toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hunter, E.C.; Battle, P.D.; Sena, R.P.; Hadermann, J. doi  openurl
  Title Ferrimagnetism as a consequence of cation ordering in the perovskite LaSr2Cr2SbO9 Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 248 Issue Pages 96-103  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of LaSr2Cr2SbO9 has been synthesised using a standard ceramic method and characterized by x-ray and neutron diffraction, magnetometry and electron microscopy. The perovskite-related compound crystallises in the triclinic space group I1 with unit cell parameters of a=5.5344(6) angstrom, b=5.5562(5) angstrom, c=7.8292(7) angstrom, a=89.986(12)degrees, beta=90.350(5)degrees and gamma=89.926(9)degrees at room temperature. The two crystallographically-distinct, six-coordinate cation sites are occupied by Cr3+ and Sb5+ in ratios of 0.868(2):0.132(2) and 0.462(2):0.538(2). Ac and de magnetometry revealed that LaSr2Cr2SbO9 is ferrimagnetic below 150 K with a magnetisation of similar to 1.25 mu(B) per formula unit in 50 kOe at 5 K. Neutron diffraction showed that the cations on the two sites order in a G-type arrangement with a mean Cr3+ moment of 2.17(1) mu(B) at 5 K, consistent with a magnetisation of 1.32 mu(B) per formula unit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000396386300012 Publication Date 2017-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 14 Open Access Not_Open_Access  
  Notes (up) ; Experiments at the ISIS Pulsed Neutron and Muon Source were supported by the STFC. We are grateful to I. da Silva for the assistance provided at ISIS and to the EPSRC for financial support under Grant EP/M018954/1. We also thank Diamond Light Source Ltd (EE13284) for the award of beamtime. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:142413 Serial 4657  
Permanent link to this record
 

 
Author Ayalew, E.; Gebre, Y.; De Wael, K. url  doi
openurl 
  Title A survey of occupational exposure to inhalable wood dust among workers in small- and medium-scale wood-processing enterprises in Ethiopia Type A1 Journal article
  Year 2015 Publication The annals of occupational hygiene Abbreviated Journal Ann Occup Hyg  
  Volume 59 Issue 2 Pages 253-257  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A study of wood dust exposure in 20 small- and medium-scale wood-processing enterprises was performed in Ethiopia. Sampling was conducted daily from January to June, 2013 and a total of 360 samples from 113 workers were collected with Institute of Occupational Medicine (IOM) personal samplers. Eight-hour time-weighted average exposure to wood dust ranged from 0.24 to 23.3mg m−3 with a geometric mean (GM) of 6.82mg m−3 and a geometric standard deviation of 1.82. Although Ethiopia did not have any defined standard of Occupational Exposure Limit for wood dust exposure, 71% of the measurements exceeded the limit of 5mg m−3 set by the European Union (EU). Higher than the EU exposure limit was measured while workers perform sanding and sawing activities with a GM of 9.72 and 7.60mg m−3, respectively. In conclusion, wood workers in the small- and medium-scale enterprises are at a higher risk of developing different respiratory health problems with continuous exposure trends.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352158700011 Publication Date 2014-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-4878 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.71 Times cited 4 Open Access  
  Notes (up) ; Eyasu Ayalew thanks the Addis Ababa University (Center for Environmental Sciences) for the personal grant for independent study. ; Approved Most recent IF: 1.71; 2015 IF: 2.101  
  Call Number UA @ admin @ c:irua:119739 Serial 5857  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Pilehvar, S.; Blust, R.; De Wael, K. url  doi
openurl 
  Title Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells Type A1 Journal article
  Year 2016 Publication Chemosensors Abbreviated Journal  
  Volume 4 Issue 3 Pages 16  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silvergold core shell (Ag@Au), goldsilver core shell (Au@Ag), and silvergold alloy nanoparticles (Ag/Au). Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au) aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell) NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382480000006 Publication Date 2016-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes (up) ; Ezat Hamidi-Asl was financially supported by Belspo (University of Antwerp). The authors are thankful to Femke De Croock for her technical support and to Stanislav Trashin for his worthwhile comments on the manuscript. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:135411 Serial 5886  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Blust, R.; De Wael, K. url  doi
openurl 
  Title An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine Type A1 Journal article
  Year 2015 Publication Sensors Abbreviated Journal Sensors-Basel  
  Volume 15 Issue 4 Pages 7605-7618  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Because of the biocompatible properties of gelatine and the good affinity of aptamers for their targets, the combination of aptamer and gelatine type B is reported as promising for the development of biosensing devices. Here, an aptamer for chloramphenicol (CAP) is mixed with different types of gelatine and dropped on the surface of disposable gold screen printed electrodes. The signal of the CAP reduction is investigated using differential pulse voltammetry. The diagnostic performance of the sensor is described and a detection limit of 1.83 x 10(-10) M is found. The selectivity and the stability of the aptasensor are studied and compared to those of other CAP sensors described in literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000354236100025 Publication Date 2015-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.677 Times cited 21 Open Access  
  Notes (up) ; Ezat Hamidi-Asl was financially supported by IOF-POC (University of Antwerp). ; Approved Most recent IF: 2.677; 2015 IF: 2.245  
  Call Number UA @ admin @ c:irua:126071 Serial 5464  
Permanent link to this record
 

 
Author Liu, F.; Meng, J.; Xia, F.; Liu, Z.; Peng, H.; Sun, C.; Xu, L.; Van Tendeloo, G.; Mai, L.; Wu, J. url  doi
openurl 
  Title Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 8 Issue 35 Pages 18079-18086  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract While graphite has limited capacity as an anode material for potassium-ion batteries, nitrogen-doped carbon materials are more promising as extra capacity can usually be produced. However, the mechanism behind the origin of the extra capacity remains largely unclear. Here, the potassium storage mechanisms have been systematically studied in freestanding and porous N-doped carbon nanofibers with an additional similar to 100 mA h g(-1)discharge capacity at 0.1 A g(-1). The extra capacity is generated in the whole voltage window range from 0.01 to 2 V, which corresponds to both surface/interface K-ion absorptions due to the pyridinic N and pyrrolic N induced atomic vacancies and layer-by-layer intercalation due to the effects of graphitic N. As revealed by transmission electron microscopy, the N-doped samples have a clear and enhanced K-intercalation reaction. Theoretical calculations confirmed that the micropores with pyridinic N and pyrrolic N provide extra sites to form bonds with K, resulting in the extra capacity at high voltage. The chemical absorption of K-ions occurring inside the defective graphitic layer will prompt fast diffusion of K-ions and full realization of the intercalation capacity at low voltage. The approach of preparing N-doped carbon-based materials and the mechanism revealed by this work provide directions for the development of advanced materials for efficient energy storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569873400015 Publication Date 2020-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited 2 Open Access OpenAccess  
  Notes (up) ; F. Liu and J. S. Meng contributed equally to this work. This work was supported by the National Natural Science Foundation of China (51832004 and 51521001), the National Key Research and Development Program of China (2016YFA0202603), and the Natural Science Foundation of Hubei Province (2019CFA001). The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX, 2020III002GX), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and the State Key Laboratory of Silicate Materials for Architectures (all of the laboratories are at Wuhan University of Technology). ; Approved Most recent IF: 11.9; 2020 IF: 8.867  
  Call Number UA @ admin @ c:irua:172741 Serial 6573  
Permanent link to this record
 

 
Author Nicolas-Boluda, A.; Yang, Z.; Dobryden, I.; Carn, F.; Winckelmans, N.; Pechoux, C.; Bonville, P.; Bals, S.; Claesson, P.M.; Gazeau, F.; Pileni, M.P. pdf  doi
openurl 
  Title Intracellular fate of hydrophobic nanocrystal self-assemblies in tumor cells Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 40 Pages 2004274-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water-dispersible architectures of self-assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self-assemblies display increased cellular uptake by tumor cells compared to dispersions of the water-soluble NC building blocks. Moreover, the self-assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self-assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559913300001 Publication Date 2020-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 11 Open Access Not_Open_Access  
  Notes (up) ; F.G. and M.P.P. contributed equally to this work. Dr. J. Teixeira from Laboratoire Leon Brillouin CEA Saclay is thanked for fruitful discussions on SAXS measurement. Dr. J.M. Guinier is thanked for cryoTEM experiments. A.N.-B. received a Ph.D. fellowship from the Institute thematique multi-organismes (ITMO) Cancer and the doctoral school Frontieres du Vivant (FdV)-Programme Bettencourt and the Fondation ARC pour la recherche sur le cancer. ; Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171145 Serial 6551  
Permanent link to this record
 

 
Author Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-Gonzalez, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; Hillenbrand, R.; Hone, J.; Polini, M.; Koppens, F.H.L. pdf  doi
openurl 
  Title Tuning quantum nonlocal effects in graphene plasmonics Type A1 Journal article
  Year 2017 Publication Science Abbreviated Journal Science  
  Volume 357 Issue 6347 Pages 187-190  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials' electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000405391700042 Publication Date 2017-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 87 Open Access  
  Notes (up) ; F.H.L.K., M.P., and R.H. acknowledge support by the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship. M. P. acknowledges support by Fondazione Istituto Italiano di Tecnologia. F. H. L. K. acknowledges financial support from the European Union Seventh Framework Programme under the ERC starting grant (307806, CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP). F. H. L. K. acknowledges support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya, the Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN), and support from the Government of Catalonia through the SGR grant (2014-SGR-1535). R. H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT-2015-65525-R). P. A-G. acknowledges financial support from the national project FIS2014-60195-JIN and the ERC starting grant 715496, 2DNANOPTICA. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant numbers JP26248061, JP15K21722, and JP25106006. Y. G., C. T., and J. H. acknowledge support from the U. S. Office of Naval Research N00014-13-1-0662. C. T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a U. S. Department of Energy Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704. B. V. D. acknowledges support from the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. M. P. is extremely grateful for the financial support granted by ICFO during a visit in August 2016. This work used open source software (www. python. org, www. matplotlib. org, and www. blender. org). R. H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests. ; Approved Most recent IF: 37.205  
  Call Number UA @ lucian @ c:irua:144833 Serial 4730  
Permanent link to this record
 

 
Author Wang, F.; Gao, T.; Zhang, Q.; Hu, Z.-Y.; Jin, B.; Li, L.; Zhou, X.; Li, H.; Van Tendeloo, G.; Zhai, T. pdf  doi
openurl 
  Title Liquid-alloy-assisted growth of 2D ternaryGa2In4S9 toward high-performance UV photodetection Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 31 Issue 2 Pages 1806306  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract 2D ternary systems provide another degree of freedom of tuning physical properties through stoichiometry variation. However, the controllable growth of 2D ternary materials remains a huge challenge that hinders their practical applications. Here, for the first time, by using a gallium/indium liquid alloy as the precursor, the synthesis of high-quality 2D ternary Ga2In4S9 flakes of only a few atomic layers thick (approximate to 2.4 nm for the thinnest samples) through chemical vapor deposition is realized. Their UV-light-sensing applications are explored systematically. Photodetectors based on the Ga2In4S9 flakes display outstanding UV detection ability (R-lambda = 111.9 A W-1, external quantum efficiency = 3.85 x 10(4)%, and D* = 2.25 x 10(11) Jones@360 nm) with a fast response speed (tau(ring) approximate to 40 ms and tau(decay) approximate to 50 ms). In addition, Ga2In4S9-based phototransistors exhibit a responsivity of approximate to 10(4) A W-1@360 nm above the critical back-gate bias of approximate to 0 V. The use of the liquid alloy for synthesizing ultrathin 2D Ga2In4S9 nanostructures may offer great opportunities for designing novel 2D optoelectronic materials to achieve optimal device performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455111100013 Publication Date 2018-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 29 Open Access Not_Open_Access  
  Notes (up) ; F.K.W., T.G, and Q.Z. contributed equally to this work. The authors acknowledge the support from National Nature Science Foundation of China (21825103, 51727809, 51472097, 91622117, and 51872069), National Basic Research Program of China (2015CB932600), and the Fundamental Research Funds for the Central Universities (2017KFKJXX007, 2015ZDTD038, 2017III055, and 2018III039GX). The authors thank the Analytical and Testing Centre of Huazhong University of Science and Technology. ; Approved Most recent IF: 19.791  
  Call Number UA @ admin @ c:irua:156756 Serial 5254  
Permanent link to this record
 

 
Author Bottari, F.; Moro, G.; Sleegers, N.; Florea, A.; Cowen, T.; Piletsky, S.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Electropolymerized o-phenylenediamine on graphite promoting the electrochemical detection of nafcillin Type A1 Journal article
  Year 2019 Publication Electroanalysis Abbreviated Journal Electroanal  
  Volume 32 Issue 32 Pages 135-141  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract By combining molecular modelling and electrochemistry we envision the creation of modified electrodes tailored for a more sensitive and selective detection of a single analyte. In this study we report on a graphite screen printed electrode modified with electropolymerized o-phenylenediamine, selected by rational design, which promotes the detection of nafcillin (NAF), an antibiotic. Parameters such as monomer concentration, pH and number of electropolymerization cycles were optimized to obtain the highest current signal for the target upon amperometric detection. NAF identification was based on the redox process at +1.1 V (vs pseudo Ag), ascribed to the oxidation of the C-7 side chain. With the optimized modification protocol, a two-fold increase in nafcillin signal could be obtained: the calibration plot in 0.1 M Britton-Robinson buffer pH 4 showed a limit of detection of 80 nM with improved sensitivity and reproducibility (RSD<5 %) compared to the detection at non-modified electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482596300001 Publication Date 2019-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.851 Times cited 1 Open Access  
  Notes (up) ; FB and GM devised the study and performed the experiments, FB wrote the original draft of the paper and analysed the data, NS and AvN performed the MS experiments, AF helped with the optimization of the protocol and correction of the first draft, TC and SP performed the rational monomer design, KdW supervised the work and corrected the final draft. All authors gave their suggestions and corrections to the final version of the paper. This work was financially supported by the University of Antwerp (BOF) and the Research Foundation Flanders (FWO). ; Approved Most recent IF: 2.851  
  Call Number UA @ admin @ c:irua:162870 Serial 5601  
Permanent link to this record
 

 
Author Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L. pdf  doi
openurl 
  Title Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates Type A1 Journal article
  Year 2015 Publication Materials research express Abbreviated Journal Mater Res Express  
  Volume 2 Issue 2 Pages 015007  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Magnesium nanoparticles (NPs) with initial size in the 10-50 nmrange were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000369978500007 Publication Date 2014-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.068 Times cited 14 Open Access Not_Open_Access  
  Notes (up) ; Financial support by COST Action MP1103 'Nanostructured Materials for Solid-State Hydrogen Storage' is gratefully acknowledged. ; Approved Most recent IF: 1.068; 2015 IF: NA  
  Call Number UA @ lucian @ c:irua:132275 Serial 4240  
Permanent link to this record
 

 
Author Amato, S.R.; Burnstock, A.; Cross, M.; Janssens, K.; Rosi, F.; Cartechini, L.; Fontana, R.; Dal Fovo, A.; Paolantoni, M.; Grazia, C.; Romani, A.; Michelin, A.; Andraud, C.; Tournie, A.; Dik, J. pdf  doi
openurl 
  Title Interpreting technical evidence from spectral imaging of paintings by Edouard Manet in the Courtauld Gallery Type A1 Journal article
  Year 2019 Publication X-ray spectrometry T2 – MA-XRF Workshop on Developments and Applications of Macro-XRF in, Conservation, Art, and Archeology, SEP 24-25, 2017, Trieste, ITALY Abbreviated Journal X-Ray Spectrom  
  Volume 48 Issue 4 Pages 282-292  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The paintings by edouard Manet in The Courtauld Gallery Dejeuner sur l'herbe (1863-68), Marguerite de Conflans en Toilette de Bal (1870-1880), Banks of the Seine at Argenteuil (1874), and A Bar at the Folies-Bergere (1882) were investigated for the first time using a range of non-invasive in situ analyses. The aims of the study were to investigate the painting techniques and materials used for this group of works and to critically evaluate the technical evidence derived from the integrated use of imaging techniques and portable spectroscopic methods in this context. The paintings were investigated by means of macro X-ray fluorescence (MA-XRF), reflection spectral imaging, portable UV-Vis-NIR spectroscopy, portable Raman spectroscopy, and reflection FTIR. MA-XRF and reflection spectral imaging allowed visualising elements in the compositions that were not visible using traditional methods of technical study. For example, MA-XRF analysis of Dejeuner sur l'herbe revealed elements of the development of the composition that provided new evidence to consider its relationship to other versions of the composition. The study also highlighted questions about the interpretation of elemental distribution maps and spectral images that did not correspond to the reworking visible in X-radiographs. For example, in A Bar at the Folies-Bergere Manet made numerous changes during painting, which were not clearly visualised with any of the techniques used. The research has wider implications for the study of Impressionist paintings, as the results will support technical studies of works by other artists of the period who used similar materials and painting methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472210700005 Publication Date 2018-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.298 Times cited Open Access  
  Notes (up) ; Financial support by the Access to Research Infrastructures activity in the Horizon 2020 Programme of the EU (IPERION CH Grant agreement 654028) is gratefully acknowledged. ; Approved Most recent IF: 1.298  
  Call Number UA @ admin @ c:irua:161296 Serial 5670  
Permanent link to this record
 

 
Author Li, J.; Zhao, C.; Yang, Y.; Li, C.; Hollenkamp, T.; Burke, N.; Hu, Z.-Y.; Van Tendeloo, G.; Chen, W. pdf  doi
openurl 
  Title Synthesis of monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors Type A1 Journal article
  Year 2019 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 810 Issue 810 Pages 151841  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Binary metal oxides with superior charge capacity and electrochemical activity have gained great interests. In this work, monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons were fabricated by a facile self-developed impregnation method. The synthesized hybrids possess improved wettability, high specific surface area (> 700m(2)/g) and regular mesoporous channels (similar to 4 nm), resulting in improved electrochemical performance for supercapacitors. These well-dispersed CoMoO4 nanoclusters exhibit a significant specific capacitance up to 367 F/g in the aqueous KNO3 electrolyte and good reversibility with a cycling efficiency of 99.8%. It is proposed that the mesoporous structure can facilitate the diffusion of electrolyte ions and then accelerate the electrochemical utilization of CoMoO4 nanoclusters. The results demonstrate that the produced binary metal oxide nanoclusters with excellent capacitance and good retention can be used as promising electrodes for the environment-friendly supercapacitors. (C) 2019 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486596000030 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 6 Open Access  
  Notes (up) ; Financial support by the National Key R&D Program of China (2016YB0303900) and the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX) are gratefully acknowledged. The authors extend their appreciation to the support by CSIRO. ; Approved Most recent IF: 3.133  
  Call Number UA @ admin @ c:irua:162759 Serial 5398  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 4962  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342984800018 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 36 Open Access  
  Notes (up) ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:121121 Serial 3628  
Permanent link to this record
 

 
Author Abeysinghe, D.; Smith, M.D.; Yeon, J.; Tran, T.T.; Sena, R.P.; Hadermann, J.; Halasyamani, P.S.; zur Loye, H.-C. pdf  doi
openurl 
  Title Crystal growth and structure analysis of Ce-18-W-10-O-57 : a complex oxide containing tungsten in an unusual trigonal prismatic coordination environment Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 5 Pages 2566-2575  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The noncentrosymmetric tungstate oxide, Ce18W10O57) was synthesized for the first time as high-quality single crystals via the molten chloride flux method and structurally characterized by single-crystal X-ray diffraction. The compound is a structural analogue to the previously reported La18W10O57, which crystallizes in the hexagonal space group P (6) over bar 2c. The +3 oxidation state of cerium in Ce18W10O57 was achieved via the in situ reduction of Ce(IV) to Ce(III) using Zn metal. The structure consists of both isolated and face-shared WO6 octahedra and, surprisingly, isolated WO6 trigonal prisms. A careful analysis of the packing arrangement in the structure makes it possible to explain the unusual structural architecture of Ce18W10O57, which is described in detail. The temperature-dependent magnetic susceptibility of Ce18W10O57 indicates that the cerium(III) f(1) cations do not order magnetically and exhibit simple paramagnetic behavior. The SHG efficiency of Ln(18)W(10)O(57) (Ln = La, Ce) was measured as a function of particle size, and both compounds were found to be SHG active with efficiency approximately equal to that of alpha-SiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000395847300026 Publication Date 2017-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 9 Open Access Not_Open_Access  
  Notes (up) ; Financial support for this work was provided by the National Science Foundation under DMR-1301757 and is gratefully acknowledged. T.T.T. and P.S.H. thank the Welch Foundation (Grant E-1457) and NSF-DMR-1503573. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:142449 Serial 4643  
Permanent link to this record
 

 
Author Mefford, J.T.; Kurilovich, A.A.; Saunders, J.; Hardin, W.G.; Abakumov, A.M.; Forslund, R.P.; Bonnefont, A.; Dai, S.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1-xSrxCoO3-\delta perovskite composite electrodes Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 6 Pages 3327-3338  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite oxides are active room-temperature bifunctional oxygen electrocatalysts in alkaline media, capable of performing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with lower combined overpotentials relative to their precious metal counterparts. However, their semiconducting nature necessitates the use of activated carbons as conductive supports to generate applicably relevant current densities. In efforts to advance the performance and theory of oxide electrocatalysts, the chemical and physical properties of the oxide material often take precedence over contributions from the conductive additive. In this work, we find that carbon plays an important synergistic role in improving the performance of La1-xSrxCoO3- (0 x 1) electrocatalysts through the activation of O-2 and spillover of radical oxygen intermediates, HO2- and O-2(-), which is further reduced through chemical decomposition of HO2- on the perovskite surface. Through a combination of thin-film rotating disk electrochemical characterization of the hydrogen peroxide intermediate reactions (hydrogen peroxide reduction reaction (HPRR), hydrogen peroxide oxidation reaction (HPOR)) and oxygen reduction reaction (ORR), surface chemical analysis, HR-TEM, and microkinetic modeling on La1-xSrxCoO3- (0 x 1)/carbon (with nitrogen and non-nitrogen doped carbons) composite electrocatalysts, we deconvolute the mechanistic aspects and contributions to reactivity of the oxide and carbon support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459584900049 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 5 Open Access OpenAccess  
  Notes (up) ; Financial support for this work was provided by the R. A. Welch Foundation (grants F-1529 and F-1319). S. D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:158625 Serial 5244  
Permanent link to this record
 

 
Author De Wael, K.; Daems, D.; Van Camp, G.; Nagels, L.J. doi  openurl
  Title The use of potentiometric sensors to study (bio)molecular interactions Type A1 Journal article
  Year 2012 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 84 Issue 11 Pages 4921-4927  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Potentiometric sensors were used to study molecular interactions in liquid environments, with sensorgram methodology. This is demonstrated with a lipophilic rubber-, and with a collagen based hydrogel sensor coating. The investigated molecules were promazine and tartaric acid respectively. The sensors were placed in a hydrodynamic wall jet system for the recording of sensorgrams. mV sensor responses were first converted to a signal, expressing the concentration of adsorbed organic ions. Using a linearization method, a pseudo first order kinetic model of adsorption was shown to fit the experimental results perfectly. Kass, kon and koff values were calculated.. The technique can be used over 4 decades of concentration, and it is very sensitive to low MW compounds as well as to multiply charged large biomolecules. This study is the first to demonstrate the application of potentiometric sensors as an alternative and complement to SPR methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304783100041 Publication Date 2012-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 10 Open Access  
  Notes (up) ; Financial support for this work was provided by the University of Antwerp by granting D.D. a BOF interdisciplinary research project. We thank J. Everaert for his help in interpreting the results. K.D.W. and D.D. contributed equally to this work. ; Approved Most recent IF: 6.32; 2012 IF: 5.695  
  Call Number UA @ admin @ c:irua:97520 Serial 5898  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Daems, D.; De Wael, K.; Van Camp, G.; Nagels, L.J. url  doi
openurl 
  Title Concentration related response potentiometric titrations to study the interaction of small molecules with large biomolecules Type A1 Journal article
  Year 2014 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 86 Issue 24 Pages 12243-12249  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the present article, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small molecule interactions is reported. This approach is fast, sensitive, reproducible and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed to a concentration related signal over the entire concentration interval, also at low concentrations, where the mV (y-axis) versus logcanalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, the Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anti-cocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis (4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using SPR. The potentiometric titration approach called Concentration related Response Potentiometry, is used to study molecular interaction for 7 macromolecular target molecules and 4 small molecule ligands.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346683900048 Publication Date 2014-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 10 Open Access  
  Notes (up) ; Financial support for this work was provided by the University of Antwerp by granting L.J.N., K.D.W, G.V.C., and Ronny Blust a POC interdisciplinary research project. ; Approved Most recent IF: 6.32; 2014 IF: 5.636  
  Call Number UA @ admin @ c:irua:120164 Serial 5548  
Permanent link to this record
 

 
Author Daems, D.; De Wael, K.; Vissenberg, K.; Van Camp, G.; Nagels, L. pdf  doi
openurl 
  Title Potentiometric sensors doped with biomolecules as a new approach to small molecule/biomolecule binding kinetics analysis Type A1 Journal article
  Year 2014 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron  
  Volume 54 Issue Pages 515-520  
  Keywords A1 Journal article; Engineering sciences. Technology; Integrated Molecular Plant Physiology Research (IMPRES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The most successful binding kinetics analysis systems at this moment include surface plasmon resonance (SPR), quartz microcrystal balance (QMB) and surface acoustic wave (SAW). Although these are powerful methods, they generally are complex, expensive and require the use of monolayers. Here, we report on potentiometric sensors as an inexpensive and simple alternative to do binding kinetics analysis between small molecules in solution and biomolecules (covalently) attached in a biopolymer sensor coating layer. As an example, dopamine and an anti-dopamine aptamer were used as the small molecule and the biomolecule respectively. Binding between both follows a Langmuir adsorption type model and creates a surface potential. The system operates in Flow Injection Analysis mode (FIA). Besides being an interesting new binding kinetics tool, the approach allows systematic design of potentiometric biosensors (in the present study a dopamine sensor), and gives new insights into the functioning of ion-selective electrodes (ISEs).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000333071500077 Publication Date 2013-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.78 Times cited 10 Open Access  
  Notes (up) ; Financial support for this work was provided by the University of Antwerp by granting L.N. and G.V.C. a BOF interdisciplinary research project. ; Approved Most recent IF: 7.78; 2014 IF: 6.409  
  Call Number UA @ admin @ c:irua:111678 Serial 5780  
Permanent link to this record
 

 
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P. url  doi
openurl 
  Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 29 Pages 9340-9350  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000415911600047 Publication Date 2017-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access OpenAccess  
  Notes (up) ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880  
Permanent link to this record
 

 
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M. pdf  doi
openurl 
  Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 15 Pages 8782-8792  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000407405500026 Publication Date 2017-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes (up) ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:145727 Serial 4744  
Permanent link to this record
 

 
Author Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W. url  doi
openurl 
  Title Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3) Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 104 Issue 20 Pages 207401,1-207401,4  
  Keywords A1 Journal article; Particle Physics Group; Nanostructured and organic optical and electronic materials (NANOrOPT); Condensed Matter Theory (CMT)  
  Abstract Single-file transport of water into carbon nanotubes is experimentally demonstrated for the first time through the splitting of the radial breathing mode (RBM) vibration in Raman spectra of bile salt solubilized tubes when both empty (closed) and water-filled (open-ended) tubes are present. D2O filling is observed for a wide range of diameters, d, down to very thin tubes [e.g., (5,3) tube, d=0.548  nm] for which only a single water molecule fits in the cross section of the internal nanotube channel. The shift in RBM frequency upon filling is found to display a very complex dependence on nanotube diameter and chirality, in support of a different yet well-defined ordering and orientation of water molecules at room temperature. Large shifts of the electronic transitions are also observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000277945900051 Publication Date 2010-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 140 Open Access  
  Notes (up) ; Financial support from the Fund for Scientific Research Flanders, Belgium (FWO-Vlaanderen) (Project No. G.0129.07), is gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:83383 Serial 1141  
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S. pdf  doi
openurl 
  Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
  Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 14 Issue 4 Pages 1463-1467  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000298754500018 Publication Date 2011-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 67 Open Access  
  Notes (up) ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829  
  Call Number UA @ lucian @ c:irua:96266 Serial 3578  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 23 Pages 11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279336000001 Publication Date 2010-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes (up) ; Financial support was provided by the Hungarian Research Foundation (Contracts No. OTKA K68312, No. K77771, No. K73361, and No. F68726). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83857 Serial 1820  
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Schryvers, D. pdf  url
doi  openurl
  Title Twin-jet electropolishing for damage-free transmission electron microscopy specimen preparation of metallic microwires Type A1 Journal article
  Year 2020 Publication Microscopy Research And Technique Abbreviated Journal Microsc Res Techniq  
  Volume Issue Pages 1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A method to prepare TEM specimens from metallic microwires and based on conventional twin-jet electropolishing is introduced. The wire is embedded in an opaque epoxy resin medium and the hardened resin is mechanically polished to reveal the wire on both sides. The resin containing wire is then cut into discs of the appropriate size. The obtained embedded wire is electropolished in a conventional twin-jet electropolishing machine until electron transparency in large areas without radiation damage is achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000567944200001 Publication Date 2020-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1059-910x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access OpenAccess  
  Notes (up) ; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: G.0366.15N ; Approved Most recent IF: 2.5; 2020 IF: 1.147  
  Call Number UA @ admin @ c:irua:171969 Serial 6642  
Permanent link to this record
 

 
Author Rowenczyk, L.; Dazzi, A.; Deniset-Besseau, A.; Beltran, V.; Goudounèche, D.; Wong-Wah-Chung, P.; Boyron, O.; George, M.; Fabre, P.; Roux, C.; Mingotaud, A.F.; ter Halle, A. pdf  doi
openurl 
  Title Microstructure characterization of oceanic polyethylene debris Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 7 Pages 4102-4109  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Plastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated. In this original work, we characterize the microstructure of oceanic polyethylene debris and compare it to the nonweathered objects. Cross sections are analyzed by several emergent mapping techniques. We highlight deep modifications of the debris within a layer a few hundred micrometers thick. The most intense modifications are macromolecule oxidation and a considerable decrease in the molecular weight. The adsorption of organic pollutants and trace metals is also confined to this outer layer. Fragmentation of the oxidized layer of the plastic debris is the most likely source of nanoplastics. Consequently the nanoplastic chemical nature differs greatly from plastics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526418000041 Publication Date 2020-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 3 Open Access  
  Notes (up) ; Foundation and The French National Reaserch Program for Environmental and Occupational Health of Anses (EST/2017/1/219). We thank the 7th Continent Expedition Association, as well as the staff and crew, for the sea sampling campaign. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:172890 Serial 6560  
Permanent link to this record
 

 
Author Mayer, J.A.; Offermans, T.; Chrapa, M.; Pfannmöller, M.; Bals, S.; Ferrini, R.; Nisato, G. url  doi
openurl 
  Title Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures Type A1 Journal article
  Year 2018 Publication Optics express Abbreviated Journal Opt Express  
  Volume 26 Issue 26 Pages A240  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427900400003 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 9 Open Access OpenAccess  
  Notes (up) ; FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7, grant number 287594); German Federal Ministry of Education and Research (BMBF) (03xEK3504, project TAURUS); FP7 European project ESTEEM2 (grant number 312483); HEiKA centre FunTECH-3D. ; Approved Most recent IF: 3.307  
  Call Number UA @ lucian @ c:irua:150839UA @ admin @ c:irua:150839 Serial 4975  
Permanent link to this record
 

 
Author Mao, J.; Jiang, Y.; Moldovan, D.; Li, G.; Watanabe, K.; Taniguchi, T.; Masir, M.R.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Realization of a tunable artificial atom at a supercritically charged vacancy in graphene Type A1 Journal article
  Year 2016 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 12 Issue 12 Pages 545-549  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene’s remarkable electronic properties have fuelled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor graphene’s electronic properties and to control its charge carriers. Here we show that a single-atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunnelling microscope. The response of the conduction electrons in graphene to the local charge is monitored with scanning tunnelling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states within a disc centred on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a mechanism to control and guide electrons in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377475700011 Publication Date 2016-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 93 Open Access  
  Notes (up) ; Funding was provided by DOE-FG02-99ER45742 (STM/STS), NSF DMR 1207108 (fabrication and characterization). Theoretical work supported by ESF-EUROCORES-EuroGRAPHENE, FWO-VI and Methusalem programme of the Flemish government. We thank V. F. Libisch, M. Pereira and E. Rossi for useful discussions. ; Approved Most recent IF: 22.806  
  Call Number c:irua:134210 Serial 4011  
Permanent link to this record
 

 
Author Duarte-Neto, P.; Stosic, B.; Stosic, T.; Lessa, R.; Milošević, M.V.; Stanley, H.E. url  doi
openurl 
  Title Multifractal properties of a closed contour : a peek beyond the shape analysis Type A1 Journal article
  Year 2014 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 9 Issue 12 Pages e115262  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In recent decades multifractal analysis has been successfully applied to characterize the complex temporal and spatial organization of such diverse natural phenomena as heartbeat dynamics, the dendritic shape of neurons, retinal vessels, rock fractures, and intricately shaped volcanic ash particles. The characterization of multifractal properties of closed contours has remained elusive because applying traditional methods to their quasi-one-dimensional nature yields ambiguous answers. Here we show that multifractal analysis can reveal meaningful and sometimes unexpected information about natural structures with a perimeter well-defined by a closed contour. To this end, we demonstrate how to apply multifractal detrended fluctuation analysis, originally developed for the analysis of time series, to an arbitrary shape of a given study object. In particular, we show the application of the method to fish otoliths, calcareous concretions located in fish's inner ear. Frequently referred to as the fish's “black box”, they contain a wealth of information about the fish's life history and thus have recently attracted increasing attention. As an illustrative example, we show that a multifractal approach can uncover unexpected relationships between otolith contours and size and age of fish at maturity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347239900030 Publication Date 2014-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited 6 Open Access  
  Notes (up) ; Funding: This work was supported by CNPq, Brazil (Projects No. 201506/2011-4, No. 303251/2010-7, and No. 306719/2012-6). MVM acknowledges support from Flemish Science Foundation (FWO-Vlaanderen) and CAPES PVE action No. BEX1392/ 11-5. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ; Approved Most recent IF: 2.806; 2014 IF: 3.234  
  Call Number UA @ lucian @ c:irua:123770 Serial 2218  
Permanent link to this record
 

 
Author Neven, L.; Thiruvottriyur Shanmugam, S.; Rahemi, V.; Trashin, S.; Sleegers, N.; Carrion, E.N.; Gorun, S.M.; De Wael, K. pdf  url
doi  openurl
  Title Optimized photoelectrochemical detection of essential drugs bearing phenolic groups Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 91 Issue 15 Pages 9962-9969  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The World Health Organization (WHO) model “List of Essential Medicines” includes among indispensable medicines antibacterials and pain and migraine relievers. Monitoring their concentration in the environment, while challenging, is important in the context of antibiotic resistance as well as their production of highly toxic compounds via hydrolysis. Traditional detection methods such as high-performance liquid chromatography (HPLC) or LC combined with tandem mass spectrometry or UV-vis spectroscopy are time-consuming, have a high cost, require skilled operators and are difficult to adapt for field operations. In contrast, (electrochemical) sensors have elicited interest because of their rapid response, high selectivity, and sensitivity as well as potential for on-site detection. Previously, we reported a novel sensor system based on a type II photosensitizer, which combines the advantages of enzymatic sensors (high sensitivity) and photoelectrochemical sensors (easy baseline subtraction). Under red-light illumination, the photosensitizer produces singlet oxygen which oxidizes phenolic compounds present in the sample. The subsequent reduction of the oxidized phenolic compounds at the electrode surface gives rise to a quantifiable photocurrent and leads to the generation of a redox cycle. Herein we report the optimization in terms of pH and applied potential of the photoelectrochemical detection of the hydrolysis product of paracetamol, i.e., 4-aminophenol (4-AP), and two antibacterials, namely, cefadroxil (CFD, beta-lactam antibiotic) and doxycycline (DXC, tetracycline antibiotic). The optimized conditions resulted in a detection limit of 0.2 mu mol L-1 for DXC, but in a 10 times higher sensitivity, 20 nmol L-1, for CFD. An even higher sensitivity, 7 nmol L-1, was noted for 4-AP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480499200086 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 2 Open Access  
  Notes (up) ; FWO and UA-BOF are acknowledged for financial support. The Center for Functional Materials of Seton Hall University is thanked for support (S.M.G. and E.N.C.). Joren Van Loon is thanked for the graphical abstract. This research was supported by the medium scale research infrastructure funding Hercules funding (SEM). ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:161831 Serial 5763  
Permanent link to this record
 

 
Author Paterson, G.W.; Webster, R.W.H.; Ross, A.; Paton, K.A.; Macgregor, T.A.; McGrouther, D.; MacLaren, I.; Nord, M. url  doi
openurl 
  Title Fast pixelated detectors in scanning transmission electron microscopy. part II : post-acquisition data processing, visualization, and structural characterization Type A1 Journal article
  Year 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume 26 Issue 5 Pages 944-963  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Fast pixelated detectors incorporating direct electron detection (DED) technology are increasingly being regarded as universal detectors for scanning transmission electron microscopy (STEM), capable of imaging under multiple modes of operation. However, several issues remain around the post-acquisition processing and visualization of the often very large multidimensional STEM datasets produced by them. We discuss these issues and present open source software libraries to enable efficient processing and visualization of such datasets. Throughout, we provide examples of the analysis methodologies presented, utilizing data from a 256 x 256 pixel Medipix3 hybrid DED detector, with a particular focus on the STEM characterization of the structural properties of materials. These include the techniques of virtual detector imaging; higher-order Laue zone analysis; nanobeam electron diffraction; and scanning precession electron diffraction. In the latter, we demonstrate a nanoscale lattice parameter mapping with a fractional precision <= 6 x 10(-4) (0.06%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000576859800011 Publication Date 2020-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 3 Open Access OpenAccess  
  Notes (up) ; G.W.P. and M.N. were the principal authors of the fpd and pixStem libraries reported herein (details of all contributions are documented in the repositories) and have made all of these available under open source licence GPLv3 for the benefit of the community. R.W.H.W., A.R., and K.A.P. have also made contributions to the source codes in these libraries. G.W.P and M.N. have led the data acquisition and analysis, and the drafting of this manuscript. The performance of this work was mainly supported by Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (Grant No. EP/M009963/1). G.W.P. received additional support from the EPSRC under Grant No. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 838001. R.W.H.W., A.R., K.A.P., T.A.M., D.McG., and I.M. have all contributed either through acquisition and analysis of data or through participation in the revision of the manuscript. The studentships of R.W.H.W. and T.A.M. were supported by the EPSRC Doctoral Training Partnership Grant No. EP/N509668/1. I.M. and D.McG. were supported by EPSRC Grant No. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (No. ST/ P002471/1) with Quantum Detectors Ltd. as the industrial partner. As an inventor of intellectual property related to the MERLIN detector hardware, D.McG. is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. We thank Diamond Quantum Detectors Ltd. for Medipix3 detector support; Dr. Bruno Humbel from Okinawa Institute of Science and Technology; and Dr. Caroline Kizilyaprak from the University of Lausanne for providing the liver sample; Dr. Ingrid Hallsteinsen and Prof. Thomas Tybell from the Norwegian University of Science and Technology (NTNU) for providing the La0.7Sr0.3MnO3/LaFeO3/SrTiO3 sample shown in Figure 4; and NanoMEGAS for the loan of the DigiSTAR precession system and TopSpin acquisition software. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under Grant No. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891  
  Call Number UA @ admin @ c:irua:172695 Serial 6519  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: