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:176353 Serial 7762  
Permanent link to this record
 

 
Author Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume (down) 337 Issue Pages 125364  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694862500007 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:178752 Serial 8243  
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M. pdf  doi
openurl 
  Title Tunable effective masses of magneto-excitons in two-dimensional materials Type A1 Journal article
  Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume (down) 334 Issue Pages 114371  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitonic properties of Ge2H2 and Sn2H2, also known as Xanes, are investigated within the effective mass model. A perpendicularly applied magnetic field induces a negative shift on the exciton center-of-mass kinetic energy that is approximately quadratic with its momentum, thus pushing down the exciton dispersion curve and flattening it. This can be interpreted as an increase in the effective mass of the magneto-exciton, tunable by the field intensity. Our results show that in low effective mass two-dimensional semiconductors, such as Xanes, the applied magnetic field allows one to tune the magneto-exciton effective mass over a wide range of values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670329600003 Publication Date 2021-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.554 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.554  
  Call Number UA @ admin @ c:irua:179762 Serial 7037  
Permanent link to this record
 

 
Author Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am. pdf  url
doi  openurl
  Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume (down) 329 Issue Pages 129035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612060700009 Publication Date 2020-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:176123 Serial 6707  
Permanent link to this record
 

 
Author Azadi, H.; Moghaddam, S.M.; Burkart, S.; Mahmoudi, H.; Van Passel, S.; Kurban, A.; Lopez-Carr, D. pdf  doi
openurl 
  Title Rethinking resilient agriculture : from Climate-Smart Agriculture to Vulnerable-Smart Agriculture Type A1 Journal article
  Year 2021 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume (down) 319 Issue Pages 128602  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Climate-Smart Agriculture (CSA) is seeking to overcome the food security problem and develop rural livelihoods while minimizing negative impacts on the environment. However, when such synergies exist, the situation of small-scale farmers is often overlooked, and they are unable to implement new practices and technologies. Therefore, the main aim of this study is to improve CSA by adding the neglected but very important element “small-scale farmer”, and introduce Vulnerable-Smart Agriculture (VSA) as a complete version of CSA. VSA indicates, based on the results of this study, that none of the decisions made by policymakers can be realistic and functional as long as the voice of the farmers influenced by their decisions is not heard. Therefore, to identify different levels for possible interventions and develop VSA monitoring indicators, a new conceptual framework needs to be developed. This study proposed such a framework consisting of five elements: prediction of critical incidents by farmers, measuring the consequences of incidents, identifying farmers' coping strategies, assessing farmers' livelihood capital when facing an incident, and adapting to climate incidents. The primary focus of this study is on farmers' learning and operational preparation to deal with tension and disasters at farm level. Understanding the implications of threats from climate change and the recognizing of coping mechanisms will contribute to an increase in understanding sustainable management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728681500005 Publication Date 2021-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.715 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.715  
  Call Number UA @ admin @ c:irua:184869 Serial 6942  
Permanent link to this record
 

 
Author Alloul, A.; Muys, M.; Hertoghs, N.; Kerckhof, F.-M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume (down) 319 Issue Pages 124192  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aerobic heterotrophic bacteria (AHB) and purple non-sulfur bacteria (PNSB) are typically explored as two separate types of microbial protein, yet their properties as respectively a bulk and added-value feed ingredient make them appealing for combined use. The feasibility of cocultivation in a sequential photo- and chemotrophic approach was investigated. First, mapping the chemotrophic growth kinetics for four Rhodobacter, Rhodopseudomonas and Rhodospirillum species on different carbon sources showed a preference for fructose (µmax 2.4–3.9 d−1 28 °C; protein 36–59%DW). Secondly, a continuous photobioreactor inoculated with Rhodobacter capsulatus (VFA as C-source) delivered the starter culture for an aerobic batch reactor (fructose as C-source). This two-stage system showed an improved nutritional quality compared to AHB production: higher protein content (45–71%DW), more attractive amino/fatty acid profile and contained up to 10% PNSB. The findings strengthen protein production with cocultures and might enable the implementation of the technology for resource recovery on streams such as wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613136600013 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:171766 Serial 7677  
Permanent link to this record
 

 
Author Buyle, M.; Maes, B.; Van Passel, S.; Boonen, K.; Vercalsteren, A.; Audenaert, A. pdf  doi
openurl 
  Title Ex-ante LCA of emerging carbon steel slag treatment technologies : fast forwarding lab observations to industrial-scale production Type A1 Journal article
  Year 2021 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume (down) 313 Issue Pages 127921  
  Keywords A1 Journal article; Engineering sciences. Technology; Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract The valuable properties of carbon steel slag are currently underexploited. To date, research mainly focusses on valorising a single property of the slag. In this study an ex-ante life cycle assessment (LCA) was applied to evaluate the environmental profile of a novel technological pathway aimed at the extraction of chromium from carbon steel slag in combination with high quality valorisation of the residual matrix material. A comparison with current practice was made, not only by calculating the environmental impact of the lab scale observations, but more importantly by estimating the impact on an industrial scale. Practical guidance on ex-ante LCA is limited, so this study contributes by incorporating simulations on thermodynamic behaviour, complemented with empirical calculation rules and including information derived from similar technologies to perform the upscaling. These principles of ex-ante LCA were applied to the lab results of two consecutive research iterations. Substantial improvements of the environmental profile were observed: ex-ante results turned out to be a factor 20 lower compared to the results from the lab observations after the first iteration and had decreased by a factor 2 compared to the small pilot scale of the second iteration. All upscaled results are better than those from the worst case reference scenario (landfill). Based on the experience gained after this iterative research cycle, a practical recommendation is that at a low technology readiness level using more simple calculation rules in combination with a flowsheet based on elementary design principles for processes at an industrial scale is a more efficient way of modelling compared to a fully-fledged process design from the start.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000693416000002 Publication Date 2021-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.715 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.715  
  Call Number UA @ admin @ c:irua:179313 Serial 6922  
Permanent link to this record
 

 
Author Golovachev, I.B.; Mychinko, M.Y.; Volkova, N.E.; Gavrilova, L.Y.; Raveau, B.; Maignan, A.; Cherepanov, V.A. pdf  url
doi  openurl
  Title Effect of cobalt content on the properties of quintuple perovskites Sm₂Ba₃Fe₅-xCoxO₁₅-δ Type A1 Journal article
  Year 2021 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem  
  Volume (down) 301 Issue Pages 122324  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quintuple perovskites Sm2Ba3Fe5-xCoxO15-delta = 0.5, 1.0 and 1.5) have been prepared by glycerin-nitrate tech- nique in air. The phase purity was confirmed by XRD. Partial substitution of Co for Fe decreases the oxygen content and thus the mean oxidation state of 3d-metals. It also slightly decreases the thermal expansion coefficient of oxides. Positive value of the Seebeck coefficient confirmed p-type conductivity, though the thermopower decreases as the Co content increases. The temperature dependence of electrical conductivity reveals a maximum at 550-750 degrees C.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000684543700028 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:181656 Serial 6864  
Permanent link to this record
 

 
Author Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R. pdf  url
doi  openurl
  Title Towards harmonization of water quality management : a comparison of chemical drinking water and surface water quality standards around the globe Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume (down) 298 Issue Pages 113447-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract Water quality standards (WQS) set the legal definition for safe and desirable water. WQS impose regulatory concentration limits to act as a jurisdiction-specific legislative risk-management tool. Despite its importance in shaping a universal definition of safe, clean water, little information exists with respect to (dis)similarity of chemical WQS worldwide. Therefore, this paper compares chemical WQS for drinking and surface water matrices in eight jurisdictions representing a global geographic distribution: Australia, Brazil, Canada, China, the European Union, the region of Flanders in Belgium, the United States of America, and South Africa. The World Health Organization's list is used as a reference for drinking water standards. Sørensen–Dice indices (SDI) showed little qualitative similarity in the compounds that are regulated in drinking water (median SDI = 40%) and surface water (median SDI = 33%), indicating that the heterogeneity within a matrix is substantial at the level of the standard. Quantitative similarity for matching standards was higher than the qualitative per Kendall correlation (median = 0.73 and 0.58 for drinking water and surface water respectively), yet variance observed within standards remained inexplicably high for organic compounds. Variations in WQS were more pronounced for organic compounds. Most differences cannot be easily explained from a toxicological or risk-based point-of-view. Historical development, ease of measurement, and (toxicological) knowledge gaps on the risk of a vast number of organic compounds are theorized to be the drivers. Therefore, this study argues for a more tailored, risk-based approach in which standards incorporated into water safety plans are dynamically set for compounds that are persistent and could pose a risk for human health and/or aquatic ecosystems. Global variations in WQS should therefore not necessarily be avoided but rather globally harmonized with enough flexibility to ensure a global, up-to-date definition of safe and desirable water everywhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000700577400005 Publication Date 2021-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180765 Serial 8681  
Permanent link to this record
 

 
Author Yi, Y.; Li, S.; Cui, Z.; Hao, Y.; Zhang, Y.; Wang, L.; Liu, P.; Tu, X.; Xu, X.; Guo, H.; Bogaerts, A. pdf  url
doi  openurl
  Title Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling Type A1 Journal Article;Methane conversion
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume (down) 296 Issue Pages 120384  
  Keywords A1 Journal Article;Methane conversion; Plasma catalysis; Selective oxidation; Methanol synthesis; Plasma chemistry; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The selective oxidation of methane to methanol (SOMTM) by molecular oxygen is a holy grail in catalytic chemistry and remains a challenge in chemical industry. We perform SOMTM in a CH4/O2 plasma, at low temperature and atmospheric pressure, promoted by Ni-based catalysts, reaching 81 % liquid oxygenates selectivity and 50 % CH3OH selectivity, with an excellent catalytic stability. Chemical kinetics modelling shows that CH3OH in the plasma is mainly produced through radical reactions, i.e., CH4 + O(1D) → CH3O + H, fol­lowed by CH3O + H + M→ CH3OH + M and CH3O + HCO → CH3OH + CO. The catalyst characterization shows that the improved production of CH3OH is attributed to abundant chemisorbed oxygen species, originating from highly dispersed NiO phase with strong oxide support interaction with γ-Al2O3, which are capable of promoting CH3OH formation through E-R reactions and activating H2O molecules to facilitate CH3OH desorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706860000003 Publication Date 2021-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access OpenAccess  
  Notes National Natural Science Foundation of China; PetroChina Innovation Foundation; We acknowledge financial support from the PetroChina Innovation Foundation [grant ID: 2018D-5007-0501], the Young Star Project of Dalian Science and Technology Bureau [grant ID: 2019RQ042], the National Natural Science Foundation of China [grant ID: 21503032] and the TOP research project of the Research Fund of the University of Antwerp [grant ID: 32249]. Approved Most recent IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:178816 Serial 6793  
Permanent link to this record
 

 
Author Einhäupl, P.; Van Acker, K.; Peremans, H.; Van Passel, S. pdf  url
doi  openurl
  Title The conceptualization of societal impacts of landfill mining : a system dynamics approach Type A1 Journal article
  Year 2021 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume (down) 296 Issue Pages 126351  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Landfill mining (LFM) refers to the excavation and processing of formerly buried waste streams. It offers significant environmental and societal benefits through the mitigation of greenhouse gas emissions or the reduction of long-term waste management costs. LFM’s profitability, however, is still in question and public investment support might be necessary to fully exploit its potential. To enable decision-makers to identify the best solutions for a landfill site, societal impacts of LFM still have to be investigated. Throughout relevant literature, societal impacts of LFM projects have only selectively been studied and it remains unclear if and which benefits justify policy interventions. This paper firstly provides a comprehensive conceptualization of the societal impact of an LFM project and dives into the underlying societal context of this emerging industry. It disentangles formerly identified burdens and benefits by applying a system dynamics approach to LFM research. Based on this approach, four causal loop diagrams are presented showing how LFM is embedded into its societal context, analyzing the composition of the net societal impact of an LFM project, the mechanisms influencing LFM’s public acceptance, and the dynamics of the market acceptance of LFM products. Key variables and leverage points have been identified, such as (i) technology choices influencing avoided impacts from the mitigations of primary resource consumption, since many societal impacts are closely related to environmental impacts, (ii) a timely and broad stakeholder involvement to prevent project opposition, and (iii) the after-use of the mined landfill, generating a major part of the local and regional societal benefits but also creating potential conflicts between stakeholder interests. Key intradimensional trade-offs and potential conflicts were identified in (i) spatial and (ii) temporal risk distribution, (iii) conflicting societal goals of the after-use such as job creations and recreation, as well as (iv) material and energy recuperation. These findings provide important insights for LFM decision-makers and can help to implement this emerging industry in a sustainable way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672225100099 Publication Date 2021-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.715 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.715  
  Call Number UA @ admin @ c:irua:178793 Serial 6918  
Permanent link to this record
 

 
Author Hendrickx, M.; Tang, Y.; Hunter, E.C.; Battle, P.D.; Hadermann, J. pdf  url
doi  openurl
  Title Structural and magnetic properties of the perovskites A₂LaFe₂SbO₉ (A = Ca, Sr, Ba) Type A1 Journal article
  Year 2021 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem  
  Volume (down) 295 Issue Pages 121914  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of A(2)LaFe(2)SbO(9) (A = Ca, Sr, Ba) perovskites appeared monophasic to X-ray or neutron powder diffraction but a single-crystal study utilising transmission electron microscopy revealed a greater level of complexity. Although local charge balance is maintained, compositional and structural variations are present among and within the submicron-sized crystals. Despite the inhomogeneity, A = Ca is monophasic with a partially-ordered distribution of Fe3+ and Sb5+ cations across two crystallographically-distinct octahedral sites, i.e. Ca2La(Fe1.25Sb0.25)(2d) (Fe0.75Sb0.75)(2c)O-9. For A = Sr or Ba, the inhomogeneities result in differences in the filling patterns of the octahedra and the ordering of the B cations. Particles of A = Sr contain a phase (Fe:Sb similar to 2:1) without B cation ordering and one (Fe:Sb similar to 1:1) with B cation ordering. Monophasic A = Ba lacks long-range cation order although ordered nanodomains are present within the disordered phase. The temperature dependence of the magnetic properties of each sample is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000615711800013 Publication Date 2020-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:176663 Serial 6739  
Permanent link to this record
 

 
Author Firmansyah, I.; Carsjens, G.J.; de Ruijter, F.J.; Zeeman, G.; Spiller, M. url  doi
openurl 
  Title An integrated assessment of environmental, economic, social and technological parameters of source separated and conventional sanitation concepts : a contribution to sustainability analysis Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume (down) 295 Issue Pages 113131  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery and reuse from domestic wastewater has become an important subject for the current development of sanitation technologies and infrastructures. Different technologies are available and combined into sanitation concepts, with different performances. This study provides a methodological approach to evaluate the sustainability of these sanitation concepts with focus on resource recovery and reuse. St. Eustatius, a small tropical island in the Caribbean, was used as a case study for the evaluation. Three source separation-communityon-site and two combined sewerage island-scale concepts were selected and compared in terms of environmental (net energy use, nutrient recovery/reuse, BOD/COD, pathogens, and GHG emission, land use), economic (CAPEX and OPEX), social cultural (acceptance, required competences and education), and technological (flexibility/ adaptability, reliability/continuity of service) indicators. The best performing concept, is the application of Upflow Anaerobic Sludge Bed (UASB) and Trickling Filter (TF) at island level for combined domestic wastewater treatment with subsequent reuse in agriculture. Its overall average normalised score across the four categories (i. e., average of average per category) is about 15% (0.85) higher than the values of the remaining systems and with a score of 0.73 (conventional activated sludge – centralised level), 0.77 (UASB-septic tank (ST)), 0.76 (UASB-TF – community level), and 0.75 (ST – household level). The higher score of the UASB-TF at community level is mainly due to much better performance in the environmental and economic categories. In conclusion, the case study provides a methodological approach that can support urban planning and decision-making in selecting more sustainable sanitation concepts, allowing resource recovery and reuse in small island context or in other contexts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000681105800003 Publication Date 2021-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180488 Serial 7437  
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume (down) 292 Issue Pages 120204  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663216500001 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177075 Serial 7989  
Permanent link to this record
 

 
Author Tschulkow, M.; Compernolle, T.; Van Passel, S. pdf  doi
openurl 
  Title Optimal timing of multiple investment decisions in a wood value chain : a real options approach Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume (down) 290 Issue Pages 112590  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract A new reductive catalytic fractionation biorefinery process (RCF) is currently being developed transforming wood into high-value end-products. RCF is considered to be in the pilot stage with a technology readiness level of 5–6. Apart from the RCF-process characteristics, the economic feasibility also depends on the investment decisions that are made upstream and downstream within the wood value chain, increasing the level of uncertainty. Two investment options within the value chain are considered: an option to invest in harvesting equipment and an option to invest in the RCF. To understand the impact of multiple sources of uncertainty on the decision to invest in an innovative RCF-driven wood value chain, an analytical two-factor real options model is presented, accounting for correlated cost and price uncertainties. Two different scenarios, separated and united investments in harvesting equipment and RCF, are analyzed. In both scenarios, market uncertainty postpones investment in comparison to the traditional NPV approach. When both investments are considered separately, the investment in RCF is expected to be earlier than the investment in harvesting equipment. When both investment decisions are united, the probability of investment increases. The study reveals that RCF has the potential to stimulate investments from different investors, –upstream and midstream–, within the wood value chain. Besides, the introduced real options model proofs its ability to assess the economic feasibility of innovative technologies (e.g RCF) individually or within the value chain, taking into account multiple sources of uncertainty.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000656438000005 Publication Date 2021-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:179487 Serial 6937  
Permanent link to this record
 

 
Author Fu, Y.; Ding, L.; Singleton, M.L.; Idrissi, H.; Hermans, S. pdf  doi
openurl 
  Title Synergistic effects altering reaction pathways : the case of glucose hydrogenation over Fe-Ni catalysts Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume (down) 288 Issue Pages 119997  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon black (CB) supported Ni, Fe, or Fe-Ni alloy catalysts were synthesized by sol-gel to elucidate the reaction pathways over each catalyst, as well as synergistic effects in glucose to sorbitol hydrogenation. The bimetallic materials presented small and alloyed nanoparticles that were richer in reduced metallic sites at the surface than their monometallic counterparts. Glucose isomerization to fructose was favoured over Fe/CB, while glucose hydrogenation to sorbitol is the dominating pathway over Ni/CB catalyst. By contrast, sorbitol production was promoted and undesired isomerization was suppressed when Fe and Ni formed a nanoalloy. In addition, the alloy catalyst presented better stability than the corresponding monometallic catalyst. A comparison with a mechanical mixture of Fe/CB and Ni/CB monometallic catalysts demonstrated the synergy at the nanoscale in the alloy. By comparing different Fe:Ni ratios, the 1:1 formulation was identified as the best compromise to achieve a high activity while maintaining high sorbitol selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632996500002 Publication Date 2021-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177621 Serial 6789  
Permanent link to this record
 

 
Author Bigiani, L.; Barreca, D.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Maccato, C. pdf  url
doi  openurl
  Title Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume (down) 284 Issue Pages 119684  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrolysis of seawater, a significantly more abundant natural reservoir than freshwater, stands as a promising alternative for sustainable hydrogen production, provided that the competitive chloride electro-oxidation is minimized. Herein, we propose an original material combination to selectively trigger oxygen evolution from seawater at expenses of chlorine generation. The target systems, based on MnO2 or Mn2O3 decorated with Fe2O3 or Co3O4, are fabricated by plasma enhanced-chemical vapor deposition of manganese oxides, functionalization with Fe2O3 and Co3O4 by sputtering, and annealing in air/Ar to obtain Mn(IV)/Mn(III) oxides. Among the various options, MnO2 decorated with Co3O4 yields the best performances in alkaline seawater splitting, with an outstanding Tafel slope of approximate to 40 mV x dec(-1) and an overpotential of 450 mV, enabling to rule out chlorine evolution. These attractive performances, resulting from the synergistic contribution of catalytic and electronic effects, open the door to low-cost hydrogen generation from seawater under real-world conditions, paving the way to eventual large-scale applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623591500008 Publication Date 2020-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 67 Open Access OpenAccess  
  Notes The authors thank Padova University (DOR 2017–2020 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), for financial support. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project 'Solarpaint' (University of Antwerp) and from the EU-H2020 programme (grant agreement No. 823717 – ESTEEM3). J.R.M. and T.A. acknowledge Generalitat de Catalunya for financial support through the CERCA Programme, 27 M2E (2017SGR1246) and by ERDEF-MINECO coordinated projects ENE2017-85087-C3 and ENE2016-80788-C5-5-R. Thanks are also due to Proff. Gloria Tabacchi and Ettore Fois (Department of Science and High Technology, Insubria University, Como, Italy) for valuable discussions and support. Dr. Daniele Valbusa, Dr. Gianluca Corrò, Dr. Andrea Gallo and Dr. Dileep Khrishnan are gratefully acknowledged for helpful technical assistance. Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:176718 Serial 6733  
Permanent link to this record
 

 
Author Lauriks, T.; Longo, R.; Baetens, D.; Derudi, M.; Parente, A.; Bellemans, A.; van Beeck, J.; Denys, S. pdf  url
doi  openurl
  Title Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street Type A1 Journal article
  Year 2021 Publication Atmospheric Environment Abbreviated Journal Atmos Environ  
  Volume (down) 246 Issue Pages 118127  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The correct prediction of air pollutants dispersed in urban areas is of paramount importance to safety, public health and a sustainable environment. Vehicular traffic is one of the main sources of nitrogen oxides (NO ) and particulate matter (PM), strongly related to human morbidity and mortality. In this study, the pollutant level and distribution in a section of one of the main road arteries of Antwerp (Belgium, Europe) are analyzed. The assessment is performed through computational fluid dynamics (CFD), acknowledged as a powerful tool to predict and study dispersion phenomena in complex atmospheric environments. The two main traffic lanes are modeled as emitting sources and the surrounding area is explicitly depicted. A Reynolds-averaged Navier–Stokes (RANS) approach specific for Atmospheric Boundary Layer (ABL) simulations is employed. After a validation on a wind tunnel urban canyon test case, the dispersion within the canopy of two relevant urban pollutants, nitrogen dioxide (NO) and particulate matter with an aerodynamic diameter smaller than 10 m (PM10), is studied. An experimental field campaign led to the availability of wind velocity and direction data, as well as PM10 concentrations in some key locations within the urban canyon. To accurately predict the concentration field, a relevant dispersion parameter, the turbulent Schmidt number, , is prescribed as a locally variable quantity. The pollutant distributions in the area of interest – exhibiting strong heterogeneity – are finally demonstrated, considering one of the most frequent and concerning wind directions. Possible local remedial measures are conceptualized, investigated and implemented and their outcomes are directly compared. A major goal is, by realistically reproducing the district of interest, to identify the locations inside this intricate urban canyon where the pollutants are stagnating and to analyze which solution acts as best mitigation measure. It is demonstrated that removal by electrostatic precipitation (ESP), an active measure, and by enhancing the dilution process through wind catchers, a passive measure, are effective for local pollutant removal in a realistic urban canyon. It is also demonstrated that the applied ABL methodology resolves some well known problems in ABL dispersion modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613550100003 Publication Date 2020-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.629 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.629  
  Call Number UA @ admin @ c:irua:173917 Serial 7477  
Permanent link to this record
 

 
Author Van Echelpoel, R.; de Jong, M.; Daems, D.; van Espen, P.; De Wael, K. pdf  url
doi  openurl
  Title Unlocking the full potential of voltammetric data analysis : a novel peak recognition approach for (bio)analytical applications Type A1 Journal article
  Year 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume (down) 233 Issue Pages 122605  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Bridging the gap between complex signal data output and clear interpretation by non-expert end-users is a major challenge many scientists face when converting their scientific technology into a real-life application. Currently, pattern recognition algorithms are the most frequently encountered signal data interpretation algorithms to close this gap, not in the least because of their straight-forward implementation via convenient software packages. Paradoxically, just because their implementation is so straight-forward, it becomes cumbersome to integrate the expert's domain-specific knowledge. In this work, a novel signal data interpretation approach is presented that uses this domain-specific knowledge as its fundament, thereby fully exploiting the unique expertise of the scientist. The new approach applies data preprocessing in an innovative way that transcends its usual purpose and is easy to translate into a software application. Multiple case studies illustrate the straight-forward application of the novel approach. Ultimately, the approach is highly suited for integration in various (bio)analytical applications that require interpretation of signal data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000668000500108 Publication Date 2021-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.162  
  Call Number UA @ admin @ c:irua:179417 Serial 8712  
Permanent link to this record
 

 
Author Madsen, J.; Pennycook, T.J.; Susi, T. url  doi
openurl 
  Title ab initio description of bonding for transmission electron microscopy Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (down) 231 Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified ab initio description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000744190300006 Publication Date 2021-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:183955 Serial 6850  
Permanent link to this record
 

 
Author Koo, J.; Dahl, A.B.; Bærentzen, J.A.; Chen, Q.; Bals, S.; Dahl, V.A. pdf  url
doi  openurl
  Title Shape from projections via differentiable forward projector for computed tomography Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (down) 224 Issue Pages 113239  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In computed tomography, the reconstruction is typically obtained on a voxel grid. In this work, however, we propose a mesh-based reconstruction method. For tomographic problems, 3D meshes have mostly been studied to simulate data acquisition, but not for reconstruction, for which a 3D mesh means the inverse process of estimating shapes from projections. In this paper, we propose a differentiable forward model for 3D meshes that bridge the gap between the forward model for 3D surfaces and optimization. We view the forward projection as a rendering process, and make it differentiable by extending recent work in differentiable rendering. We use the proposed forward model to reconstruct 3D shapes directly from projections. Experimental results for single-object problems show that the proposed method outperforms traditional voxel-based methods on noisy simulated data. We also apply the proposed method on electron tomography images of nanoparticles to demonstrate the applicability of the method on real data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000744576800008 Publication Date 2021-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 3 Open Access OpenAccess  
  Notes EU Horizon 2020 MSCA Innovative Training Network MUMMERING Grant Number 765604. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:183267 Serial 6825  
Permanent link to this record
 

 
Author Daems, E.; Dewaele, D.; Barylyuk, K.; De Wael, K.; Sobott, F. pdf  url
doi  openurl
  Title Aptamer-ligand recognition studied by native ion mobility-mass spectrometry Type A1 Journal article
  Year 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume (down) 224 Issue Pages 121917  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The range of applications for aptamers, small oligonucleotide-based receptors binding to their targets with high specificity and affinity, has been steadily expanding. Our understanding of the mechanisms governing aptamer-ligand recognition and binding is however lagging, stymieing the progress in the rational design of new aptamers and optimization of the known ones. Here we demonstrate the capabilities and limitations of native ion mobility-mass spectrometry for the analysis of their higher-order structure and non-covalent interactions. A set of related cocaine-binding aptamers, displaying a range of folding properties and ligand binding affinities, was used as a case study in both positive and negative electrospray ionization modes. Using carefully controlled experimental conditions, we probed their conformational behavior and interactions with the high-affinity ligand quinine as a surrogate for cocaine. The ratios of bound and unbound aptamers in the mass spectra were used to rank them according to their apparent quinine-binding affinity, qualitatively matching the published ranking order. The arrival time differences between the free aptamer and aptamer-quinine complexes were consistent with a small ligand-induced conformational change, and found to inversely correlate with the affinity of binding. This mass spectrometry-based approach provides a fast and convenient way to study the molecular basis of aptamer-ligand recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000600787800122 Publication Date 2020-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.162  
  Call Number UA @ admin @ c:irua:174086 Serial 7490  
Permanent link to this record
 

 
Author Nabavi-Pelesaraei, A.; Azadi, H.; Van Passel, S.; Saber, Z.; Hosseini-Fashami, F.; Mostashari-Rad, F.; Ghasemi-Mobtaker, H. pdf  url
doi  openurl
  Title Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment Type A1 Journal article
  Year 2021 Publication Energy Abbreviated Journal Energy  
  Volume (down) 223 Issue Pages 120117  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The aim of this study is determination of exergoenvironmental efficiency for using solar technologies in sunflower oil production in Iran. Accordingly, the applications of photovoltaic and photovoltaic/thermal systems were evaluated for both agricultural and industrial phases of sunflower oil production. Energy results reveal that 1 ton of sunflower oil consumes and produces about 180,354 and 39,400 MJ energy, respectively. About 86% of total energy consumption belongs to agricultural phase and electricity with 32%, has the highest share of total energy consumption. IMPACT 2002+ method and cumulative energy demand of life cycle assessment are applied to 3 defined scenarios including Present, photovoltaic and photovoltaic/thermal. Results indicate that total amounts of climate change in Present scenarios is 24537.53 kg CO2 eq.. The highest share of human health (90%), ecosystem quality (90%) and climate change (50%) in all scenarios belongs to direct emissions. Results also illustrates that total cumulative energy demand of Present, photovoltaic and photovoltaic/thermal scenarios are about 177,538, 99,054 and 132,158 MJ 1TSO(-1), respectively. Furthermore, the most contribution of non-renewable resources and fossil fuels belongs to electricity (37%), nitrogen (52%) and photovoltaic/thermal panels (39%) in Present, photovoltaic and photovoltaic/thermal scenarios, respectively. Finally the photovoltaic scenario is the best environmental-friendly scenario. (c) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000637964000003 Publication Date 2021-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.52 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.52  
  Call Number UA @ admin @ c:irua:178193 Serial 6940  
Permanent link to this record
 

 
Author Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (down) 221 Issue Pages 113191  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600003 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 15 Open Access OpenAccess  
  Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174551 Serial 6660  
Permanent link to this record
 

 
Author Li, C.; Tardajos, A.P.; Wang, D.; Choukroun, D.; Van Daele, K.; Breugelmans, T.; Bals, S. url  doi
openurl 
  Title A simple method to clean ligand contamination on TEM grids Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (down) 221 Issue Pages 113195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Colloidal nanoparticles (NPs) including nanowires and nanosheets made by chemical methods involve many organic ligands. When the structure of NPs is investigated via transmission electron microscopy (TEM), the organic ligands act as a source for e-beam induced deposition and this causes substantial build-up of carbon layers in the investigated areas, which is typically referred to as “contamination” in the eld of electron mi- croscopy. This contamination is often more severe for scanning TEM, a technique that is based on a focused electron beam and hence higher electron dose rate. In this paper, we report a simple and effective method to clean drop-cast TEM grids that contain NPs with ligands. Using a combination of activated carbon and ethanol, this method effectively reduces the amount of ligands on TEM grids, and therefore greatly improves the quality of electron microscopy images and subsequent analytical measurements. This ef cient and facile method can be helpful during electron microscopy investigation of different kinds of nanomaterials that suffer from ligand- induced contamination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access OpenAccess  
  Notes This research was funded by the University Antwerp GOA project (ID 33928). DW acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174947 Serial 6666  
Permanent link to this record
 

 
Author Yang, M.; Orekhov, A.; Hu, Z.-Y.; Feng, M.; Jin, S.; Sha, G.; Li, K.; Samaee, V.; Song, M.; Du, Y.; Van Tendeloo, G.; Schryvers, D. pdf  url
doi  openurl
  Title Shearing and rotation of β'' and β' precipitates in an Al-Mg-Si alloy under tensile deformation : in-situ and ex-situ studies Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume (down) 220 Issue Pages 117310  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interaction between dislocations and nano-precipitates during deformation directly influences hardening response of precipitation-strengthening metals such as Al-Mg-Si alloys. However, how coherent and semi-coherent nano-precipitates accommodate external deformation applied to an Al alloy remains to be elucidated. In-situ tensile experiments in a transmission electron microscope (TEM) were conducted to study the dynamic process of dislocations cutting through coherent needle-like beta '' precipitates with diameters of 3 similar to 8 nm. Comprehensive investigations using in-situ, ex-situ TEM and atom probe tomography uncovered that beta '' precipitates were firstly sheared into small fragments, and then the rotation of the fragments, via sliding along precipitate/matrix interfaces, destroyed their initially coherent interface with the Al matrix. In contrast, semi-coherent beta' precipitates with sizes similar to beta '' were more difficult to be fragmented and accumulation of dislocations at the interface increased interface misfit between beta' and the Al matrix. Consequently, beta' precipitates could basically maintain their needle-like shape after the tensile deformation. This research gains new insights into the interaction between nano-precipitates and dislocations. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000705535300005 Publication Date 2021-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:182528 Serial 6884  
Permanent link to this record
 

 
Author Quintero-Coronel, D.A.; Lenis-Rodas, Y.A.; Corredor, L.A.; Perreault, P.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor : experimental assessment of the ignition front propagation velocity Type A1 Journal article
  Year 2021 Publication Energy Abbreviated Journal Energy  
  Volume (down) 220 Issue Pages 119702-119710  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Co-thermochemical conversion of coal and biomass can potentially decrease the use of fossil carbon and pollutant emissions. This work presents experimental results for the so-called top-lit updraft fixed bed reactor, in which the ignition front starts at the top and propagates downward while the gas product flows upwards. The study focuses on the ignition front propagation velocity for the co-thermochemical conversion of palm kernel shell and high-volatile bituminous coal. Within the range of assessed air superficial velocities, the process occurred under gasification and near stoichiometric conditions. Under gasification conditions increasing coal particle size from 7.1 to 22 mm decreased ignition front velocity by around 26% regardless of the coal volume percentage. Furthermore, increasing coal volume percentage and decreasing coal particle size result in product gas with higher energy content. For the operation near stoichiometric conditions, increasing coal volume percentage from 10 to 30% negatively affected the ignition front velocity directly proportional to its particle size. Additional experiments confirmed a linear dependence of ignition front velocity on air superficial velocity. Further steps in the development of the top-lit updraft technology are implementing continuous solids feeding and variable cross-sectional area and optimizing coal particle size distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623087300003 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.52 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.52  
  Call Number UA @ admin @ c:irua:175861 Serial 8664  
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J. pdf  url
doi  openurl
  Title The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
  Year 2021 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume (down) 219 Issue Pages 110824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000591683500002 Publication Date 2020-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited Open Access OpenAccess  
  Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved Most recent IF: 4.784  
  Call Number EMAT @ emat @c:irua:174337 Serial 6706  
Permanent link to this record
 

 
Author Baral, P.; Orekhov, A.; Dohmen, R.; Coulombier, M.; Raskin, J.P.; Cordier, P.; Idrissi, H.; Pardoen, T. url  doi
openurl 
  Title Rheology of amorphous olivine thin films characterized by nanoindentation Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume (down) 219 Issue Pages 117257  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The rheological properties of amorphous olivine thin films deposited by pulsed laser deposition have been studied based on ambient temperature nanoindentation under constant strain-rate as well as re-laxation conditions. The amorphous olivine films exhibit a viscoelastic-viscoplastic behavior with a significant rate dependency. The strain-rate sensitivity m is equal to similar to 0 . 05 which is very high for silicates, indicating a complex out-of-equilibrium structure. The minimum apparent activation volume determined from nanoindentation experiments corresponds to Mg and Fe atomic metallic sites in the (Mg,Fe)(2)SiO4 crystalline lattice. The ambient temperature creep behavior of the amorphous olivine films differs very much from the one of single crystal olivine. This behavior directly connects to the recent demonstration of the activation of grain boundary sliding in polycrystalline olivine following grain boundary amorphization under high-stress. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706867800004 Publication Date 2021-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:182592 Serial 6882  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: