toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Govaerts, K.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Extended homologous series of Sn–O layered systems: A first-principles study Type A1 Journal article
  Year 2016 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 243 Issue 243 Pages 36-43  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Apart from the most studied tin-oxide compounds, SnO and SnO2, intermediate states have been claimed to exist for more than a hundred years. In addition to the known homologous series (Seko et al., Phys. Rev. Lett. 100, 045702 (2008)), we here predict the existence of several new compounds with an O concentration between 50 % (SnO) and 67 % (SnO2). All these intermediate compounds are constructed from removing one or more (101) oxygen layers of SnO2. Since the van der Waals (vdW) interaction is known to be important for the Sn-Sn interlayer distances, we use a vdW-corrected functional, and compare these results with results obtained with PBE and hybrid functionals. We present the electronic properties of the intermediate structures and we observe a decrease of the band gap when (i) the O concentration increases and (ii) more SnO-like units are present for a given concentration. The contribution of the different atoms to the valence and conduction band is also investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381544200007 Publication Date 2016-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited (up) 10 Open Access  
  Notes We gratefully acknowledge financial support from a GOA fund of the University of Antwerp. K.G. thanks the University of Antwerp for a PhD fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government – department EWI. Approved Most recent IF: 1.554  
  Call Number c:irua:134037 Serial 4085  
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M. pdf  url
doi  openurl
  Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
  Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 7578-7581  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387518500004 Publication Date 2016-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 10 Open Access  
  Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial 4320  
Permanent link to this record
 

 
Author Juchtmans, R.; Clark, L.; Lubk, A.; Verbeeck, J. url  doi
openurl 
  Title Spiral phase plate contrast in optical and electron microscopy Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue 94 Pages 023838  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of phase plates in the back focal plane of a microscope is a well-established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, which adds an angularly dependent phase of the form exp(iℓϕk) to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of l=+-1

SPP filtered images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. We discuss the difference between a clockwise-anticlockwise pair of SPP filtered images and derive conditions under which the modulus of the wave's gradient can be seen directly from one SPP filtered image. This work provides the theoretical background to interpret images obtained with a SPP, thereby opening new perspectives for new experiments to study, for example, magnetic materials in an electron microscope.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381882800011 Publication Date 2016-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited (up) 10 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_ Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:140086 Serial 4418  
Permanent link to this record
 

 
Author Zhang, B.; Deschamps, M.; Ammar, M.-R.; Raymundo-Pinero, E.; Hennet, L.; Batuk, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Laser synthesis of hard carbon for anodes in Na-ion battery Type A1 Journal article
  Year 2017 Publication Advanced Materials Technologies Abbreviated Journal  
  Volume 2 Issue 3 Pages 1600227  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398999900003 Publication Date 2016-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 10 Open Access Not_Open_Access  
  Notes ; The RS2E (Reseau sur le StockageElectrochimique de l'Energie) network is acknowledged for the financial support of this work through the ANR project Storex (ANR-10-LABX-76-01). J.-M.T acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC GrantProject 670116-ARPEMA. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:142452 Serial 4666  
Permanent link to this record
 

