

This item is the archived peer-reviewed author-version of:

Selective oxidation of CH4 to CH3OH through plasma catalysis : insights from catalyst characterization and chemical kinetics modelling

Reference:

Yi Yanhui, Li Shangkun, Cui Zhaolun, Hao Yingzi, Zhang Yang, Wang Li, Liu Pei, Tu Xin, Xu Xianming, Guo Hongchen,- Selective oxidation of CH4 to CH3OH through plasma catalysis : insights from catalyst characterization and chemical kinetics modelling Applied catalysis : B : environmental - ISSN 0926-3373 - 296(2021), 120384 Full text (Publisher's DOI): https://doi.org/10.1016/J.APCATB.2021.120384 To cite this reference: https://hdl.handle.net/10067/1788160151162165141

uantwerpen.be

Institutional repository IRUA

1	Selective Oxidation of CH4 to CH3OH through Plasma
2	Catalysis: Insights from Catalyst Characterization and
3	Chemical kinetics modelling
4	Yanhui Yi, ^{1,2*#} Shangkun Li, ^{1,2#} Zhaolun Cui, ² Yingzi Hao, ¹ Yang Zhang, ³ Li
5	Wang, ⁴ Pei Liu, ⁵ Xin Tu, ⁶ Xianming Xu, ⁷ Hongchen Guo, ¹ and Annemie Bogaerts ²
6	¹ State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian
7	University of Technology, Dalian 116024, P.R. China.
8	² Research group PLASMANT, Department of Chemistry, University of Antwerp,
9	Universiteitsplein 1, BE-2610 Wilrijk-Antwerp, Belgium.
10	³ School of Materials Science and Engineering, Center of Advanced Analysis & Gene
11	Sequencing, Zhengzhou University, Zhengzhou 450001, P. R. China.
12	⁴ College of Environmental Sciences and Engineering, Dalian Maritime University,
13	Dalian 116026, Liaoning, P. R. China.
14	⁵ In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering,
15	Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
16	⁶ Department of Electrical Engineering and Electronics, University of Liverpool,
17	Liverpool, L693GJ, U.K.
18	⁷ Daqing Chemical Research Center, China National Petroleum Corporation, Daqing
19	163714, P. R. China.
20	#: these authors contributed equally (shared first authors)
21 22	E-mail address: yiyanhui@dlut.edu.cn

23 ABSTRACT

The selective oxidation of methane to methanol (SOMTM) by molecular oxygen is a 24 holy grail in catalytic chemistry and remains a challenge in chemical industry. We 25 perform SOMTM in a CH₄/O₂ plasma, at low temperature and atmospheric pressure, 26 promoted by Ni-based catalysts, reaching 81 % liquid oxygenates selectivity and 50 % 27 28 CH₃OH selectivity, with an excellent catalytic stability. Chemical kinetics modelling shows that CH₃OH in the plasma is mainly produced through radical reactions, i.e., CH₄ 29 $+ O(1D) \rightarrow CH_3O + H$, followed by $CH_3O + H + M \rightarrow CH_3OH + M$ and $CH_3O + HCO$ 30 \rightarrow CH₃OH + CO. The catalyst characterization shows that the improved production of 31 CH₃OH is attributed to abundant chemisorbed oxygen species, originating from highly 32 dispersed NiO phase with strong oxide support interaction with γ -Al₂O₃, which are 33 capable of promoting CH₃OH formation through E-R reactions and activating H₂O 34 molecules to facilitate CH₃OH desorption. 35 36 37 38

39 KEY WORDS: Methane Conversion; Plasma Catalysis; Selective 40 Oxidation; Methanol Synthesis; Plasma Chemistry

- 41
- 42

43

45 **1. Introduction**

Methane (CH₄), abundant in natural gas, shale gas, coalbed gas, biogas and dry gas 46 (i.e., emission of chemical industry), has become not only an important source of clean 47 fossil energy, but also a feedstock for the chemical industry. At present, the industrial 48 49 utilization of CH₄ is initiated by high temperature steam reforming to syngas (CO and 50 H₂), which is then transformed into hydrocarbons through the Fischer-Tropsch process, or into methanol (CH₃OH), through a high-pressure reaction over Cu-Zn-Al catalyst. 51 CH₃OH is a versatile molecule for the production of many bulk chemicals, such as 52 53 ethylene, propylene and aromatics.[1] However, due to the strong C-H bond energy (439 kJ/mol), the negligible electron affinity and low polarizability of CH₄, as well as 54 thermodynamic limitations, the syngas pathway is energy intensive and costly, which 55 56 stimulates researchers to develop novel approaches for the conversion of CH₄. Thus, the selective oxidation of methane to methanol (SOMTM) is attracting more and more 57 attention. [2, 3] 58

SOMTM is being studied by homogeneous catalysis, in strong acid media (sulfuric 59 60 and trifluoroacetic acid), using complex catalysts with noble metals (Pt and Pd) as central atoms.[4-6] Alternatively, SOMTM can also be realized by impressive 61 heterogeneous catalysis, e.g. iron-based zeolites [7, 8] and copper-based zeolites, [9-62 11] or supported noble metals, such as Au, Pd and Rh.[12, 13] However, numerous 63 works in homogeneous or heterogeneous catalysis adopted high price oxidants such as 64 N₂O or H₂O₂, which made this process economically infeasible in large-scale 65 application. Using the abundant and cheap molecular oxygen (O_2) as oxidant, (R1), 66

would be highly desirable in industrial application.

68
$$CH_4 + 1/2 O_2 \rightarrow CH_3 OH$$
 $\triangle H^0_{298K} = -126.2 \text{ kJ mol}^{-1}$ (R1)

SOMTM by O₂, R1, has been extensively studied. Colloidal Au-Pd nanoparticles 69 exhibited high CH₃OH selectivity (92%) in aqueous solution at mild temperatures on 70 SOMTM with H_2O_2 and O_2 as oxidants. More oxygenated products were formed than 71 the amount of H₂O₂ consumed, suggesting that the controlled breakdown of H₂O₂ 72 activates methane, which subsequently incorporates molecular oxygen through a 73 radical process.[12] CeO₂/Cu₂O catalysts were able to activate methane at room 74 temperature, and water addition could generate centers on the catalyst surface with 75 special electronic properties, on which methane can directly interact to yield methanol. 76 [14, 15] Recently, highly active Au-Pd nanoparticles were encapsulated inside zeolites 77 and modified with a hydrophobic sheath, which can considerably enhance the oxidation 78 of methane to methanol.[16] The silanes appeared to allow diffusion of H₂, O₂, and CH₄ 79 to the catalyst active sites, while confining the in-situ generated H₂O₂ decomposition, 80 which provided a high local peroxide concentration to facilitate methanol production, 81 82 with 17.3 % methane conversion and 92% methanol selectivity. Additionally, chemical looping was also proposed to inhibit methane overoxidation on Cu- or Fe- containing 83 zeolite catalysts.[17] 84

Although great progress has been reported, SOMTM is, currently, still being considered as a dream reaction in chemical industry and a holy grail in catalytic chemistry. [3, 17, 18] Generally, it has to overcome two challenges, caused by thermodynamics and kinetics, respectively. The first is how to improve the CH₃OH

89	selectivity. Thermodynamically, CH ₃ OH is not the favorable product, as CO and CO ₂
90	are more stable than CH ₃ OH. Specifically, as shown in Figure S1, a low temperature (
91	< 890 K) favors the production of CO ₂ and H ₂ O, while a high temperature ($>$ 890 K)
92	favors CO and H ₂ . In other words, due to the higher reactivity of CH ₃ OH than the
93	feedstock CH4, the catalytic sites, capable of oxidizing CH4 into CH3OH, can also
94	further oxidize CH ₃ OH into CO or CO ₂ before CH ₃ OH can desorb from the catalyst
95	surface. The second challenge is how to reduce the kinetic energy barrier (Ea) of
96	SOMTM by O_2 at ambient conditions. The Ea of SOMTM by O_2 is much higher than
97	for SOMTM using N ₂ O or H ₂ O ₂ as oxidants, because both N ₂ O and H ₂ O ₂ can more
98	easily release an oxygen atom, as the main species to trigger the oxidation of CH4 to
99	CH ₃ OH. Therefore, when using O ₂ as oxidant, high temperature and high activity
100	catalysts are needed to overcome the Ea of SOMTM, which unfortunately leads to deep
101	oxidation.

One approach to overcome the above-mentioned challenges is a stepwise process, 102 i.e., stoichiometric chemical looping, which involves three separate steps: (1) activation 103 of the metal-zeolite catalyst by an oxidant at a relative high temperature (250-500 °C), 104 (2) methane reaction at a relative low temperature (25-200 °C), and (3) methanol 105 extraction using a solvent or steam at a relative low temperature (25-200 °C). [9, 19, 106 20] Currently, Cu and Fe exchanged zeolites have been extensively studied, and 107 significant attention was given to the elucidation of the nature of copper-oxo and iron-108 oxo active sites. [17, 20] However, the state-of-the-art conversion of methane to 109 methanol via chemical looping stays a factor ~50 below the industrial threshold in an 110

112

overall production rate, and improvement on material productivity and decreased cycle time are highly needed for this process.[21]

113 Another approach to overcome the above-mentioned challenges is plasma catalysis. Non-thermal plasma (NTP), which is an ionized gas with clear non-equilibrium 114 character, offers a distinct approach to activate molecules by energetic electrons instead 115 of heat, and thus triggers chemical reactions at low temperature.[22-27] Generally, the 116 gas temperature in NTP remains near room temperature, while the generated electrons 117 exhibit a typical temperature of 1-10 eV ($\sim 10^4 - 10^5$ K), which is sufficient to activate 118 feed gas molecules (e.g., CH₄ and O₂) into reactive species, including radicals, excited 119 atoms and molecules, and ions. Several scientists have studied SOMTM by O₂ through 120 plasma and/or plasma catalysis, [28-36] but only a few have reported satisfying CH₃OH 121 122 selectivity. Nozaki applied a microplasma and obtained a CH₄ conversion to synthetic fuels with maximum organic liquid selectivity of 70 % without catalysts (plasma alone), 123 [28] but the CH₃OH selectivity was below 15 %. Indarto realized CH₃OH synthesis 124 with optimum selectivity of 23 % using a dielectric barrier discharge (DBD) reactor 125 with Ni metal doped over yttria-stabilized zirconia as catalyst.[29] Chawdhury used a 126 127 packed bed DBD reactor, in which glass beads provided an optimal CH₃OH selectivity of 35.4 %, [30] while further work reported the best CH₃OH selectivity of 37 % using 128 CuO/y-Al₂O₃ catalyst.[31] Recently, Cu/y-Al₂O₃, Ni/y-Al₂O₃ and Fe/y-Al₂O₃ catalysts 129 were compared for plasma-catalytic methane to value-added liquid fuels and chemicals, 130 in which the highest liquid oxygenate (~ 71%) were achieved, with Fe/ γ -Al₂O₃ catalyst 131 exhibited highest methanol selectivity of 36.0% among three different catalysts.[32] In 132

addition, insights from microkinetic modelling for plasma-catalytic SOMTM process 133 were obtained on Pt(111) surface and the results showed that vibrational excitation and 134 especially radicals produced from CH₄/O₂ NTP could enhance the turnover frequency 135 (TOF) and improve the selectivity of CH3OH, HCOOH and C2 hydrocarbons. [33] In 136 general, this field is still in the early research stages and fundamental information on 137 the interaction of NTP with a catalyst is still lacking, and the limited CH₃OH selectivity 138 in most studies is attributed to the further oxidation of CH₃OH into CO and CO₂. [34] 139 Additionally, the reaction pathway for the production of CH₃OH and by-products 140 141 (HCHO, HCOOH, CO and CO₂) from CH₄ and O₂ in NTP is largely unknown. Inspired by Lustemberg's work that Ni-CeO₂ catalysts shows excellent activity in 142

SOMTM at moderate conditions,[37] in this paper, we report SOMTM in a CH₄/O₂ plasma promoted by Ni-based catalysts, with 50 % selectivity to CH₃OH, and total liquid oxygenates selectivity of 81 %, and with excellent catalytic stability. In addition, we identify the underlying reaction mechanisms by combined experiments and modeling.

148 **2. Experimental section**

149 2.1 Catalyst preparation

The catalysts were synthesized by the incipient wetness impregnation method (Scheme S1). Commercial γ -Al₂O₃ pellets (1-2 mm diameter), synthesized by a hydrothermal method, were calcined at 400 °C in a muffle oven for 5 hours before they were used as supports. All analytical grade chemicals were purchased from Tianjin Kemiou Chemical Reagent Co. Ltd. (Tianjin, China) and used without further purification. The preparation procedure of the Ni catalysts is described in Scheme S2: First, the precursor salt Ni(NO₃)₂·6H₂O was dissolved in deionized water, followed by the addition of γ -Al₂O₃ pellets under stirring. After 12 hours aging at room temperature, the sample was dried at 120 °C overnight. Finally, the sample was calcined by a muffle oven at 540 °C for 5 hours in air condition, and the catalyst was noted as NiO/ γ -Al₂O₃. Varied nickel loading, i.e., 2, 6, 10, 15, 20, and 25 wt.% catalysts were synthesized based above method.

162 **2.2 Experimental setup**

The experimental plasma catalysis setup is shown in Scheme S2. The plasma 163 catalytic SOMTM by O₂ was carried out using a coaxial DBD reactor with a novel 164 water electrode (grounding electrode) at atmospheric pressure. The DBD reactor 165 consists of a pair of coaxial quartz cylinders (inner and outer quartz tubes) in which a 166 stainless-steel (2 mm outer diameter) electrode was placed in the center, and circulating 167 water was pumped into the space between the inner and outer cylinder. A tungsten 168 filament is installed in between both cylinders to connect this circulating water (flowing 169 170 between this inner and outer wall) with a ground wire (outside of the reactor wall), so that the circulating water acts as a ground electrode of our DBD. The flow rate (6 L/min) 171 and temperature of water was controlled by thermostatic baths with a circulation pump 172 and external temperature controller, which can effectively remove the heat generated 173 by the discharge and maintain a constant reaction temperature. The discharge length is 174 50 mm (defined by the length of the ground electrode, i.e., region of circulating water) 175 and the inner diameter of the inner quartz cylinder is 10 mm, yielding a discharge gap 176

of 4 mm. In the plasma catalysis experiments, the discharge space was fully packed by 177 1.25 g catalyst. CH₄ and O₂ were monitored by calibrated mass flow controllers and 178 mixed homogeneously before passing through the plasma reactor. Before igniting the 179 discharge, this gas mixture passed through the plasma reactor for about 10 minutes to 180 remove air, to ensure a safe operating procedure (outside the explosion limit). The 181 change of gas volume after the reaction was measured using a soap-film flow meter. 182 This is needed to quantitatively analyze the gas composition, and to achieve the exact 183 conversion (CH₄) and selectivity of the gaseous products (CO and CO₂). The discharge 184 185 voltage and current were detected by a digital phosphor oscilloscope (Tektronix, DPO 3012) with a high voltage probe (Tektronix P6015) and a current probe (Pearson 6585). 186 The feedstock and gas products were analyzed by an on-line gas chromatograph 187 (Tianmei GC-7900, TDX-01 column, Al₂O₃ packed column) with a thermal 188 conductivity detector (TCD) and a flammable ionized detector (FID). The liquid 189 products were cooled by a liquid trap (mixer of isopropyl alcohol and liquid nitrogen, 190 below -120 °C) and then analyzed by GC-2014C (Shimadzu, PEG-2000 column), GC-191 MS (Agilent 5975C, DB-1701 column), FTIR (ThermoFisher 6700) and ¹H-NMR 192 (Bruker AVANCE III 500). The reaction products, including H₂O, CO, CO₂, CH₃OH, 193 HCHO, HCOOH, HCOOCH₃, C₂H₅OH, CH₃CHO, and CH₃COOH, were analyzed 194 using external standards. The gas products were measured by gas chromatography, 195 while the liquid products were collected by a liquid trap and analyzed by GC, GC-MS, 196 FTIR and ¹H-NMR (Figure S2). The formulas of the standard calibrated concentration 197 curves are shown in Table S1. More details about qualitative and quantitative analysis 198

of products on CH_4/O_2 NTP could be found in supporting information. In this work, the conversion of CH_4 and the selectivity of the gaseous products (CO_x , H_2 and C_2H_6) are calculated as follows. Note that the selectivity of CO_x and C_2H_6 is calculated based on carbon, while the selectivity of H_2 and H_2O is calculated based on hydrogen.

203 The CH₄ conversion was calculated by:

204
$$X_{CH_4}$$
 (%) = $\frac{\text{moles of CH}_4 \text{ converted}}{\text{moles of initial CH}_4} \times 100 \%$ (1)

205 The selectivity of the gaseous products was calculated as:

206
$$S_{CO}$$
 (%) = $\frac{\text{moles of CO produced}}{\text{moles of CH}_4 \text{ converted}} \times 100 \%$ (2)

207
$$S_{CO_2}$$
 (%) = $\frac{\text{moles of CO_2 produced}}{\text{moles of CH_4 converted}} \times 100 \%$ (3)

208
$$S_{H_2}$$
 (%) = $\frac{\text{moles of } H_2 \text{ produced}}{2 \times \text{moles of } CH_4 \text{ converted}} \times 100 \%$ (4)

209
$$S_{H_2O}$$
 (%) =100 % - ($S_{CH_3OH} + S_{HCHO} + S_{HCOOH} + S_{H_2} + S_{C_2}$)

211
$$S_{C_2H_6}(\%) = \frac{2 \times \text{moles of } C_2H_6 \text{ produced}}{\text{moles of } CH_4 \text{ converted}} \times 100\%$$
 (6)

212 The selectivity of the liquid products was calculated as follows:

Total selectivity of liquid products (%) = 100 % -
$$(S_{CO} + S_{CO_2} + S_{C_2H_6})$$
 (7)

214 The selectivity of the various oxygenates, $C_xH_yO_z$, can be calculated as:

215
$$S_{C_xH_yO_z}$$
 (%) = $\frac{X \times N_{C_xH_yO_z}}{\sum X_i N_i} \times eq 5$

217 Where $N_{C_xH_yO_z}$ represents the number of moles of various oxygenates in the 218 liquid fraction. Note that we define here the carbon-based selectivity, and thus, H₂O and 219 H₂O₂ are not included in this formula.

220 The corresponding yields of these $C_xH_yO_z$ oxygenates are calculated as:

221
$$Y_{C_xH_yO_z}(\%) = S_{C_xH_yO_z}(\%) \times X_{CH_4}(\%)$$
 (9)

222 Finally, we defined the energy efficiency for CH₃OH formation (mol/kwh) as :

223 Energy efficiency =
$$\frac{\text{moles of methanol produced (mol/h)}}{\text{discharge power(kW)}}$$
 (10)

224 2.3 Catalyst characterization and NTP diagnostics

The structural properties of the NiO/ γ -Al₂O₃ catalysts were investigated by X-ray 225 diffraction (XRD), conducted using a SmartLab 9kW diffractometer with Cu Ka 226 227 radiation (240 kV, 50 mA). The H₂-temperature programmed reduction (H₂-TPR) was performed on a Quanta chrome ChemBET Pulsar Chemisorption instrument. Before 228 the analysis, the samples (0.20 g) were pretreated with He from ambient temperature to 229 150 °C, and kept at 150 °C for 60 minutes. Afterward, the samples were cooled to 50 °C 230 in He atmosphere. Finally, the H₂-TPR was carried out in a flow of H₂/Ar mixture (120 231 ml/min, 10% H₂) from 100 °C to 1000 °C at a heating rate of 10 °C/min. X-ray 232 photoelectron spectroscopy (XPS) was conducted by Thermo Fisher ESCALAB XI⁺ 233 with Al Ka X-ray source. The C 1s binding energy value (284.8 eV) was taken as a 234 reference level. Nitrogen physisorption was conducted on a Micromeritics ASAP 2020 235 236 instrument at -196 °C to obtain textural information. Prior to the measurement, the samples were degassed at 400 °C for 6 h. The surface area was calculated by the BET 237 method and the pore volume was obtained by the t-plot method. The chemical 238 composition of the NiO/ γ -Al₂O₃ catalysts with various loading was analyzed by X-ray 239 fluorescence (XRF) on S8 TICER from Bruker AXS. Thermogravimetry was conducted 240 by Netzsch STA 449 F3 connected to a Balzers QMG 403D mass spectrometer. High-241 resolution transmission electron microscopy (HRTEM) was conducted on Tecnai G2 242

F30 S-Twin with 300 kV accelerating voltage. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was performed by Titan^{3TM} G2 60-300 with Cs-corrector configuration. The CH₄/O₂ NTP was investigated by optical emission spectroscopy (OES) through a spectrograph (SP2758, Princeton instrument company). A fiber was directly connected at the wall of the plasma reactor, to detect the emission, which was analyzed by a spectrograph (750 mm, 300 G/mm gratings). A CCD (PIXIS:400BR eXcelon) was used to record the spectra with an on-line computer.

250 **3 Results and discussion**

251 **3.1 Catalytic Performance**

As shown in Figure 1A, the CH₄ conversion is zero when using only the NiO/ γ -Al₂O₃ 252 catalyst in the absence of NTP, indicating that SOMTM by O₂ cannot be triggered over 253 254 NiO/γ-Al₂O₃ catalyst without help of NTP. In plasma alone, 4.1 % CH₄ conversion is achieved with 42.2 % CH₃OH selectivity, and no hydrocarbons have been detected by 255 the GC. Hence, plasma alone is able to quite selectively produce CH₃OH in our setup, 256 257 while it is generally stated in literature that it is not selective at all, and needs a catalyst for the selective production of target compounds. [22, 34] This is attributed to the short 258 residence time, as will be explained by the modeling results below. Furthermore, the 259 influence of NTP (CH₄/O₂ molar ratio, temperature of grounding electrode, discharge 260 power and residence time) was also been studied, as shown in Figure S3-S6. After 261 packing by γ -Al₂O₃, the CH₄ conversion is slightly enhanced to 4.6 %, while the 262 CH₃OH selectivity is reduced to 41.4 %. However, when using NiO/ γ -Al₂O₃ catalyst 263 (10 wt.% loading), the CH₄ conversion and CH₃OH selectivity increase to 6.4 % and 264

49.7 %, respectively, indicating that NiO/ γ -Al₂O₃ catalyst has a positive effect on the 265 CH₃OH production in CH₄/O₂ NTP. The CH₄ conversion is still limited, attributed to 266 the short residence time of the gas inside the DBD reactor (high space velocity). By 267 tuning the flow rates and other discharge conditions, it should be possible to enhance 268 the conversion, but in this paper, we mainly focus on inhibiting the CH₄ overoxidation, 269 to increase the liquid oxygenates selectivity, especially for CH₃OH production. The 270 complete product distribution is shown in Figure S7 and S8, and the total selectivity of 271 liquid oxygenates reaches 80.7 %. This striking result is again attributed to the short 272 273 residence time, as illustrated by the modeling below.

Figure 1. Experimental results of SOMTM. (A). CH₄ conversion and products 276 277 selectivity, using only NiO/ γ -Al₂O₃ catalyst, only plasma, plasma with γ -Al₂O₃ beads, and plasma with (10 wt.%) NiO/y-Al₂O₃ catalyst (400 ml/min CH₄, 200 ml/min O₂, 278 85 °C circulating water, 1.25 g NiO/γ-Al₂O₃ catalyst, 30 W discharge power and 0.375 279

s residence time). (B). Effect of Ni loading on CH₄ conversion and products selectivity, for plasma with NiO/ γ -Al₂O₃ catalyst. (C). Stability test of the (10 wt.%) NiO/ γ -Al₂O₃ catalyst in CH₄/O₂ NTP during 50 h continuous operation.

Furthermore, we studied NiO/ γ -Al₂O₃ catalysts with varied loading (Figure 1B). The 283 highest CH₄ conversion and CH₃OH selectivity were both achieved at 10 wt.% loading. 284 Moreover, we operated the CH₄/O₂ NTP with 10 wt.% NiO/γ-Al₂O₃ catalyst 285 286 continuously for 50 hours, and the CH₄ conversion and CH₃OH selectivity remained stable (Figure 1C), indicating the excellent catalytic stability of the NiO/ γ -Al₂O₃ 287 catalyst in CH₄/O₂ NTP for CH₃OH production. The results obtained in this paper have 288 289 been compared with those in literature. As shown in Figure 2A, the CH₃OH productivity (27.3 mmol \cdot g_{cat}⁻¹ \cdot h⁻¹) calculated by formula (1) of the SI is two orders of 290 magnitude higher than the best results obtained through stoichiometric chemical 291 292 looping using O₂ as the oxidant. [20, 38] As shown in Figure 2 B, the CH₃OH selectivity is higher than the best results obtained through plasma catalysis, using various catalysts, 293 albeit at a lower CH₄ conversion. [30-32] 294

Figure 2. Comparison of this work with literature results. A: CH_3OH productivity by stoichiometric chemical looping using O_2 as the oxidant, for different catalyst materials (calculated based on the results adapted from references 20 and 38); B: CH_3OH

selectivity by plasma catalysis using O₂ as the oxidant (adapted from reference 30-32).
300

The hydrogen-based products selectivity is shown in Figure S9. The selectivity of CH₃OH is almost 50 % in the case of "plasma + NiO/ γ -Al₂O₃ catalyst, i.e., over 18 % higher than in the case of plasma or plasma + γ -Al₂O₃ beads. The H₂ and H₂O selectivities reach 5.6 % and 29.1 %, respectively, while the selectivities of HCHO and HCOOH are around 9 % and 4.9 %, respectively, in the case of "plasma + NiO/ γ -Al₂O₃ catalyst (10 wt.% loading).

Energy efficiency is a key performance indicator for plasma-catalytic SOMTM. We 307 defined the energy efficiency for CH₃OH formation by formula (7), in which the plasma 308 power was calculated through mathematical integration using the waveform of 309 discharge voltage (Figure S10) and discharge current (Figure S11). As illustrated by 310 311 Figure S12, the energy efficiency in the plasma-only case is 0.76 mol/kWh; it rises slightly to 0.95 mol/kWh with γ -Al₂O₃, but with NiO/ γ -Al₂O₃, it rises dramatically to 312 1.4 mol/kWh. Thus, while the CH₄ conversion and CH₃OH selectivity only increase by 313 314 2.3 % and 7.5 %, respectively, in case of plasma catalysis compared to plasma alone, the energy efficiency rises by 84 %. Furthermore, the produced methanol with high 315 concentration (1.3 mol/L) in liquid can be condensed in the online cold-trap, without 316 further methanol extraction using a solvent or steam, which can avoid a stepwise 317 process on heterogeneous catalysis. This continuous operation condition under low 318 temperature and atmosphere pressure exhibited the great potential for plasma-catalytic 319 SOMTM by CH₄/O₂ NTP. 320

321 **3.2** Chemical kinetics modelling of CH₄/O₂ DBD plasma

As mentioned above, in plasma alone, we achieved 42 % CH₃OH selectivity (Figure 1A), which is much better than most results in literature. [28-36] To explain this result, we performed chemical kinetics modelling of CH_4/O_2 DBD plasma using ZDPlaskin.[39] Details about the modelling, the species (Table S2) and reactions (Tables S3-S5) in the model, are presented in SI.

327

Figure 3. Products selectivity in CH_4/O_2 plasma, obtained by chemical kinetics modeling (lines) and experiments (symbols) as function of residence time, for the same conditions as in Figure 1.

332 Scheme 1. Reaction pathways for the formation of CH_3OH and other oxygenates in the 333 CH_4/O_2 plasma, predicted by chemical kinetics modelling (ZDPlaskin). Red color 334 indicates reaction intermediates and blue color with rectangles means stable products. 335 The size of the products is approximately proportional to their selectivity and the

thickness of the arrow lines is proportional to the net rate of that reaction.

The lines in Figure 3 depict the calculated products selectivity as function of 337 residence time, derived from the densities of the species in the plasma (Figure S13). 338 Initially, the calculated CH₃OH selectivity is extremely high (~ 78 %), but it decreases 339 gradually upon increasing residence time, until about 30 % for a residence time of 1.2s. 340 HCHO exhibits a similar evolution (but with maximum selectivity around 20 %), while 341 CO, HCOOH and CO₂ exhibit the opposite trend. To verify the modelling, we 342 performed experiments at varying residence time (symbols in Figure 3). The 343 experimental selectivities of CH₃OH, HCHO, CO and CO₂ agree reasonably well with 344 the modelling results (similar trends), indicating that the model provides a realistic 345 picture of the formation of these products in the CH₄/O₂ plasma. For HCOOH, however, 346 the agreement is not yet satisfying, suggesting that important production or loss 347 processes for HCOOH might be missing in the model, or that their rate coefficients are 348 349 not correct, but we can only rely on the input data (chemical reactions and corresponding rate coefficients) available in literature, and we don't want to tune the 350 model to fit it to the experiments without scientific basis. However, it means that our 351 model cannot yet be used to predict the reaction pathways for HCOOH, but we can use 352 it for the other possible reaction pathways in the CH₄/O₂ plasma. As shown in Scheme 353 1, CH₃OH is mainly produced from CH₃O species through the reactions $CH_3O + H +$ 354 $M \rightarrow CH_3OH + M$ and $CH_3O + HCO \rightarrow CH_3OH + CO$. 355

356 3.3 NiO/γ-Al₂O₃ Catalysts characterization

357 In spite of the high CH₃OH selectivity at short residence time, the CH₄ conversion is

quite low (4.1 %), caused by the high space velocity. However, as shown in Figure 1, the Ni catalyst (with 10 wt. % loading) enhances both the CH₄ conversion and CH₃OH selectivity. It is very interested that both CH₄ conversion and CH₃OH selectivity synchronously reached the highest value at 10 wt.% loading, since generally CH₃OH selectivity decreases with the increase of CH₄ conversion. To reveal the unique role of the Ni-based catalysts, we characterized them by XRD, HAADF-STEM, H₂-TPR, XPS, HRTEM, XRF and N₂ physisorption.

The XRD result (Figure 4 A) reveals no evident NiO peak for Ni loadings below 10 365 wt.%, indicating the high dispersion of the NiO particles on γ -Al₂O₃. However, a group 366 of NiO diffraction peaks gradually appears upon increasing metal loading, showing the 367 formation of larger NiO particles. The NiO crystal size is estimated by the 368 369 Debye-Scherrer equation, presented in Table S6. It is observed that NiO particles on NiO/ γ -Al₂O₃ with Ni loading from 15 to 25 % are in the range of 10.3–22.1 nm. In 370 addition, the adsorption-desorption isotherm and pore size distribution curve of the 371 catalysts are shown in Figure S14, and the corresponding surface values are presented 372 in Table S6. Clearly, surface area of NiO_γ-Al₂O₃ catalysts gradually declined with the 373 increasing of Ni loading, and γ -Al₂O₃ support shows the highest surface area (216.5 374 m^2/g). By correlating the surface area (Table S6) with the reaction performance (Figure 375 1), it can be concluded that surface area is not the key factor in determining catalytic 376 performance of NiO/ γ -Al₂O₃ catalysts in DOMTM. 377

Figure 4 C, D and E show HAADF-STEM images of 2 wt.% NiO/ γ -Al₂O₃, 10 wt.% NiO/ γ -Al₂O₃ and 25 wt.% NiO/ γ -Al₂O₃ catalysts, respectively. Clearly, the NiO

380	particle size in 2 wt.% NiO/ γ -Al ₂ O ₃ and 10 wt.% NiO/ γ -Al ₂ O ₃ is very small (< 5 nm).
381	but the size in 25 wt.% NiO/ γ -Al ₂ O ₃ is bigger (>10 nm). Figure S15 shows the
382	HAADF-STEM mapping results of 6 wt.% NiO/ γ -Al ₂ O ₃ , 15 wt.% NiO/ γ -Al ₂ O ₃ and 20
383	wt.% NiO/ γ -Al ₂ O ₃ . It can be seen that NiO was uniformly dispersed in 6 wt.% NiO/ γ -
384	Al ₂ O ₃ . In 15 wt.% NiO/ γ -Al ₂ O ₃ and 20 wt.% NiO/ γ -Al ₂ O ₃ , however, NiO particles with
385	size more than 10 nm can be clearly observed. HRTEM images (Figure S16) show
386	similar results. These morphology results indicate that NiO was highly dispersed on the
387	surface of γ -Al ₂ O ₃ with low loading (2, 6 and 10), and also demonstrate the larger NiO
388	particles at higher Ni loadings. Furthermore, a lattice space of 0.21 nm and 0.24 nm,
389	attributed to the (200) and (111) planes, was observed by HRTEM (Figure S17), and
390	similar results were also obtained from fast Fourier transformation (FFT) of NiO
391	particles in the HAADF-STEM images (Figure 4 C, D and E), consistent with the XRD
392	results (Figure 4 A).

395

Figure 4. Characterization results of the NiO/ γ -Al₂O₃ catalysts with varying loadings. (A) XRD patterns; (B) H₂-TPR profiles; (C) HAADF-STEM image of NiO/ γ -Al₂O₃ catalyst with 2 wt.% loading; (D)HAADF-STEM image of NiO/ γ -Al₂O₃ catalyst with 10 wt.% loading; (E) HAADF-STEM image of NiO/ γ -Al₂O₃ catalyst with 25 wt.% loading.

410	and bulk NiO only appear for Ni loadings above 10 wt.%. This corresponds to the XRD
411	results, where obvious diffraction peaks of NiO (larger particles) were formed at high
412	loading (15%, 20% and 25%). This is also consistent with the morphology results,
413	where bigger NiO particles have been observed at high loading (15%, 20% and 25%).
414	The XPS profiles of the Ni 2p and O 1s of the NiO/ γ -Al ₂ O ₃ catalysts with various Ni
415	loadings are shown in Figure 5 A and B, respectively (Al 2p results are shown in Figure
416	S19). For Ni 2p, three peaks, corresponding to a binding energy at 854.0, 855.8 and
417	856.9 eV, have been detected. The low binding energy peak (854.0 eV) is assigned to
418	free-NiO species (big NiO particles). [43, 44] The moderate binding energy peak (855.8
419	eV) is usually attributed to NiO species with WOSI. [45] The high binding energy peak
420	(856.9 eV), however, generally results from NiO species with SOSI or Ni^{3+} species.
421	[44, 46] On the other hand, the intensity of the satellite peak of Ni^{3+} is extremely low
422	(it can nearly be ignored), which means that there is few Ni^{3+} species on the catalyst
423	surface, and thus the peak of binding energy at 856.9 eV is mainly attributed to NiO
424	species with SOSI.

Figure 5. XPS results of the NiO/ γ -Al₂O₃ catalysts with varying loadings. (A) Ni 2p region; (B) O 1s region; (C) Proportion of oxygen species for varied loading of Ni on γ -Al₂O₃; (D) Linear relationship between content of chemisorbed oxygen species (O_β) and reaction performance.

432 Furthermore, at low loading (2, 6 and 10 wt.%), Ni mainly exists as NiO species

with SOSI, since the peak of binding energy at 856.9 eV dominates the whole Ni 2p
peak. On the other hand, at higher loading (15, 20 and 25 wt.%), Ni mainly exists as
NiO species with WOSI and free-NiO, because the peak at 854.0 eV appears and the
contribution of the peak at 855.8 eV increases. The surface information obtained by
XPS analysis is consistent with the above XRD, TEM and H₂-TPR results.

The O 1s spectra of NiO/ γ -Al₂O₃ catalysts presented in Figure 5 B can be fitted into three peaks, corresponding to the lattice oxygen of metal oxide (O_{α}), chemisorbed oxygen (O_{β}), and adsorbed water or OH species (O_{λ}), with binding energy at 530.9 eV,

441 532.1 eV and 532.9 eV, respectively. [47, 48]

As shown in Figure 5 C, upon increasing Ni loading from 2 to 10 wt.%, the 442 proportion of O_{β} species on the catalyst surface rises, and reaches the highest value 443 444 (45.6%) at 10 wt.% loading, and then it decreases. Interestingly, the variation trend of Ni 2p peak of SOSI NiO (Figure 5 A) is synchronous with O 1s of O_{β} species, which 445 means that the chemisorbed oxygen, i.e., O_{β} species, mainly comes from the SOSI NiO. 446 447 Lattice oxygen, i.e., O_{α} species, are undoubtedly from crystals, i.e., γ -Al₂O₃ support, free-NiO particles, and big NiO particles with WOSI. Upon increasing Ni loading, the 448 proportion of O_{α} species, however, firstly decreases and then increases, and the lowest 449 proportion was found at 10 wt.% loading, which means that the defects on the surface 450 of 10 wt.% NiO/γ-Al₂O₃ catalysts is much more than those of the other catalysts. The 451 defects have been created by SOSI, and usually, the created defects on metal oxide are 452 not stable. In an oxidizing atmosphere, they tend to combine with oxygen to form 453 chemisorbed oxygen, i.e., O_{β} species. That is, NiO with SOSI leads to surface 454

455 chemisorbed oxygen species.

Figure 5 D presents the reaction performance (CH₄ conversion, CH₃OH selectivity, 456 CO and CO₂ selectivity) as a function of O_{β} content on the catalyst surface. 457 Interestingly, with increasing O_{β} species content, both CH₄ conversion and CH₃OH 458 selectivity rise linearly, while both CO and CO₂ selectivity decrease linearly. Therefore, 459 it can be reasonably inferred that chemisorbed oxygen, i.e., O_{β} species, are the real 460 active sites for CH₄ to CH₃OH conversion in this study. In contrast, lattice oxygen 461 species, i.e., O_{α} , may be the sites leading to deep oxidation to produce CO and CO₂ 462 463 (Figure S20).

464 TG-MS results (Figure S21) shows very limited carbon deposition. In addition, the 465 fresh and spent NiO/ γ -Al₂O₃ (10 wt.%) catalysts were compared by XRD (Figure S22), 466 H₂-TPR (Figure S23) and XPS (Figure S24), and no evident changes were observed. 467 These results demonstrate the excellent catalytic stability of NiO/ γ -Al₂O₃ catalyst in 468 CH₄/O₂ NTP for CH₃OH production. Some other information of the NiO/ γ -Al₂O₃ 469 catalysts, i.e., the real loading, surface area and porosity, is shown in Table S6.

470 **3.4 NTP diagnostics and reaction mechanism**

OES diagnostics were employed to reveal some of the important plasma species playing a role in CH_4/O_2 NTP for CH_3OH synthesis. As shown in Figure 6 and Figure S25, CH (431.4 nm), H (656.3nm) and O (777.4 nm and 844.7 nm) were directly identified, demonstrating the existence of CH, H and O species in the plasma. However, also other reactive species are present in the plasma, which cannot be observed by OES. Morgan and Erwin stated that CH_4 can be decomposed into CH_3 , CH_2 and CH neutral

477	fragments. [49, 50] Based on a 1D fluid model, De Bie et al. predicted a probability of
478	producing CH ₃ , CH ₂ and CH radicals in CH ₄ DBD plasma of 79 %, 15 % and 5 %,
479	respectively.[51] A similar trend was predicted in a CH ₄ /O ₂ DBD plasma, again by a
480	1D fluid model. [52] Therefore, we can assume that CH_3 is more abundant than CH_2
481	and CH in the CH ₄ /O ₂ NTP. The reason why CH ₃ was not detected by OES is because
482	its emission lines appear in the infrared region, which is out of the wavelength range of
483	our OES measurements. For the oxidative species, the lines at 777.4 nm and 844.7 nm
484	were detected by OES, attributed to deexcitation of O $(3p^5P)$ and O $(3p^3P)$ atoms,
485	respectively.[53] However, the pathways for activation of O2 through inelastic
486	collisions with energetic electrons, as listed in Figure S26, indicate that the generation
487	of O (¹ D) is easier than the generation of O ($3p^5P$) and O ($3p^3P$). [54, 55] The reason
488	why we did not detect $O(^1D)$ by OES is that it is a metastable species with long lifetime,
489	which dissipates its internal energy by chemical reactions, instead of deexcitation.
490	Therefore, there will be abundant CH_3 radicals and O (¹ D) atoms in the CH_4/O_2 NTP,
491	which confirms the reaction pathway in Scheme 1, triggered by O (1 D) and CH ₃ . The
492	above OES results show that, in CH ₄ /O ₂ plasma, there are abundant CH ₃ , O (1 D) and H
493	radical species.

Figure 6. OES intensities of (A) CH (431.4 nm), (B) H (656.3 nm), (C) O (777.4 nm) and (D) O (844.7 nm), in the case of plasma alone, plasma + γ -Al₂O₃ beads, and plasma +(10 wt%) NiO/ γ -Al₂O₃ catalyst, for the same conditions as in Figure 1.

Tang et al. predicted that CH₃OH synthesis usually proceeds through the 499 500 Langmuir-Hinshelwood (L-H) mechanism in thermal catalysis. [56] In plasma catalysis, however, CH₃OH might be formed by both Eley-Rideal (E-R) and L-H mechanisms. 501 [32, 57, 58] On the NiO/ γ -Al₂O₃ (10 wt.%) catalyst surface, chemisorbed oxygen is 502 abundant, which has been demonstrated by our XPS results. On the other hand, in the 503 gas-phase, CH₃ and O radicals are also abundant, as proven by our OES results. 504 Therefore, it can be reasonably assumed that CH₃O species can be formed, not only 505 506 through radical reactions in gas-phase (proven by our modelling results in Scheme 1), i.e., $CH_3O_{(g)}$, but also through reaction between CH_3 in gas phase and chemisorbed 507

oxygen on the catalyst surface, i.e., CH₃O_(ad). That is, due to the reactivity of the CH₃ 508 radicals caused by their internal energy, the formation of CH₃O species through E-R 509 reaction between CH₃ radicals and chemisorbed oxygen will be very fast. Subsequently, 510 the formed CH₃O species may result in the generation of CH₃OH through 511 recombination with a H atom generated by CH₄/O₂ plasma (E-R reaction) [32]. 512 513 Therefore, the reason why the NiO/ γ -Al₂O₃ (10 wt.%) catalyst shows the best CH₄ conversion may be that it contains the highest content of chemisorbed oxygen. In the 514 case of plasma-catalytic CH₄ to CH₃OH conversion, the formation and desorption of 515 516 one CH₃OH molecule will consume one O_{β} species (as O_{β} is the real active site). In conventional heterogeneous catalysis, this may lead to a continuous decrease of the O_{β} 517 content at the catalyst surface, and thus the reaction performance would decline since 518 the catalytic cycle cannot be completed. However, in the case of plasma catalysis, O₂ is 519 activated by the plasma into O atoms (either in ground or excited states, e.g., ¹D), which 520 are very reactive, and easily interact with the catalyst surface. So, we believe that these 521 O atoms are capable of interacting with the catalyst surface to rapidly form O_{β} species, 522 which compensates for the consumption of O_B species producing CH₃OH. In other 523 words, the plasma-generated reactive oxygen species enable the fast catalytic cycle for 524 CH₄ oxidation to CH₃OH. 525

The produced CH_3OH molecule usually strongly adsorbs on the catalyst surface, making desorption difficult and resulting in deep oxidation, which is the key factor inhibiting the CH_3OH selectivity, and it is the issue many researchers are concerning. As reported by Lustemberg, water molecules can be activated by Ni/CeO₂ catalyst with

530	strong metal-support interactions, and then the activated H ₂ O molecule can promote
531	CH ₃ OH desorption.[37] In addition, Water molecular can act as a site blocker, which
532	can preferentially occupy the active Ce sites at the CeO2-Cu2O catalyst interface and
533	hinder methane overoxidation to CO and CO ₂ , meanwhile, it can also act as an active
534	center where the active *OH was produced at interfacial Ce sites to promote methanol
535	synthesis.[15] In the stepwise process using copper-exchanged zeolites, H ₂ O molecule
536	also plays an essential role in promoting CH ₃ OH formation and desorption.[59, 60]
537	Chemical kinetics modeling result (Figure S13) shows that H_2O molecules are abundant
538	in the CH ₄ /O ₂ NTP. The measured products selectivity based on hydrogen (Figure S9)
539	shows that the selectivity of H_2O reached 29.1 %, demonstrating that H_2O molecules
540	are abundant in CH ₄ /O ₂ NTP. As demonstrated by our XPS results (Figure 5), caused
541	by SOSI, the defects are also abundant at the interface between NiO particles and γ -
542	Al ₂ O ₃ support, especially for the NiO/ γ -Al ₂ O ₃ catalyst with 10 wt.% loading. Therefore,
543	we believe that the H_2O molecule produced by CH_4/O_2 plasma can also be activated by
544	$NiO/\gamma\text{-}Al_2O_3$ catalyst with SOSI, and the activated H_2O molecule may promote
545	desorption of CH ₃ OH, which may be the reason why the NiO/ γ -Al ₂ O ₃ (10 wt.%)
546	catalyst shows the best CH ₃ OH selectivity. The role of plasma and Ni-based catalyst in
547	SOMTM has been summarized in Scheme 2.

549 550

551 Scheme 2. Suggested reaction pathways of CH₃OH formation in CH₄/O₂ plasma 552 promoted by NiO/ γ -Al₂O₃ catalyst with SOSI (see text)

554 **4. Conclusion**

We demonstrated the selective oxidation of methane to methanol (SOMTM) in CH₄/O₂ plasma, promoted by Ni-based catalysts, with excellent catalytic stability. 76 % liquid oxygenates selectivity with 42 % CH₃OH selectivity are achieved in plasma alone, and the selectivities are further enhanced to 81 % and 50 %, respectively, when adding NiO/ γ -Al₂O₃ catalyst with 10 wt.% loading. The energy efficiency by plasma catalysis is improved with 84 % comparing to plasma alone (from 0.76 to 1.4 mol/kWh).

In addition, chemical kinetics modelling shows that within the plasma, CH₃OH is mainly produced through radical reactions, i.e., $CH_4 + O(^1D) \rightarrow CH_3O + H$, followed by $CH_3O + H + M \rightarrow CH_3OH + M$ and $CH_3O + HCO \rightarrow CH_3OH + CO$. The catalyst characterization shows that the further improvement in CH_3OH production by plasma

catalysis is attributed to the highly dispersed NiO phase with SOSI. This causes an 566 improvement of chemisorbed oxygen species, which catch CH₃ radicals from the 567 plasma to form CH₃O_{ad} species. The latter can form CH₃OH through the ER reaction 568 with H atoms from the plasma. Furthermore, H₂O molecules produced by CH₄/O₂ 569 plasma may also be activated by NiO/γ-Al₂O₃ catalyst with SOSI, and the activated 570 H₂O molecules may promote desorption of CH₃OH. The highest content of 571 chemisorbed oxygen species can explain why the NiO/y-Al₂O₃ catalyst with 10 wt.% 572 loading shows both the best CH₄ conversion and the best CH₃OH selectivity. 573

Further work will be focused on enhancing the plasma-catalyst synergy through modifying the NiO/ γ -Al₂O₃ catalyst by electronic promoters (multi-component catalysts), which should allow to enhance the adsorption capacity towards reaction intermediates (CH₃O, etc.) and the desorption of favorable target products, aiming to further improve the CH₄ conversion and CH₃OH selectivity.

579 ASSOCIATED CONTENT

Supporting Information. The supporting information is available free of charge via
the Internet at XX.

Thermodynamic equilibrium of CH₄/O₂ conversion (Figure S1), preparation of catalysts (Scheme S1), experimental details for activity test (Scheme S2), results of qualitative analysis (Figure S2, Table S1), results of control experiments (Figure S3-S9), plasma diagnostics (Figure S10-S11), energy efficiency (Figure S12), details of chemical kinetic modeling (Table S2-S5, Figure S13), results of catalyst characterization (Table S6-S7, Figure S14-S24), OES diagnostic of CH₄/O₂ plasma 588 (Figure S25-S26).

589 AUTHOR INFORMATION

590 **Corresponding Author**

591 * E-mail: yiyanhui@dlut.edu.cn

592 Author Contributions

- 593 The manuscript was written through contributions of all authors. All authors have
- given approval to the final version of the manuscript.
- 595 Notes
- 596 The authors declare no competing financial interest.

597 ACKNOWLEDGEMENT

- 598 We acknowledge financial support from the PetroChina Innovation Foundation [grant
- 599 ID: 2018D-5007-0501], the National Natural Science Foundation of China [grant ID:
- 600 21503032] and the TOP research project of the Research Fund of the University of

601 Antwerp [grant ID: 32249].

602 **REFERENCE**

- [1] A. Caballero, P. Perez, Methane as raw material in synthetic chemistry the final
 frontier, Chem. Soc. Rev., 42 (2013), 8809-8820.
- [2] J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma,
 J. Tang, Highly selective oxidation of methane to methanol at ambient conditions
 by titanium dioxide-supported iron species, Nature Catalysis, 1 (2018) 889-896.
- [3] X. Meng, X. Cui, N.P. Rajan, L. Yu, D. Deng, X. Bao, Direct Methane Conversion
 under Mild Condition by Thermo-, Electro-, or Photocatalysis, Chem, 5 (2019) 130.
- [4] R.A. Periana, D.J. Taube, E.R. Evitt, D.G. Loffler, P.R. Wentreek, G. Voss, T.
 Masuda, A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane
 to Methanol, Science, 259 (1993) 340-343.
- [5] R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Platinum
 Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative,
 Science, 280 (1998) 560-564.

- 617 [6] M. Muehlhofer, T. Strassner, W.A. Herrmann, New Catalyst Systems for the
 618 Catalytic Conversion of Methane into Methanol, Angew. Chem. Int. Ed. 41 (2002)
 619 1745-1747.
- [7] M.V. Parfenov, E.V. Starokon, L.V. Pirutko, G.I. Panov, Quasicatalytic and catalytic
 oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite, J. Catal.
 318 (2014) 14–21.
- [8] C. Hammond, M.M. Forde, M.H. Ab Rahim, A. Thetford, Q. He, R.L. Jenkins, N.
 Dimitratos, J.A. Lopez-Sanchez, N.F. Dummer, D.M. Murphy, A.F. Carley, S.H.
 Taylor, D.J. Willock, E.E. Stangland, J. Kang, H. Hagen, C.J. Kiely, G.J.
 Hutchings, Direct catalytic conversion of methane to methanol in an aqueous
 medium by using copper-promoted Fe-ZSM-5, Angew. Chem. Int. Ed. 51 (2012)
 5129-5133.
- [9] M. H. Groothaert, P.J. Smeets, B.F. Sels, P.A. Jacobs, R.A. Schoonheydt, Selective
 Oxidation of Methane by the Bis(μ-oxo)dicopper Core Stabilized on ZSM-5 and
 Mordenite Zeolites, J. Am. Chem. Soc. 127 (2005) 1394-1395.
- [10] S. Grundner, M.A. Markovits, G. Li, M. Tromp, E.A. Pidko, E.J. Hensen, A.
 Jentys, M. Sanchez-Sanchez, J.A. Lercher, Single-site trinuclear copper oxygen
 clusters in mordenite for selective conversion of methane to methanol, Nat.
 Comm. 6 (2015) 7546.
- [11] D.K. Pappas, E. Borfecchia, M. Dyballa, I.A. Pankin, K.A. Lomachenko, A.
 Martini, M. Signorile, S. Teketel, B. Arstad, G. Berlier, C. Lamberti, S. Bordiga,
 U. Olsbye, K.P. Lillerud, S. Svelle, P. Beato, Methane to Methanol: StructureActivity Relationships for Cu-CHA, J. Am. Chem. Soc. 139 (2017) 14961-14975.
- [12] N. Agarwal, S. Freakley, R.U. McVicker, S.M. Althahban, N. Dimitratos, Q. He,
 D.J. Morgan, R.L. Jenkins, D.J. Willock, S.H. Taylor, C.J. Kiely, G.J. Hutchings1,
- Aqueous Au-Pd colloids catalyze selective CH₄ oxidation to CH₃OH with O₂
 under mild conditions, Science 358 (2017) 223–227.
- [13] J. Shan, M. Li, L.F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Mild oxidation of
 methane to methanol or acetic acid on supported isolated rhodium catalysts,
 Nature, 551 (2017) 605-608.
- [14] Z. Zuo, P.J. Ramirez, S.D. Senanayake, P. Liu, J.A. Rodriguez, Low-Temperature
 Conversion of Methane to Methanol on CeO_x/Cu₂O Catalysts: Water Controlled
 Activation of the C-H Bond, J. Am. Chem. Soc. 138 (2016) 13810-13813.

- [15] Z Liu, E. Huang, I. Orozco, W. Liao, R.M. Palomino, N. Rui, T. Duchon, S.
 Nemsak, D.C. Grinter, M. Mahapatra, P. Liu, J.A. Rodriguez, S.D. Senanayake,
 Water-promoted interfacial pathways in methane oxidation to methanol on a CeO₂Cu₂O catalyst, Science 368 (2020) 513–517.
- [16] Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C. Wang, X. Meng,
 H. Yang, C. Mesters, F. Xiao, H₂O₂ Hydrophobic zeolite modification for in situ
 peroxide formation in methane oxidation to methanol, Science, 367 (2020) 193–
 197.
- [17] M. Ravi, M. Ranocchiari, J.A. van Bokhoven, The direct catalytic oxidation of
 methane to methanol-a critical assessment, Angew. Chem. Int. Ed. 56 (2017)
 16464-16483.
- [18] X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L. He, X.
 Chen, Q. Li, J. Xiao, D. Deng, X. Bao, Room-temperature methane conversion by
 graphene-confined single iron atoms, Chem, 4 (2018) 1902-1910.
- [19] P. Tomkins, M. Ranocchiari, J.A. van Bokhoven, Direct Conversion of Methane to
 Methanol under Mild Conditions over Cu-Zeolites and beyond, Accounts of
 chemical research, 50 (2017) 418-425.
- [20] M.H. Mahyuddin, Y. Shiota, K. Yoshizawa, Methane selective oxidation to
 methanol by metal-exchanged zeolites: a review of active sites and their reactivity,
 Catal. Sci. Technol. 9 (2019) 1744-1768.
- [21] J.P. Lange, V.L. Sushkevich, A.J. Knorpp, J.A. van Bokhoven, Methane-tomethanol via chemical looping economic potential and guidance for future
 research, Ind. Eng. Chem. Res. 58 (2019) 8674–8680.
- [22] L. Wang, Y. Yi, H. Guo, X. Tu, Atmospheric pressure and room temperature
 synthesis of methanol through plasma-catalytic hydrogenation of CO₂, ACS Catal.
 8 (2017) 90-100.
- [23] J. Sentek, K. Krawczyk, M. Młotek, M. Kalczewska, T. Kroker, T. Kolb, A.
 Schenk, K.-H. Gericke, K. Schmidt-Szałowski, Plasma-catalytic methane
 conversion with carbon dioxide in dielectric barrier discharges, Appl. Catal. B:
 Environ. 94 (2010) 19-26.
- [24] D. Li, V. Rohani, F. Fabry, A. Parakkulam Ramaswamy, M. Sennour, L. Fulcheri,
 Direct conversion of CO₂ and CH₄ into liquid chemicals by plasma-catalysis,
 Appl. Catal. B: Environ. 261 (2020) 118228.

- [25] L. Wang, Y. Yi, C. Wu, H. Guo, X. Tu, One-Step Reforming of CO₂ and CH₄ into
 high-value liquid chemicals and fuels at room temperature by plasma-driven
 Catalysis, Angew. Chem. Int. Ed. 56 (2017) 13679-13683.
- [26] C.E. Stere, J.A. Anderson, S. Chansai, J.J. Delgado, A. Goguet, W.G. Graham, C.
 Hardacre, S.F. Rebecca Taylor, X. Tu, Z. Wang, H. Yang, Non-thermal plasma
 activation of gold-based catalysts for low-temperature water-gas shift catalysis,
 Angew. Chem. Int. Ed. 56 (2017) 5579-5583.
- 690 [27] R. Snoeckx, A. Bogaerts, Plasma technology a novel solution for CO₂
 691 conversion? Chem. Soc. Rev. 46 (2017) 5805-5863.
- [28] T. Nozaki, A. Ağıral, S. Yuzawa, J.G.E. Han Gardeniers, K. Okazaki, A single step
 methane conversion into synthetic fuels using microplasma reactor, Chem. Eng. J.
 166 (2011) 288-293.
- [29] A. Indarto, H. Lee, J.W. Choi, H.K. Song, Partial oxidation of methane with yttriastabilized zirconia catalyst in a dielectric barrier discharge, Energy Sources, Part
 A: Recovery, Utilization, and Environmental Effects, 30 (2008) 1628-1636.
- [30] P. Chawdhury, D. Ray, C. Subrahmanyam, Single step conversion of methane to
 methanol assisted by nonthermal plasma, Fuel Process. Technol. 179 (2018) 3241.
- [31] P. Chawdhury, D. Ray, T. Vinodkumar, C. Subrahmanyam, Catalytic DBD plasma
 approach for methane partial oxidation to methanol under ambient conditions,
 Catalysis Today, 337 (2019) 117-125.
- [32] P. Chawdhury, Y. Wang, D. Ray, S. Mathieu, N. Wang, J. Harding, F. Bin, X. Tu,
 C. Subrahmanyam, A promising plasma-catalytic approach towards single-step
 methane conversion to oxygenates at room temperature, Appl. Catal. B: Environ.
 284 (2021) 119735.
- [33] B. Loenders, Y. Engelmann and A. Bogaerts, Plasma-catalytic partial oxidation of
 methane on Pt(111): A microkinetic study of the role of different plasma species,
 J. Phys. Chem. C, 125 (2021) 2966-2983.
- [34] H. Puliyalil, D. Lašič Jurković, V.D.B.C. Dasireddy, B. Likozar, A review of
 plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into
 value-added platform chemicals and fuels, RSC Adv. 8 (2018) 27481-27508.
- [35] D.W. Larkin, L.L. Lobban, R.G. Mallinson, The direct partial oxidation of methane
 to organic oxygenates using a dielectric barrier discharge reactor as a catalytic
 reactor analog, Catal. Today 71 (2001) 199–210.

- [36] L.M. Zhou, B. Xue, U. Kogelschatz, B. Eliasson, Partial oxidation of methane to
 methanol with oxygen or air in a nonequilibrium discharge plasma, Plasma Chem.
 and Plasma Process. 18 (1998) 375-393.
- [37] P.G. Lustemberg, R.M. Palomino, R.A. Gutiérrez, D.C. Grinter, M. Vorokhta, Z.
 Liu, P.J. Ramírez, V. Matolín, M.V. Ganduglia-Pirovano, S.D. Senanayake, J.A.
 Rodriguez, Direct conversion of methane to methanol on Ni-Ceria surfaces:
 metal-support interactions and water-enabled catalytic conversion by site
 blocking, J. Am. Chem. Soc. 140 (2018) 7681-7687.
- [38] A.J. Knorpp, A.B. Pinar, M.A. Newton, V.L. Sushkevich, J.A. van Bokhoven,
 Copper-exchanged omega (MAZ) zeolite: copper-concentration dependent active
 sites and its unprecedented methane to methanol conversion, ChemCatChem, 10
 (2018) 5593-5596.
- [39] S. Pancheshnyi, B. Eismann, G.J.M. Hagelaar, L.C. Pitchford, Computer code
 ZDPlasKin, http://www.zdplaskin.laplace.univ-tlse.fr, University of Toulouse,
 LAPLACE, CNRS-UPS-INP, Toulouse, France, 2008.
- [40] X. Zhu, P. Huo, Y.-p. Zhang, D. Cheng, C. Liu, Structure and reactivity of plasma
 treated Ni/Al₂O₃ catalyst for CO₂ reforming of methane, Appl. Catal. B: Environ.
 81 (2008) 132-140.
- [41] D. Hu, J. Gao, Y. Ping, L. Jia, P. Gunawan, Z. Zhong, G. Xu, F. Gu, F. Su, Enhanced
 investigation of CO methanation over Ni/Al₂O₃ catalysts for synthetic natural gas
 production, Ind. Eng. Chem. Res. 51 (2012) 4875-4886.
- [42] A. Alihosseinzadeh, B. Nematollahi, M. Rezaei, E.N. Lay, CO methanation over
 Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al₂O₃
 for CO removal in H₂-rich stream, Int. J. Hydrog. Energy 40 (2015) 1809-1819.
- 741 [43] https://xpssimplified.com/elements/nickel.php.
- [44] S. Kirumakki, B. Shpeizer, G. Sagar, K. Chary, A. Clearfield, Hydrogenation of
 naphthalene over NiO/SiO₂-Al₂O₃ catalysts: structure-activity correlation, J.
 Catal. 242 (2006) 319-331.
- [45] C.P. Li, A. Proctor, D.M. Hercules, Curve fitting analysis of ESCA Ni 2p spectra
 of nickel-oxygen compounds and Ni/AI₂O₃ catalysts, Appl. Spectroscopy 38
 (1984) 880-886.
- [46] P. Salagre, J.L.G. Fierro, F. Medina, J.E. Sueiras, Characterization of nickel species
 on several y-alumina supported nickel samples, Journal of Molecular Catalysis A:
 Chemical 106 (1996) 125- 134.

- 751[47] J. Jongsomjit, B. Jongsomjit, Catalytic ethanol dehydration to ethylene over752nanocrystalline χ and γ -Al₂O₃ catalysts., J. Oleo Sci. 66 (2017) 1029-1039.
- [48] Y. Jian, T. Yu, Z. Jiang, Y. Yu, M. Douthwaite, J. Liu, R. Albilali, C. He, In-depth
- understanding of the morphology effect of α-Fe₂O₃ on catalytic ethane destruction.
 ACS Appl. Mater. Interfaces 11 (2019) 11369–11383.
- [49] D.A. Erwin, J.A. Kunc, Electron-impact dissociation of the methane molecule into
 neutral fragments, Phys. Rev. A 72 (2005) 052719.
- [50] D.A. Erwin, J.A. Kunc, Dissociation and ionization of the methane molecule by
 nonrelativistic electrons including the near threshold region, J. Appl. Phys. 103
 (2008) 064906.
- [51] C. De Bie, B. Verheyde, T. Martens, J. van Dijk, S. Paulussen, A. Bogaerts, Fluid
 modeling of the conversion of methane into higher hydrocarbons in an
 atmospheric pressure dielectric barrier discharge, Plasma Processes and Polym. 8
 (2011) 1033-1058.
- [52] C. De Bie, J. van Dijk, A. Bogaerts, The dominant pathways for the conversion of
 methane into oxygenates and syngas in an atmospheric pressure dielectric barrier
 discharge, J. Phys. Chem. C 119 (2015) 22331-22350.
- [53] R.E. Walkup, K.L. Saenger, G.S. Selwyn, Studies of atomic oxygen in O₂ + CF₄ rf
 discharges by two-photon laser-induced fluorescence and optical emission
 spectroscopy, J. Chem. Phys. 84 (1986) 2668-2674.
- [54] B. Eliasson, U. Kogelschatz, Electron impact dissociation in oxygen. J. Phys. B:
 At., Mol. Opt. Phys., 19 (1986) 1241-1247.
- [55] P.C. Cosby, Electron-impact dissociation of oxygen, J. Chem. Phys. 98 (1993)9560-9569.
- [56] Q. Tang, Z. Shen, L. Huang, T. He, H. Adidharma, A.G. Russell, M. Fan, Synthesis
 of methanol from CO₂ hydrogenation promoted by dissociative adsorption of
 hydrogen on a Ga₃Ni₅(221) surface, Phys. Chem. Chem. Phys. 19 (2017) 1853918555.
- [57] M. Shirazi, E.C. Neyts, A. Bogaerts, DFT study of Ni-catalyzed plasma dry
 reforming of methane, Appl. Catal. B: Environ. 205 (2017) 605-614.
- [58] S. Li, R. Ahmed, Y. Yi, A. Bogaerts. Methane to methanol through heterogeneous
 catalysis and plasma catalysis. Catalysts, 11 (2021) 590.

- [59] V.L. Sushkevich, D. Palagin, M. Ranocchiari, J.A. van Bokhoven, Selective
 anaerobic oxidation of methane enables direct synthesis of methanol, Science 356
 (2017) 523–527.
- [60] K. Narsimhan, K. Iyoki, K. Dinh, Y. Roman-Leshkov, Catalytic oxidation of
 methane into methanol over copper-exchanged zeolites with oxygen at low
 temperature, ACS central science, 2 (2016) 424-429.