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Shape from Projections via Differentiable Forward Projector for Computed Tomography

Jakeoung Kooa,∗, Anders B. Dahla, J. Andreas Bærentzena, Qiongyang Chenb, Sara Balsb, Vedrana A. Dahla

aTechnical University of Denmark, Anker Engelunds Vej 1, Kgs. Lyngby, 2800, Denmark
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Abstract

In computed tomography, the reconstruction is typically obtained on a voxel grid. In this work, however, we propose a mesh-based

reconstruction method. For tomographic problems, 3D meshes have mostly been studied to simulate data acquisition, but not for

reconstruction, for which a 3D mesh means the inverse process of estimating shapes from projections. In this paper, we propose a

differentiable forward model for 3D meshes that bridge the gap between the forward model for 3D surfaces and optimization. We

view the forward projection as a rendering process, and make it differentiable by extending recent work in differentiable rendering.

We use the proposed forward model to reconstruct 3D shapes directly from projections. Experimental results for single-object

problems show that the proposed method outperforms traditional voxel-based methods on noisy simulated data. We also apply the

proposed method on electron tomography images of nanoparticles to demonstrate the applicability of the method on real data.

Keywords: Computed Tomography, Electron Tomography, Tomographic Reconstruction, Mesh Deformation

1. Introduction

In computed tomography (CT), we aim at solving the inverse

problem of computing the 3D structure (shape and attenuation)

of an object from a set of projection images (Buzug, 2008)

taken from different angles. Here, the geometry and the physics

of the imaging system is known, which allows us to model the

forward process, i.e. if we have a suggestion for the 3D structure

of the imaged object, we can compute the projection images.

We need a data structure to represent the structure of the ob-

ject that should be reconstructed. The most common data struc-

ture is a volumetric image, with voxel intensities representing

local attenuation. This approach may be used for reconstruct-

ing any type of object. Since each voxel in the volume is a

parameter that must be computed, we have a very large num-

ber of unknowns. This makes it difficult to reconstruct volumes

in situations where we have projections from a limited angular

view (e.g., in electron tomography) or noisy data, and it can

be difficult to accurately compute the attenuations in all vox-

els. Therefore, we propose to use a mesh to represent the shape

of the object. The mesh separates the object into parts with a

constant attenuation.

In tomography, forward projection of 3D meshes has mostly

been used for simulating tomographic data acquisition, i.e.

modeling the forward projection. This includes modeling X-ray

transmission imaging based on Monte-Carlo methods (Bonin

et al., 2002; Freud et al., 2006) or ray tracing techniques (Freud

et al., 2006; Marinovszki et al., 2018). Furthermore, Vidal et al.
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Figure 1: The proposed differentiable forward projector enables optimizing a

3D mesh from projections for tomographic reconstruction. Given a mesh and

scanning geometry, the forward projector computes projections for the current

mesh, which is updated by deforming vertices in the direction that minimizes

our objective function.

(2009); Sujar et al. (2017) took the advantage of the OpenGL

library to simulate X-ray images in real time. However, none

of the proposed methods are concerned with reconstruction, i.e.

solving the inverse problem.

For the mesh-based tomographic reconstruction that we pro-

pose, the reconstruction problem is two-fold. The mesh must

be deformed to follow the boundaries of the depicted object,

and in each part of the object, a single attenuation coefficient

must be estimated. To forward project the mesh, we employ

rendering techniques, which allow a very efficient projection

of the 3D mesh to the detector plane. We extend the differ-

entiable rasterizer recently proposed by Chen et al. (2019) to

derive differentiable forward projection. This enables us to

compute vertex displacements that deform the mesh based on

the difference between the forward projection and projection

data. In Fig. 1, we provide an overview of our shape estimation

method. In Fig. 2, we illustrate how our work differs from ex-

isting image-based reconstruction methods (Andersen and Kak,

1984; Buzug, 2008).
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3D objects

represented by

voxel values x

Projections

p̂

Forward model: Ax = p

Reconstruction:

min
x

||Ax − p̂|| + Reg(x)