 
Author Cremers, V.; Rampelberg, G.; Barhoum, A.; Walters, P.; Claes, N.; Oliveira, T.M. de; Assche, G.V.; Bals, S.; Dendooven, J.; Detavernier, C. pdf  url
doi  openurl
  Title Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition Type A1 Journal article
  Year 2018 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 349 Issue 349 Pages 1032-1041  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) is a vapor based technique which allows to deposit uniform, conformal films with a thickness control at the atomic scale. In this research, Al 2 O 3 coatings were deposited on micrometer-sized Fe and Cu powder (particles) using the thermal trimethylaluminum (TMA)/ water (H 2 O) process in a rotary pump-type ALD reactor. Rotation of the powder during deposition was required to obtain a pinhole-free ALD coating. The protective nature of the coating was evaluated by quantifying its effectiveness in protecting the metal particles during oxidative annealing treatments. The Al 2 O 3 coated powders were annealed in ambient air while in-situ thermogravimetric analysis (TGA) and in-situ x-ray diffraction (XRD) data were acquired. The thermal stability of a series of Cu and Fe powder with different Al 2 O 3 thicknesses were determined with TGA. In both samples a clear shift in oxidation temperature is visible. For Cu and Fe powder coated with 25 nm Al 2 O 3 , we observed an increase of the oxidation temperature with 300-400°C. For the Cu powder a thin film of only 8 nm is required to obtain an initial increase in oxidation temperature of 200°C. In contrast, for Fe powder a thicker coating of 25 nm is required. In both cases, the oxidation temperature increases with increasing thickness of the Al 2 O 3 coating. These results illustrate that the Al 2 O 3 thin film, deposited by the thermal ALD process (TMA/H 2 O) can be an efficient and pinhole-free barrier layer for micrometer-sized powder particles, provided that the powder is properly agitated during the process to ensure sufficient vapour-solid interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441492600108 Publication Date 2018-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited (up) 10 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Strategic Initiative Materials in Flanders (SIM, SBO-FUNC project) and the Special Research Fund BOF of Ghent University (GOA 01G01513). J. D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for a postdoctoral fellowship. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant 335078-COLOURATOMS). The authors acknowledge S. Goeteyn for the assistance in preliminary depositions. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 2.589  
  Call Number EMAT @ emat @c:irua:152174UA @ admin @ c:irua:152174 Serial 4994  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Duchamp, M.; Roesner, M.; Migunov, V.; Winkler, F.; Yang, H.; Huth, M.; Ritz, R.; Simson, M.; Ihle, S.; Soltau, H.; Wehling, T.; Dunin-Borkowski, R.E.; Van Aert, S.; Rosenauer, A. url  doi
openurl 
  Title Atomic-scale quantification of charge densities in two-dimensional materials Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 12 Pages 121408  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The charge density is among the most fundamental solid state properties determining bonding, electrical characteristics, and adsorption or catalysis at surfaces. While atomic-scale charge densities have as yet been retrieved by solid state theory, we demonstrate both charge density and electric field mapping across a mono-/bilayer boundary in 2D MoS2 by momentum-resolved scanning transmission electron microscopy. Based on consistency of the four-dimensional experimental data, statistical parameter estimation and dynamical electron scattering simulations using strain-relaxed supercells, we are able to identify an AA-type bilayer stacking and charge depletion at the Mo-terminated layer edge.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000445508200004 Publication Date 2018-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 10 Open Access OpenAccess  
  Notes ; K.M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (VH-NG-1317) within the framework of the Helmholtz Young Investigator Group moreSTEM at Forschungszentrum Julich, Germany. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153621 Serial 5078  
Permanent link to this record
 

 
Author Vanrompay, H.; Buurlage, J.‐W.; Pelt, D.M.; Kumar, V.; Zhuo, X.; Liz‐Marzán, L.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Real‐Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles Type A1 Journal article
  Year 2020 Publication Particle & Particle Systems Characterization Abbreviated Journal Part Part Syst Char  
  Volume 37 Issue 37 Pages 2000073  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A detailed 3D investigation of nanoparticles at a local scale is of great importance to connect their structure and composition to their properties. Electron tomography has therefore become an important tool for the 3D characterization of nanomaterials. 3D investigations typically comprise multiple steps, including acquisition, reconstruction, and analysis/quantification. Usually, the latter two steps are performed offline, at a dedicated workstation. This sequential workflow prevents on-the-fly control of experimental parameters to improve the quality of the 3D reconstruction, to select a relevant nanoparticle for further characterization or to steer an in-situ tomography experiment. Here, we present an efficient approach to overcome these limitations, based on the real-time reconstruction of arbitrary 2D reconstructed slices through a 3D object. Implementation of this method may lead to generalized implementation of electron tomography for routine nanoparticle characterization in 3D.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536357100001 Publication Date 2020-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited (up) 10 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1S32617N ; Fonds Wetenschappelijk Onderzoek, G026718N ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 639.073.506 016.Veni.192.235 ; H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G026718N). Financial support was provided by The Netherlands Organization for Scientific Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). H.V. and J.-W.B contributed equally to this work.; sygma Approved Most recent IF: 2.7; 2020 IF: 4.474  
  Call Number EMAT @ emat @c:irua:169704 Serial 6371  
Permanent link to this record
 

 
Author Reguera, J.; Flora, T.; Winckelmans, N.; Rodriguez-Cabello, J.C.; Bals, S. url  doi
openurl 
  Title Self-assembly of Janus Au:Fe₃O₄ branched nanoparticles. From organized clusters to stimuli-responsive nanogel suprastructures Type A1 Journal article
  Year 2020 Publication Nanoscale Advances Abbreviated Journal  
  Volume 2 Issue 6 Pages 2525-2530  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Janus nanoparticles offer enormous possibilities through a binary selective functionalization and dual properties. Their self-assembly has attracted strong interest due to their potential as building blocks to obtain molecular colloids, supracrystals and well-organized nanostructures that can lead to new functionalities. However, this self-assembly has been focused on relatively simple symmetrical morphologies, while for complex nanostructures this process has been unexplored. Here, we study the assembly of plasmonic-magnetic Janus nanoparticles with a branched (nanostar) – sphere morphology. The branched morphology enhances their plasmonic properties in the near-infrared region and therefore their applicability, but at the same time constrains their self-assembly capabilities to obtain more organized or functional suprastructures. We describe the self-assembly of these nanoparticles after amphiphilic functionalization. The role of the nanoparticle branching, as well as the size of the polymer-coating, is explored. We show how the use of large molecular weight stabilizing polymers can overcome the anisotropy of the nanoparticles producing a change in the morphology from small clusters to larger quasi-cylindrical nanostructures. Finally, the Janus nanoparticles are functionalized with a thermo-responsive elastin-like recombinamer. These nanoparticles undergo reversible self-assembly in the presence of free polymer giving rise to nanoparticle-stabilized nanogel-like structures with controlled size, providing the possibility to expand their applicability to multi-stimuli controlled self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543283200032 Publication Date 2020-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2516-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited (up) 10 Open Access OpenAccess  
  Notes ; J. R. acknowledges the.nancial support of Basque Country Elkartek-KK-2019/ 00101. T. F. and J. C. R-C acknowledge the funding from the European Commission (NMP-2014-646075), the Spanish Government (PCIN-2015-010 (FunBioPlas), MAT2016-78903-R), Junta de Castilla y Leon (VA317P18) and Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leon. ; Approved Most recent IF: 4.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:170773 Serial 6600  
Permanent link to this record
 

 
Author Li, C.; Tardajos, A.P.; Wang, D.; Choukroun, D.; Van Daele, K.; Breugelmans, T.; Bals, S. url  doi
openurl 
  Title A simple method to clean ligand contamination on TEM grids Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue Pages 113195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Colloidal nanoparticles (NPs) including nanowires and nanosheets made by chemical methods involve many organic ligands. When the structure of NPs is investigated via transmission electron microscopy (TEM), the organic ligands act as a source for e-beam induced deposition and this causes substantial build-up of carbon layers in the investigated areas, which is typically referred to as “contamination” in the eld of electron mi- croscopy. This contamination is often more severe for scanning TEM, a technique that is based on a focused electron beam and hence higher electron dose rate. In this paper, we report a simple and effective method to clean drop-cast TEM grids that contain NPs with ligands. Using a combination of activated carbon and ethanol, this method effectively reduces the amount of ligands on TEM grids, and therefore greatly improves the quality of electron microscopy images and subsequent analytical measurements. This ef cient and facile method can be helpful during electron microscopy investigation of different kinds of nanomaterials that suffer from ligand- induced contamination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 10 Open Access OpenAccess  
  Notes This research was funded by the University Antwerp GOA project (ID 33928). DW acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174947 Serial 6666  
Permanent link to this record
 

 
Author Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W. url  doi
openurl 
  Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue Pages acsnano.0c09746  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634569100101 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (up) 10 Open Access OpenAccess  
  Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:175872 Serial 6673  
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year 2021 Publication Chemistry of materials Abbreviated Journal  
  Volume 33 Issue 1 Pages 102-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610984700009 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 10 Open Access OpenAccess  
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176587 Serial 6732  
Permanent link to this record
 

 
Author González‐Rubio, G.; Díaz‐Núñez, P.; Albrecht, W.; Manzaneda‐González, V.; Bañares, L.; Rivera, A.; Liz‐Marzán, L.M.; Peña‐Rodríguez, O.; Bals, S.; Guerrero‐Martínez, A. url  doi
openurl 
  Title Controlled Alloying of Au@Ag Core–Shell Nanorods Induced by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2021 Publication Advanced Optical Materials Abbreviated Journal Adv Opt Mater  
  Volume Issue Pages 2002134  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000625964300001 Publication Date 2021-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.875 Times cited (up) 10 Open Access OpenAccess  
  Notes G.G.‐R., P.D.‐N., and W.A. contributed equally to this work. This work was funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grant Nos. RTI2018‐095844‐B‐I00, PID2019‐105325RB, and PGC2018‐096444‐B‐I00), the Madrid Regional Government (Grant Nos. P2018/NMT‐4389 and S2018/EMT‐4437), and the EUROfusion Consortium (grant ENR‐IFE19.CCFE‐01). This work was supported by COST (European Cooperation in Science and Technology) Action TUMIEE (Grant No. CA17126). S.B. and W.A. acknowledge funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Program (ERC Consolidator Grant No. 815128 – REALNANO). All the authors acknowledge funding from the European Commission (Grant No. E180900184‐EUSMI). G.G.‐R. thanks the Spanish MICIU for an FPI (Grant No. BES‐2014‐068972) fellowship. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska‐Curie actions (MSCA) under the EU's Horizon 2020 Program (Grant No. 797153, SOPMEN). The facilities provided by the Center for Ultrafast Laser of Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by CESVIMA (UPM).; sygmaSB Approved Most recent IF: 6.875  
  Call Number EMAT @ emat @c:irua:177586 Serial 6758  
Permanent link to this record
 

 
Author Wang, D.; van der Wee, E.B.; Zanaga, D.; Altantzis, T.; Wu, Y.; Dasgupta, T.; Dijkstra, M.; Murray, C.B.; Bals, S.; van Blaaderen, A. url  doi
openurl 
  Title Quantitative 3D real-space analysis of Laves phase supraparticles Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 3980  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract 3D real-space analysis of thick nanoparticle crystals is non-trivial. Here, the authors demonstrate the structural analysis of a bulk-like Laves phase by imaging an off-stoichiometric binary mixture of hard-sphere-like nanoparticles in spherical confinement by electron tomography, enabling defect analysis on the single-particle level. Assembling binary mixtures of nanoparticles into crystals, gives rise to collective properties depending on the crystal structure and the individual properties of both species. However, quantitative 3D real-space analysis of binary colloidal crystals with a thickness of more than 10 layers of particles has rarely been performed. Here we demonstrate that an excess of one species in the binary nanoparticle mixture suppresses the formation of icosahedral order in the self-assembly in droplets, allowing the study of bulk-like binary crystal structures with a spherical morphology also called supraparticles. As example of the approach, we show single-particle level analysis of over 50 layers of Laves phase binary crystals of hard-sphere-like nanoparticles using electron tomography. We observe a crystalline lattice composed of a random mixture of the Laves phases. The number ratio of the binary species in the crystal lattice matches that of a perfect Laves crystal. Our methodology can be applied to study the structure of a broad range of binary crystals, giving insights into the structure formation mechanisms and structure-property relations of nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687320200032 Publication Date 2021-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited (up) 10 Open Access OpenAccess  
  Notes M. Hermes is sincerely thanked for providing interactive views of the structures in this work. The authors thank I. Lobato, S. Dussi, L. Filion, E. Boattini, S. Paliwal, B. van der Meer and X. Xie for fruitful discussions. D.W., E.B.v.d.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union’s Seventh Framework Program (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. T.D. and M.D. acknowledge financial support from the Industrial Partnership Program, “Computational Sciences for Energy Research” (Grant no. 13CSER025), of the Netherlands Organization for Scientific Research (NWO), which was co-financed by Shell Global Solutions International B.V. S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). C.B.M and Y.W. acknowledge support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. The authors acknowledge EM Square center at Utrecht University for the access to the microscopes.; sygmaSB Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:181662 Serial 6845  
Permanent link to this record
 

 
Author Jenkinson, K.; Liz-Marzan, L.M.; Bals, S. pdf  url
doi  openurl
  Title Multimode electron tomography sheds light on synthesis, structure, and properties of complex metal-based nanoparticles Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 34 Issue 36 Pages 2110394-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography has become a cornerstone technique for the visualization of nanoparticle morphology in three dimensions. However, to obtain in-depth information about a nanoparticle beyond surface faceting and morphology, different electron microscopy signals must be combined. The most notable examples of these combined signals include annular dark-field scanning transmission electron microscopy (ADF-STEM) with different collection angles and the combination of ADF-STEM with energy-dispersive X-ray or electron energy loss spectroscopies. Here, the experimental and computational development of various multimode tomography techniques in connection to the fundamental materials science challenges that multimode tomography has been instrumental to overcoming are summarized. Although the techniques can be applied to a wide variety of compositions, the study is restricted to metal and metal oxide nanoparticles for the sake of simplicity. Current challenges and future directions of multimode tomography are additionally discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831332200001 Publication Date 2022-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited (up) 10 Open Access OpenAccess  
  Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019 and ESTEEM3, Grant 823717). Approved Most recent IF: 29.4  
  Call Number UA @ admin @ c:irua:189616 Serial 7087  
Permanent link to this record
 

 
Author dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M. pdf  doi
openurl 
  Title Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 126 Issue 45 Pages 19519-19531  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000883021700001 Publication Date 2022-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited (up) 10 Open Access Not_Open_Access  
  Notes The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) . Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:192104 Serial 7311  
Permanent link to this record
 

 
Author Parzyszek, S.; Tessarolo, J.; Pedrazo-Tardajos, A.; Ortuno, A.M.; Baginski, M.; Bals, S.; Clever, G.H.; Lewandowski, W. url  doi
openurl 
  Title Tunable circularly polarized luminescence via chirality induction and energy transfer from organic films to semiconductor nanocrystals Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 16 Issue 11 Pages 18472-18482  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Circularly polarized luminescent (CPL) films with high dissymmetry factors hold great potential for optoelectronic applications. Herei n , we propose a strategy for achieving strongly dissymetric CPL in nanocomposite films based on chira l i t y induction and energy transfer to semiconductor nanocrystals. First, focusing on a purely organic system, aggregation-induced emission (AIE) and CPL activity of organic liquid crystals (LCs) forming helical nanofilaments was detected, featuring green emission with high dissymmetry factors g(lum) similar to 10(-2). The handedness of helical filaments, and thus the sign of CPL, was controlled via minute amounts of a small chiral organic dopant. Second, nanocomposite films were fabricated by incorporating InP/ZnS semi-conductor quantum dots (QDs) into the LC matri x , which induced the chiral assembly of QDs and endowed them with chiroptical properties. Due to the spectral matching of the components, energy transfer (ET) from LC to QDs was possible enabling a convenient way of tuning CPL wavelengths by varying the LC/QD ratio. As obtained, composite films exhibited absolute glum values up to similar to 10(-2) and thermally on/off switchable luminescence. Overall, we demonstrate the induction of chiroptical properties by the assembly of nonchiral building QDs on the chiral organic template and energy transfer from organic films to QDs, representing a simple and versatile approach to tune the CPL activity of organic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000883943600001 Publication Date 2022-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited (up) 10 Open Access OpenAccess  
  Notes W.L., S.P., and M.B. acknowledge support from the National Science Center Poland under the OPUS Grant UMO-2019/35/B/ST5/04488. J.T. and G.H.C. acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy, Grant EXC 2033-390677874-RESOLV. W.L. acknowledges financial support from the European Commission under the Horizon 2020 Programme by Grant E210400529. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by Grant 731019 (EUSMI) and ERC Consolidator Grant 815128 (REALNANO). We thank Elie Benchimol for his help with the CPL measurements. We thank Damian Pociecha for his help in the determination of phase sequences of organic compounds. Approved Most recent IF: 17.1  
  Call Number UA @ admin @ c:irua:192101 Serial 7345  
Permanent link to this record
 

 
Author Dadsetani, M.; Titantah, J.T.; Lamoen, D. doi  openurl
  Title Ab initio calculation of the energy-loss near-edge structure of some carbon allotropes: comparison with n-diamond Type A1 Journal article
  Year 2010 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 19 Issue 1 Pages 73-77  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The energy-loss near-edge structure (ELNES) spectra of several carbon allotropes (non-hydrogenated and hydrogenated face-centered cubic (FCC) carbon, rhombohedral carbon, glitter, hexagonite and lonsdaleite) are calculated within the supercell-core-excited density functional theory approach. In particular an experimental ELNES spectrum of new diamond (n-diamond) [Konyashin et al., Diamond Relat. Mater. 10, (2001) 99102] is compared with the ELNES spectra of FCC carbon, rhombohedral carbon and the so-called glitter structure. Our calculations show that the ELNES spectrum considered in that publication cannot be that of FCC carbon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000274234500013 Publication Date 2009-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited (up) 11 Open Access  
  Notes Goa; Esteem 026019 Approved Most recent IF: 2.561; 2010 IF: 1.825  
  Call Number UA @ lucian @ c:irua:79444 Serial 29  
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Sougrati, M.-T.; Courty, M.; Doublet, M.-L.; Tarascon, J.-M. doi  openurl
  Title An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 136 Issue 36 Pages 12658-12666  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-performing Fe-based electrodes for Li-based batteries are eagerly pursued because of the abundance and environmental benignity of iron, with especially great interest in polyanionic compounds because of their flexibility in tuning the Fe3+/Fe2+ redox potential. We report herein the synthesis and structure of a new Fe-based oxysulfate phase, Fe2O(SO4)(2), made at low temperature from abundant elements, which electrochemically reacts with nearly 1.6 Li atoms at an average voltage of 3.0 V versus Li+/Li, leading to a sustained reversible capacity of similar to 125 mAh/g. The Li insertiondeinsertion process, the first ever reported in any oxysulfate, entails complex phase transformations associated with the position of iron within the FeO6 octahedra. This finding opens a new path worth exploring in the quest for new positive electrode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000341544600029 Publication Date 2014-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited (up) 11 Open Access  
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113  
  Call Number UA @ lucian @ c:irua:119906 Serial 96  
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W. doi  openurl
  Title Characterization of nickel silicides using EELS-based methods Type A1 Journal article
  Year 2010 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 240 Issue 1 Pages 75-82  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The characterization of Ni-silicides using electron energy loss spectroscopy (EELS) based methods is discussed. A series of Ni-silicide phases is examined: Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2. The composition of these phases is determined by quantitative core-loss EELS. A study of the low loss part of the EELS spectrum shows that both the energy and the shape of the plasmon peak are characteristic for each phase. Examination of the Ni-L edge energy loss near edge structure (ELNES) shows that the ratio and the sum of the L2 and L3 white line intensities are also characteristic for each phase. The sum of the white line intensities is used to determine the trend in electron occupation of the 3d states of the phases. The dependence of the plasmon energy on the electron occupation of the 3d states is demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000281715400009 Publication Date 2010-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited (up) 11 Open Access  
  Notes Approved Most recent IF: 1.692; 2010 IF: 1.872  
  Call Number UA @ lucian @ c:irua:84879 Serial 329  
Permanent link to this record
 

 
Author Wahl, A.; Hervieu, M.; Van Tendeloo, G.; Hardy, V.; Provost, J.; Groult, D.; Simon, C.; Raveau, B. openurl 
  Title Columnar defects and irreversibility lines in Ti-based superconductors Type A1 Journal article
  Year 1995 Publication Radiation effects and defects in solids Abbreviated Journal Radiat Eff Defect S  
  Volume 133 Issue Pages 293-310  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1995TF77100005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1042-0150 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.513 Times cited (up) 11 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13316 Serial 396  
Permanent link to this record
 

 
Author Prodi, A.; Daoud-Aladine, A.; Gozzo, F.; Schmitt, B.; Lebedev, O.; Van Tendeloo, G.; Gilioli, E.; Bolzoni, F.; Aruga-Katori, H.; Takagi, H.; Marezio, M.; Gauzzi, A.; url  doi
openurl 
  Title Commensurate structural modulation in the charge- and orbitally ordered phase of the quadruple perovskite (NaMn3)Mn4O12 Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 18 Pages 180101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition T-CO = 176 K in the mixed-valence quadruple perovskite (NaMn3)Mn4O12. Below T-CO we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q = ( 1/2,0,-1/2) of the CE magnetic structure that orders at low temperatures, similarly to the case of simple perovskites such as La0.5Ca0.5MnO3. In the present case, the modulated structure, together with the observation of a large entropy change at T-CO, gives evidence of a rare case of full Mn3+/Mn4+ charge and orbital order, consistent with the Goodenough-Kanamori model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344915100001 Publication Date 2014-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122097 Serial 406  
Permanent link to this record
 

 
Author Adamson, P.; Hadermann, J.; Smura, C.F.; Rutt, O.J.; Hyett, G.; Free, D.G.; Clarke, S.J. pdf  doi
openurl 
  Title Competing magnetic structures and the evolution of copper ion/vacancy ordering with composition in the manganite oxide chalcogenides Sr2MnO2Cu1.5(S1-xSex)2 Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 14 Pages 2802-2816  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The series Sr2MnO2Cu1.5(S1-xSex)(2) (0 <= x <= 1) contains mixed-valent Mn ions (Mn2+/Mn3+) in MnO2 sheets which are separated by copper-deficient antifluorite-type Cu(2-delta)Ch(2) layers with delta similar to 0.5. The compounds crystallize in the structure type first described for Sr2Mn3Sb2O2 and are described in the I4/mmm space group at ambient temperatures. Below about 250 K, ordering between Cu+ ions and tetrahedral vacancies occurs which is long-range and close to complete in the sulfide-containing end member of the series Sr2MnO2Cu1.5S2 but which occurs over shorter length scales as the selenide content increases. The superstructure is an orthorhombic 2 root 2a x root 2a x c expansion in Ibam of the room temperature cell. For x > 0.3 there are no superstructure reflections evident in the X-ray or neutron diffraction patterns, and the I4/mmm description is valid for the average structure at all temperatures. However, in the pure selenide end member, Sr2MnO2Cu1.5Se2, diffuse scattering in electron diffractograms and modulation in high resolution lattice image profiles may arise from short-range Cu/vacancy order. All members of the series exhibit long-range magnetic order. In the sulfide-rich end member and in compounds with x < 0.1 in the formula Sr2MnO2Cu1.5(S1-xSex)(2), which show well developed superstructures due to long-range Cu/vacancy order, the magnetic structure has a (1/4 1/4 0) propagation vector in which ferromagnetic zigzag chains of Mn moments in the MnO2 sheets are coupled antiferromagnetically in an arrangement described as the CE-type magnetic structure and found in many mixed-valent perovskite and Ruddlesden-Popper type oxide manganites. In these cases the magnetic cell is an a x 2b x c expansion of the low temperature Ibam structural cell. For x >= 0.2 in the formula Sr2MnO2Cu1.5(S1-xSex)(2) the magnetic structure has a (0 0 0) propagation vector and is similar to the A-type structure, also commonly adopted by some perovskite-related manganites, in which the Mn moments in the MnO2 sheets are coupled ferromagnetically and long-range antiferromagnetic order results from antiferromagnetic coupling between planes. In the region of the transition between the two different structural and magnetic long-range ordering schemes (0.1 < x < 0.2) the two magnetic structures coexist in the same sample. The evolution of the competition between magnetic ordering schemes and the length scale of the structural order with composition in Sr2MnO2Cu1.5(S1-xSex)(2) suggest that the changes in magnetic and structural order are related consequences of the introduction of chemical disorder.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000306674200024 Publication Date 2012-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 11 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:100839 Serial 435  
Permanent link to this record
 

 
Author Chen, J.H.; van Dyck, D.; op de Beeck, M.; van Landuyt, J. openurl 
  Title Computational comparisons between the conventional multislice method and the third-order multislice method for calculating high-energy electron diffraction and imaging Type A1 Journal article
  Year 1997 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 69 Issue Pages 219-240  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1997YG59500001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 11 Open Access  
  Notes Approved Most recent IF: 2.843; 1997 IF: 1.600  
  Call Number UA @ lucian @ c:irua:21416 Serial 455  
Permanent link to this record
 

 
Author Panin, R.V.; Shpanchenko, R.V.; Mironov, A.V.; Velikodny, Y.A.; Antipov, E.V.; Hadermann, J.; Tarnopolsky, V.A.; Yaroslavtsev, A.B.; Kaul, E.E.; Geibel, C. pdf  doi
openurl 
  Title Crystal structure, polymorphism, and properties of the new vanadyl phosphate Na4VO(PO4)2 Type A1 Journal article
  Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 16 Issue Pages 1048-1055  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000220304100014 Publication Date 2004-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103  
  Call Number UA @ lucian @ c:irua:43873 Serial 577  
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Attfield, J.P.; McLaughlin, A.C. doi  openurl
  Title Defect structure of ferromagnetic superconducting RuSr2GdCu2O8 Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue 22 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure and defect structure of superconducting ferromagnetic bulk RuSr2GdCu2O8 has been investigated using high-resolution transmission electron microscopy and high-resolution scanning transmission microscopy. Two distinct, but closely related structures, due to ordering of rotated RuO6 octahedra and due to Cu substitution in the Ru-O layer, have been revealed. The structure of Ru1-xSr2GdCu2+xO8-delta can be described as a periodic alteration along the c axis of CuO4 planes and RuO6 octahedra. The unit-cell parameters of this phase are root 2a(p) x root 2a(p) x 2c. The possible influence of this phase and defect structure on the sensitivity of the superconductivity and magnetic properties is discussed. Local defects such as 90 S domain boundaries, (130) antiphase boundaries, and the associated dislocations are analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000238696300115 Publication Date 2006-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 11 Open Access  
  Notes Iap V-I Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:59707 Serial 619  
Permanent link to this record
 

 
Author Lin, F.; Meng; Kukueva, E.; Altantzis, T.; Mertens, M.; Bals, S.; Cool, P.; Van Doorslaer, S. pdf  url
doi  openurl
  Title Direct-synthesis method towards copper-containing periodic mesoporous organosilicas : detailed investigation of the copper distribution in the material Type A1 Journal article
  Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 44 Issue 44 Pages 9970-9979  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Three-dimensional cubic Fm (3) over barm mesoporous copper-containing ethane-bridged PMO materials have been prepared through a direct-synthesis method at room temperature in the presence of cetyltrimethylammonium bromide as surfactant. The obtained materials have been unambiguously characterized in detail by several sophisticated techniques, including XRD, UV-Vis-Dr, TEM, elemental mapping, continuous- wave and pulsed EPR spectroscopy. The results show that at lower copper loading, the Cu2+ species are well dispersed in the Cu-PMO materials, and mainly exist as mononuclear Cu2+ species. At higher copper loading amount, Cu2+ clusters are observed in the materials, but the distribution of the Cu2+ species is still much better in the Cu-PMO materials prepared through the direct-synthesis method than in a Cu-containing PMO material prepared through an impregnation method. Moreover, the evolution of the copper incorporation during the PMO synthesis has been followed by EPR. The results show that the immobilization of the Cu2+ ion/complex and the formation of the PMO materials are taking place simultaneously. The copper ions are found to be situated on the inner surface of the mesopores of the materials and are accessible, which will be beneficial for the catalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000355000700028 Publication Date 2015-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited (up) 11 Open Access OpenAccess  
  Notes Goa-Bof; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.029; 2015 IF: 4.197  
  Call Number c:irua:126422 Serial 725  
Permanent link to this record
 

 
Author Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title Do smaller probes in a scanning transmission electron microscope result in more precise measurement of the distances between atom columns? Type A1 Journal article
  Year 2001 Publication Philosophical magazine: B: physics of condensed matter: electronic, optical and magnetic properties Abbreviated Journal  
  Volume 81 Issue 11 Pages 1833-1846  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000172199700016 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-2812;1463-6417; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 11 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:47519 Serial 744  
Permanent link to this record
 

 
Author van Dyck, D.; Lobato, I.; Chen, F.-R.; Kisielowski, C. pdf  doi
openurl 
  Title Do you believe that atoms stay in place when you observe them in HREM? Type A1 Journal article
  Year 2015 Publication Micron Abbreviated Journal Micron  
  Volume 68 Issue 68 Pages 158-163  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Recent advancements in aberration-corrected electron microscopy allow for an evaluation of unexpectedly large atom displacements beyond a resolution limit of similar to 0.5 angstrom, which are found to be dose-rate dependent in high resolution images. In this paper we outline a consistent description of the electron scattering process, which explains these unexpected phenomena. Our approach links thermal diffuse scattering to electron beam-induced object excitation and relaxation processes, which strongly contribute to the image formation process. The effect can provide an explanation for the well-known contrast mismatch (“Stobbs factor”) between image calculations and experiments. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000348016500023 Publication Date 2014-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited (up) 11 Open Access  
  Notes Approved Most recent IF: 1.98; 2015 IF: 1.988  
  Call Number c:irua:123802 Serial 745  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Tsirlin, A.A.; McCammon, C.M.; Dubrovinsky, L.; Hadermann, J. pdf  doi
openurl 
  Title Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 17 Pages 10009-10020  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites are investigated using the (Pb1−zSrz)1−xFe1+xO3−y perovskites as a model system. The orientation of the CS planes in the system varies unevenly with z. A comparison of the structures with different CS planes revels that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000326129000037 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 11 Open Access  
  Notes Fwo Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:111394 Serial 822  
Permanent link to this record
 

 
Author Fang, P.a.; Gu, H.; Wang, P.l.; Van Landuyt, J.; Vleugels, J.; Van der Biest, O.; doi  openurl
  Title Effect of powder coating on stabilizer distribution in CeO2-stabilized ZrO2 ceramics Type A1 Journal article
  Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc  
  Volume 88 Issue 7 Pages 1929-1934  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The phase and microstructure relationship of 12 mol% CeO2-stabilized ZrO2 ceramics prepared from coated powder was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersed Xray spectroscopy (EDS). As compared with the sample prepared with co-precipitated method, which exhibited a similar grain size distribution, the EDS analysis revealed that the powder coating induced a wide distribution of CeO2 solubility, which decreases monotonically with the increase of grain size. This variation of stabilizer content from grain to grain rendered many large grains in the monoclinic phase. Stronger cerium segregation to grain boundaries was observed between large grains, which often form thin amorphous films there. The inhomogeneous; CeO2 distribution keeps more tetragonal ZrO2 grains close to the phase boundary to facilitate the transforming toughness. Addition of an Al2O3 precursor in coated powders effectively raises the overall CeO2 stabilizer content in the grains and preserves more transformable tetragonal phase in the microstructure, which further enhanced the fracture toughness. The dependence of CeO2 solubility on grain size may be explained in a simple coating-controlled diffusion and growth process that deserves further investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Columbus, Ohio Editor  
  Language Wos 000230128100040 Publication Date 2005-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.841 Times cited (up) 11 Open Access  
  Notes Approved Most recent IF: 2.841; 2005 IF: 1.586  
  Call Number UA @ lucian @ c:irua:103156 Serial 830  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: