|
Record |
Links |
|
Author |
Yi, Y.; Li, S.; Cui, Z.; Hao, Y.; Zhang, Y.; Wang, L.; Liu, P.; Tu, X.; Xu, X.; Guo, H.; Bogaerts, A. |
|
|
Title |
Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling |
Type |
A1 Journal Article;Methane conversion |
|
Year |
2021 |
Publication |
Applied Catalysis B-Environmental |
Abbreviated Journal |
Appl Catal B-Environ |
|
|
Volume |
296 |
Issue |
|
Pages |
120384 |
|
|
Keywords |
A1 Journal Article;Methane conversion; Plasma catalysis; Selective oxidation; Methanol synthesis; Plasma chemistry; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
The selective oxidation of methane to methanol (SOMTM) by molecular oxygen is a holy grail in catalytic chemistry and remains a challenge in chemical industry. We perform SOMTM in a CH4/O2 plasma, at low temperature and atmospheric pressure, promoted by Ni-based catalysts, reaching 81 % liquid oxygenates selectivity and 50 % CH3OH selectivity, with an excellent catalytic stability. Chemical kinetics modelling shows that CH3OH in the plasma is mainly produced through radical reactions, i.e., CH4 + O(1D) → CH3O + H, followed by CH3O + H + M→ CH3OH + M and CH3O + HCO → CH3OH + CO. The catalyst characterization shows that the improved production of CH3OH is attributed to abundant chemisorbed oxygen species, originating from highly dispersed NiO phase with strong oxide support interaction with γ-Al2O3, which are capable of promoting CH3OH formation through E-R reactions and activating H2O molecules to facilitate CH3OH desorption. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000706860000003 |
Publication Date |
2021-05-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-3373 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.446 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
National Natural Science Foundation of China; PetroChina Innovation Foundation; We acknowledge financial support from the PetroChina Innovation Foundation [grant ID: 2018D-5007-0501], the Young Star Project of Dalian Science and Technology Bureau [grant ID: 2019RQ042], the National Natural Science Foundation of China [grant ID: 21503032] and the TOP research project of the Research Fund of the University of Antwerp [grant ID: 32249]. |
Approved |
Most recent IF: 9.446 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:178816 |
Serial |
6793 |
|
Permanent link to this record |