3D objects by

surface mesh M,

attenuation val. µ

Projections

p̂

Proposed forward model: f(M, µ) = p

Proposed reconstruction:

min
M,µ

‖f(M, µ) − p̂‖ + Reg(M)

Figure 2: Algebraic reconstruction vs. our proposed approach. Left: Existing

algebraic reconstruction methods use a linear system of equations to model the

forward projections typically together with some regularization to constrain the

solution. Right: We propose a differentiable forward model f which computes

projections for an object represented by a triangular mesh and attenuation coef-

ficients µ. This forward model is used to reconstruct the shape from projections

data p̂.

Our model has been developed for problems like X-ray CT

where the damping of the X-ray attenuation coefficient are mod-

eled as linearly dependent on the path length through the sam-

ple (Buzug, 2008), which is also assumed in electron tomog-

raphy up to a certain thickness (Midgley and Weyland, 2003)

where coefficient is related to electron scattering.

In summary, our contribution is two-fold. We suggest a dif-

ferentiable forward projector to generate projections from 3D

meshes, and we propose a shape estimation method employ-

ing the differentiable forward projector. Our code is available

online: https://github.com/jakeoung/ShapeFromProjections.

2. Related works

Differentiable rendering based on rasterization. In our work

we deform a mesh by changing vertex positions using gradi-

ent descent. Therefore, we need the gradient of our objective

function with respect to vertex coordinates, which is possible

through differentiating the forward projection. As observed

in (Vidal et al., 2009), the tomographic forward projection can

be implemented by extending a rendering technique in com-

puter graphics based on rasterization. Such rasterization-based

rendering technique projects 3D models onto 2D image plane

and involves a discrete step to choose the pixels covered by tri-

angles of 3D models. This discrete step is not differentiable

in conventional graphics pipelines. Making such rasterization-

based rendering differentiable, called differentiable rasteriza-

tion, has been studied by several works to connect rendering

and optimization. As our work extends such differentiable ras-

terization techniques, we first review those works and explain

the difference to our work.

The general framework OpenDR, that was proposed by

Loper and Black (2014), approximated gradients of pixel values

with respect to model parameters. Kato et al. (2018) suggested

a heuristic forward and backward pass where blurring is used

to avoid zero gradients. This approach has an inconsistency be-

tween the forward and backward pass, and to circumvent this

inconsistency, Liu et al. (2019) proposed a method called Soft-

Ras by relaxing discrete rasterization process into the aggrega-

tion of smooth probability functions. Unlike the conventional

rasterization rendering, in SoftRas, each face in the mesh af-

fects many pixels in the image plane, which is computationally

costly and memory-demanding.

Chen et al. (2019) suggested an interpolation-based differen-

tiable rasterizer called DIB-R. DIB-R reformulates the barycen-

tric interpolation in the rasterization process to analytically de-

rive the gradients. Our forward projector extends this reformu-

lation when computing the thickness of an object for computed

tomography, but differs in some aspects. The rendering tech-

niques such as DIB-R can improve the performance by ignoring

invisible faces, but since we model penetrating radiation, our

forward projector needs to consider all the faces. DIB-R used

the idea of SoftRas (Liu et al., 2019) for background pixels to

propagate the gradients on those background, but our forward

projector does not use it to reduce the computational cost.

Shape reconstruction from projections. Our proposed method

is related to tomographic segmentation, where segments are

directly computed from projections. This includes (Elan-

govan and Whitaker, 2001; Whitaker and Elangovan, 2002;

Alvino and Yezzi, 2004) that are based on the Mumford-Shah

model (Mumford and Shah, 1989) where boundaries are rep-

resented using level-sets (Osher and Fedkiw, 2004). Recently,

the parametric level-set method (Aghasi et al., 2011) has been

used for tomographic segmentation in (Kadu et al., 2018; Elia-

sof et al., 2020) where level-sets are represented as an aggre-

gation of radial basis functions. Although the parametric level-

set method has fewer unknown variables, its forward projection

still depends on a regular grid. Gadelha et al. (2019) used a

deep convolutional neural network for 2D tomographic recon-

struction, where the forward projection is based on the trans-

formation of a regular grid and resampling. On the other hand,

the work (Dahl et al., 2018) based on snakes (Kass et al., 1988)

avoids a dense grid – it represents curves explicitly and pro-

poses a direct forward projection of the curves. However, this

method is limited to a single 2D curve, while the proposed

method supports 3D objects. Another difference is that (Dahl

et al., 2018) evolves curves in the normal directions of curve

points, while our deformation can displace the vertices in all

directions.

In summary, existing shape estimation methods from projec-

tions are either based on regular grid or limited to single 2D

curve. To our knowledge, our work is the first to propose the

differentiable forward projector for 3D triangular mesh and use

it for reconstructing shapes from projections.

3. Differentiable forward projector

In this section, we describe our main contribution of the dif-

ferentiable forward projector. The goal is to forward project

triangular meshes and make this process differentiable with re-

spect to 3D vertex positions and attenuation coefficients. This

differentiable forward projection will be used for optimizing the

mesh shape described in Sec. 4. First we describe the case of a

single object and then extend to composite objects.

3.1. Single object

Consider an object represented by a watertight triangular

mesh. A watertight triangle mesh forms a closed surface that

has a well-defined interior and exterior: any path from a point

2



z z

y y

x x

v0

v1

v2

i

dijl0
l1

l2

j

s0

s1

s2

Figure 3: Left: The vertices of the triangle mesh (blue dots) are projected onto

the detector. Each detector pixel (red dots) is associated with the projection ray

which intersects mesh triangles. Right: One triangle j, here given by vertices

k = 0, 1, 2, and one detector pixel i. Using barycentric coordinates, the distance

di j may be expressed in terms of lk .

in the interior to a point in the exterior must cross the triangle

mesh. We assume that the object is homogeneous, i.e. it has

a certain attenuation coefficient µ associated with the volume

inside the mesh. For now, we consider µ constant, we will later

explain how it is computed in the next subsection. The mesh

consists of K vertices, and we write vk for the 3D coordinates

of the vertex k.

To simplify the explanation, we start with a single projection

and later expand to multiple projections from different angles.

Let P and R be the position of the detector and a matrix that ro-

tates from detector coordinates to the global frame, respectively.

If we denote the position of vertex k in global coordinates by

Vk, the position in detector coordinates are vk = R⊺(Vk − P).

Note that in detector coordinates, the detector itself corresponds

to the plane z = 0, its center is at the origin, and the positive z-

axis points towards the object, see Fig. 3.

Expressed in detector coordinates, the distance of the vertex k

from the detector is trivially lk = e
⊺

3
vk while sk = [e1 e2]⊺vk are

the coordinates of the projection of the vertex onto the detector.

Here e1, e2, and e3 are unit vectors in x, y and z direction, for

example e1 = [1 0 0]⊺.

Projecting the object onto the detector pixel i we consider

the projection ray associated with i (slightly sloppy, call it ray

i), and its path length in the object. As explained in (Vidal et al.,

2009), this can be broken into contribution of all intersections

of the ray i with the mesh triangles

pi = µ
∑

j
i intersects j

sign(e
⊺

3
n j)di j (1)

where n j is the normal of the triangle j (needed for determining

the sign of the contribution), and di j is the distance of the inter-

section point to the detector. Here, we consider the sign value

sign(e
⊺

3
n j) as a constant attribute of each triangle.

Considering now a single triangle j we express di j using

barycentric coordinates

di j =
∑

k
k in j

wk
i jlk , (2)

where k are the indices of the three vertices of the triangle j and

wk
i j

are the corresponding three barycentric coordinates of pixel

i with respect to the projection of triangle j onto the detector

plane, see Fig. 3, right.

To make the forward projection differentiable, we derive

∂pi

∂vk

= µ
∑

j
i intersects j

sign(e
⊺

3
n j)
∂di j

∂vk

, (3)

and

∂di j

∂vk

=
∑

k
k in j















wk
i j

∂lk

∂vk

+
∂wk

i j

∂vk

lk















=
∑

k
k in j















[0 0 wk
i j] +

∂wk
i j

∂vk

lk















. (4)

For the last step, computation of ∂wk
i j
/∂vk, we employ the idea

from (Chen et al., 2019), which reformulates the barycentric

form to express the coefficients wk
i j

in terms of 2D projected

positions sk and the position of detector pixel i.

3.2. Composite objects

The method described above generalizes to composite ob-

jects if certain conditions are met. Specifically, we require that

we know beforehand the topology of the parts of the compos-

ites, and how parts are embedded within one another. Thus, for

each interface triangle we will have a suggestion that what class

of material is on either side, but we do not know the specific at-

tenuation coefficient of the classes, since we solve for those.

In order to extend Eq. (1) to composites, we only have to

observe that triangles may now be the interface between two

materials and not just air and material. This can be handled

simply by letting each triangle contribute twice

pi =
∑

j

µ j sign(e
⊺

3
n j)di j −

∑

j

µ j sign(e
⊺

3
n j)di j (5)

=
∑

j

(µ j − µ j) sign(e
⊺

3
n j)di j , (6)

where µ j is the attenuation of the interior material and µ j of the

exterior material according to normal orientation. Of course, ei-

ther attenuation will be zero if the material on the corresponding

side of the triangle is air.

The derivative of a pixel value with respect to the contribut-

ing attenuation µm for material m (by abuse of notation) is

∂pi

∂µm

=
∑

j

± sign(e
⊺

3
n j)di j , (7)

where the ± is positive if the interior material of face j is labeled

as m and negative if m is the exterior material. We also modify

Eq. (3) by changing µ to (µ j − µ j).

We have derived the Jacobians in Eq. (3) and (7), which will

be used to optimize an objective function E. That is, we can

propagate the gradients from E

∂E

∂vk

=
∑

i

∂E

∂pi

∂pi

∂vk

,
∂E

∂µm

=
∑

i

∂E

∂pi

∂pi

∂µm

, (8)

where the summation is over all the detector pixels.

3



4. Shape from projections

In this section, we use the proposed forward projector to re-

construct shapes from projections. We assume that a template

mesh with the correct topology is given. We aim to deform

the template mesh and estimate the attenuation coefficients by

minimizing the residual between data p̂ and our estimation p.

Optimizing only the data fitting term can lead to degenerate

meshes. To obtain high-quality meshes, we impose three reg-

ularization terms. The first term is the Laplacian term (Wang

et al., 2018), which constraints the vertices to move similarly

with their neighbors, defined by

Elap =
∑

k

‖Vk −
1

|N(k)|

∑

n∈N(k)

Vn‖
2, (9)

where N(k) is the index set of neighboring vertices to k-th ver-

tex. The second term is the edge length term to penalize long

edges

Eedge =
∑

(Vk ,Vn)∈G

‖Vk − Vn‖
2, (10)

where G denotes the set of edges. Lastly, we impose the flat-

tening term (Kato et al., 2018; Liu et al., 2019)

Eflat =
∑

e∈G

(1 − cos θe)2, (11)

where θe is the angle between the normal vectors of two faces

sharing the edge e. Flattening term is needed to remove near-

zero volume spikes. These thin artifacts have negligible con-

tribution to the forward projection, and will be ignored by the

data fitting term. As shown in Fig. 5, such artifacts can appear

during the deformation, but disappear later.

With the data fidelity and regularization terms, the objective

function to minimize is

E({Vk}, {µm}) = ‖p − p̂‖22 + αElap + βEedge + γEflat (12)

where α, β, γ control the relative weights between the terms.

Note that the size of projection data p̂ is the number of detec-

tor pixels times the number of projection angles. We use au-

tomatic differentiation to minimize E. For large data, we can

use stochastic gradient descent with mini batches in terms of

projection angles. In this paper, however, we only consider full

batch size of data.

5. Experiments and Results

In this section, we present the experimental results of the pro-

posed method on synthetic data of single objects. We also show

the results on real data of some nano particles from electron

tomography, which has limited range of angles.

5.1. Shape reconstruction of a set of single objects

Datasets. This experiment is designed to test our shape esti-

mation method on noisy simulated data. We use 5 watertight

meshes (closed surfaces without any holes): star, spot, bunny,

bob, kitten, shown in the first row of Fig. 6 and the attenua-

tions of the objects are set to 1. Generating projections of those

GT

SIRT

TV

Proposed

Figure 4: Qualitative results of estimated projections on noisy data with relative

noise level 0.4. The first row shows the ground truth, i.e., noise-free data. 2nd-

5th row show the forward projection from the solutions by SIRT, TV and the

proposed method, respectively.

init. iter. 60 iter. 120 iter. 180 iter. 360

Figure 5: Deformation examples. The odd rows show the intermediate meshes

during deformation and the even rows show the corresponding computed pro-

jections for one projection angle. We refine the mesh in finer resolution at

iteration 60 and fix the mesh at iterations 120 and 180.

meshes using our forward model may resemble to the so-called

inverse crime (Mueller and Siltanen, 2012). To avoid it, we

employ the Blender software to make projection data based on

4



GT

TV

best

TV

high

Proposed

Figure 6: Qualitative results of extracted meshes on noisy data with relative noise level 0.4. The top row shows the ground truth meshes. Rows 2 and 3 show the

extracted isosurface from the results of TV reconstruction with the optimal regularization parameter (best) and a high regularization parameter (high), respectively.

The last row shows our results.

ray casting methods similar to (Marinovszki et al., 2018). We

use 3D parallel projection geometry with 30 projection angles

and the detector of size 192 × 192 pixels. Some projection im-

ages without noise are shown in the first row of Fig. 4 for one

projection angle.

Evaluation metrics. We compare our result to two standard

reconstruction methods: simultaneous iterative reconstruction

technique (SIRT) (Andersen and Kak, 1984) and total variation

(TV) based reconstruction (Chambolle and Pock, 2011; Sidky

et al., 2012). These methods yield 3D images, whereas the pro-

posed method produces surface mesh, making direct compar-

ison of the main output challenging. For consistent compari-

son, we employ a residual-based metric: residual projection er-

ror (Roelandts et al., 2014), which measures the L2 norm differ-

ence of data and computed projections. We impose the relative

Gaussian noise on the original data and calculate the residual

projection error between noise-free projections and the estima-

tions of other methods and the proposed method. For SIRT and

TV, the voxel size is set as 192 × 192 × 192 and the algorithm

parameters are chosen carefully.

Experimental details. Our implementation relies on Py-

Torch (Paszke et al., 2019) and uses Adam (Kingma and Ba,

2015) as an optimizer. The proposed forward projector is im-

plemented as a module in PyTorch. As for the regularization

parameters, we fix α = 10, γ = 0.01 and iterate 500 times. The

step size τ (learning rate in PyTorch) is set to 0.01 and reduced

by half at 400 iteration. This reduction step is not really nec-

essary but can yield a more stable result. We observe that 500

iterations are needed for capturing fine details of the compli-

cated objects such as the bunny data. During the experiment,

we only vary the edge length parameter β among the values of

1, 2, 4, 8, 16 and 32 and the optimal parameter would depend on

the data. Finding the optimal regularization parameter is itself

a research topic and not straightforward also in regularization-

based image reconstruction methods such as TV. As for the ini-

tialization, the proposed method begins from an icosphere for

genus-0 objects (star, spot, bunny), and from a torus for genus-

1 objects (bob, kitten). Except for star data, we refine the mesh

by (Huang et al., 2018) at iteration 60 and improve the mesh

quality 3 times by a lightweight repair method (Attene, 2010)

at iteration 60, 120, 180. These refine and repair steps help

remove some artifacts and lead to fast convergence. As also

observed in (Vidal et al., 2009), some artifact pixels can ap-

pear (e.g., when the ray hits an odd number of times). When a

large deformation happens, we may observe some artifact pix-

els, which we exclude in the objective function. However, in

the end, we only observe around 2 artifact pixels. In Fig. 5, we

show the deformation of the estimated meshes with the corre-

sponding computed projections.

Robustness to noise. The experiments show that the proposed

method is robust to noise. Fig. 4 shows some computed projec-

tion images of the reconstruction results from noisy data with

relative noise level 0.4 achieved using SIRT, TV reconstruction

and the proposed method. Since SIRT has no regularization,

it fits closely to the highly noisy data. The results of TV are

relatively smooth, but sharp transitions appear blurred. On the

other hand, the proposed method yields projections similar to

noise-free data. Fig. 6 shows the final mesh results, where the

proposed method yields qualitatively better results than TV –

we omit highly noisy SIRT results. In Fig. 7, we provide the

quantitative results of residual projection error with respect to

relative noise levels. Without noise, SIRT gives the superior re-

sult as it fits to data without regularization. However, as noise

5



Figure 7: Quantitative results with varying relative noise level over 5 datasets.

The residual projection error represents the error between the noise-free pro-

jections and the estimated projections. The error bars denote the average values

with the maximum and minimum value and the y-axis is in logarithmic scale.

increases, the results of SIRT and TV are shown to be poorer.

Effect of parameters. Here, we investigate the effects of the

parameters. In this experiment, we use data with a fixed relative

noise level of 0.4 and use residual projection error to measure

performance. Fig. 8 shows the effect of initializing the mesh by

varying the radius of the icosphere used for initialization and

then iterating 500 times. The final result is mostly not affected

by the initial radius size thanks to the refinement steps during

the optimization. We choose the bunny data model to generate

the results shown in Fig. 8, because of its complicated shape.

In Fig. 9 we show the effects of the regularization parameters

α, β and γ, while keeping other parameters fixed. Here we use

all data models and the residual projection error for the star is

large due to the coarse resolution of the mesh. We observe that

if β < 1.0 or γ > 0.1, the final meshes might have some arti-

facts. As mentioned before, we use the default settings (α = 10

and γ = 0.01), which in most experiments give a stable result.

With these fixed values, we observe that it is enough to only

vary the edge length parameter, depending on the desired de-

gree of smoothness.

Figure 8: Effect of initializing the mesh with spheres of varying diameter. The

x-axis represents the radius of the initialized sphere. The radius is determined

relatively to an object space that is normalized to (−1, 1)3. The experiments are

based on the bunny data model.

(a) Effect of α

(b) Effect of β

(c) Effect of γ

Figure 9: Effect of the regularization parameters: (a) the Laplacian regulariza-

tion parameter α given β = 4, γ = 0.01, (b) the edge length parameter β given

α = 10, γ = 0.01, and (c) the flattening parameter γ given α = 10, β = 4. The

vertical bars in (a) and (c) correspond to the values we keep fixed, when our

method is compared with other methods.

Computational cost. Table 1 shows the size of the initial and

final mesh and the corresponding running times. The mesh size

is one of the major factors that contribute to computational time.

For example, as we do not refine the mesh for star object, its

final mesh size and its computational time is lower than others.

We do the experiment on a Ubuntu server with 256GB RAM

and Titan X GPU.

For a reference, the running times for the image-based meth-

ods are 38 seconds for SIRT and 152 seconds for TV which

are implemented based on multithreading on 8 CPU cores, not

GPU. For image-based methods, we use the fixed grid of size

192 × 192 × 192 for all the data.

6



Table 1: Size of meshes and running times

Data Star Spot Bunny Bob Kitten

Initial mesh Icosphere (1280 faces) Torus (3200 faces)

Final mesh no refine. 18680 17908 19308 20904

Run time 244.1 (sec.) 730.7 719.6 816.3 816.8

5.2. Application to electron tomography

The goal of this experiment is to estimate the shape of a

bimetallic nanoparticle having a Au-core and a Ag-shell nano

particles. We obtained 2 tilt series datasets of a nano triangular

bipyramid and a nanocube using high-angle annular dark-field

scanning transmission electron microscopy (HAADF-STEM).

We hereby used a Thermo Fisher Tecnai Osiris electron micro-

scope generated at 200kV. Each dataset contains 49 projection

images acquired over ±72◦ with a tilt increment of 3º and a

frame time of 4 seconds. This small range of projection angles

is typical for electron tomography and makes the reconstruc-

tion challenging. Fig. 10 shows three images for each of the

two datasets.

Figure 10: Projection images along 3 different tilt angles for a nano triangular

bipyramid (top) and a nano cube (bottom).

To test the proposed method on the data, we initialize the

meshes as two icospheres having total 2,560 faces. We use the

collision detection method in (Lauterbach et al., 2009), to make

sure that the core and the shell part do not collide. In this ex-

periment, we set the number of iterations as 300, the step size τ

as 0.005 and observe no collisions when a proper regularization

weight is used. As the unknown shapes are relatively simple,

we impose only the Laplacian regularization term, by setting

α = 15 for the nano bipyramid and α = 5 for the nanocube.

The nanocube data is not much affected by this parameter α, but

for the nano bipyramid data, the parameter α should be greater

than or equal to 10 to avoid the collision and obtain a high qual-

ity mesh when a small range of tilt angles is used. As for the

initialization of two icospheres, the inner icosphere’s size is set

to half the size of the outer icosphere. This outer icosphere is

initialized with a relative radius 0.4 (when the object space is

normalized to (−1, 1)3), but we obtain a similar result with the

radius range of 0.2 ∼ 0.8 for the nano cube and 0.2 ∼ 0.5 for the

nano triangular data.

Fig. 11 and Fig. 12 show the 3D reconstruction for the nano

triangular bypyramid and the nano cube data, respectively, by

SIRT, TV, and the proposed method. To evaluate the effect of

tilt angle range, we test two cases: an angular range of ±72◦ and

a subsampled tilt angles of ±18◦. To compare our mesh result

to the voxel-based methods, we extract meshes from the recon-

struction images of SIRT and TV, by median filtering, thresh-

olding, filling holes, and extracting the isosurfaces. For the

highly-limited angle case with a tilt range of ±18◦, we addition-

ally apply Gaussian smoothing on the results of SIRT and TV

before the thresholding step, to obtain the visually-appealing

meshes.

For the tilt angle ranges of ±72◦, the results of SIRT, TV, and

the proposed method are in good comparison. However, when

the range of tilt angles is reduced to ±18◦, SIRT and TV yield

a degenerated reconstruction, which also affects the quality of

the final extracted surfaces. On the other hand, the proposed

method is shown to be less affected by a tilt range. For the

bypyramid in Fig. 11, the volume of the Au-core decreased for

the limited angle case, due to the high regularization effect. In

Table 2, we provide the estimated volumes of the Au-core and

Ag-shell particles by the proposed method and the extracted

isosurfaces from the images by SIRT and TV.

Table 2: Estimated volumes in the unit of 103 nm by SIRT reconstruction image

followed by isosurface extraction, and the proposed method.

Tilt angles Method
bipyramid nano cube

core shell core shell

-72◦ ∼ 72◦
SIRT+Iso. 3.6 33.2 2.4 29.8

TV+Iso. 3.7 33.5 2.5 29.8

Proposed 4.2 36.7 2.3 31.2

-18◦ ∼ 18◦
SIRT+Iso. 1.3 31.5 1.2 14.9

TV+Iso. 3.5 25.0 1.3 11.2

Proposed 2.7 37.7 2.5 29.8

6. Conclusion and Discussion

In this paper, we have developed a forward projector to map

a triangular mesh onto the projections domain which is differ-

entiable with respect to the mesh vertices and the attenuation

values. Based on our differentiable forward model, we have

suggested an optimization-based shape estimation method from

projections. Our model should be chosen for reconstructing ho-

mogeneous objects with relatively simple geometry, but in situ-

ations where the data foundation is so noisy or limited that other

methods will not allow a reconstruction. While a conventional

approach most often consists of the two steps of image recon-

struction followed by a segmentation to obtain a surface, the

proposed method directly yields the surface, which among oth-

ers allows imposing a shape prior directly on the reconstructed

shapes. Our experiments on synthetic data show that the pro-

posed method is robust to noise when reconstructing single ob-

jects. The experiments on the electron tomography data show

how our method is robust even when the range of tilt angles is

highly limited, compared with SIRT and TV. In this challeng-

ing case, the conventional image reconstructions by SIRT and

7



TV are highly degraded and these degenerate results propagate

errors to the surface estimation from the reconstructed images.

Our method can, however, capture the overall shapes well with

the regularization term which can impose a smoothness prior

directly on the object shapes.

To discuss the limitation of the proposed method, we di-

vide our contributions into two parts: the differentiable forward

model and the shape estimation method. The proposed forward

model estimates the displacement direction of each vertex for

minimizng the objective function. These displacements will

only allow change in shape and not collisions of splitting of the

mesh that would require topological changes. Handling such

topological changes and collisions is itself an active research

topic in mesh deformation in computer graphics or computer vi-

sion. Investigating how to handle topology changes for a more

general mesh adaption and deformation is for future research.

The current differentiable forward model has only been

tested on parallel beam geometry where rays are perpendicular

to the detector plane. This can be extended to a more general

setting such as the cone beam geometry (Buzug, 2008), but we

have not investigated the effect of that, as electron tomography

data are based on parallel beam geometry.

As a potential application, the proposed method can be use-

ful for estimating the geometry precisely, e.g. for registering

the reconstructed object to a 3D CAD model. Another future

application can be dynamic tomography where we aim to ana-

lyze the objects which may change during scanning.
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Figure 11: Reconstruction results on nano triangular bypyramid data. The first and the 4th rows show the reconstruction results by SIRT and from projections with

tilt angles from -72◦ to 72◦ and -18◦ to 18◦, respectively, where two central slices are visualized in the first and second column. The 2nd and the 5th rows show the

reconstruction results by TV. The last column shows the extracted mesh from the reconstructed image by SIRT or TV with some post-processing procedures. The

third and the last row show our direct shape estimation results, where two central slices are visualized in blue and yellow.
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Figure 12: Reconstruction results on nano cube data. The first and the 4th rows show the reconstruction results by SIRT and from projections with tilt angles from

-72◦ to 72◦ and -18◦ to 18◦, respectively, where two central slices are visualized in the first and second column. The 2nd and the 5th rows show the reconstruction

results by TV. The last column shows the extracted mesh from the reconstructed image by SIRT or TV with some post-processing procedures. The third and the last

row show our direct shape estimation results, where two central slices are visualized in blue and yellow. The results on the second and the fourth row appear to be

the same, but they are slightly different.
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