toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gezahegn, T.W.; Van Passel, S.; Berhanu, T.; D'haese, M.; Maertens, M. pdf  url
doi  openurl
  Title Do bottom-up and independent agricultural cooperatives really perform better? Insights from a technical efficiency analysis in Ethiopia Type A1 Journal article
  Year 2020 Publication Agrekon Abbreviated Journal Agrekon  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract The cooperative landscape in Ethiopia is very heterogeneous with a mixture of remains of the pre-1991 government-controlled system and new post-1991 bottom-up collective action initiatives. This heterogeneity, coupled with a large growth in the number of cooperatives in the country, offers an interesting perspective to study the determinants of the (in)efficiency of cooperatives. In this paper, we analyse the performance of Ethiopian agricultural cooperatives, focusing on the degree of technical (in)efficiency and its determinants. We use the stochastic frontier approach in which we account for heteroskedasticity and the monotonicity of production functions, presenting a methodological improvement with respect to previous technical efficiency studies. The results show that NGO- and government-initiated cooperatives are less efficient than community-initiated ones, implying that governments and NGOs should not interfere too strongly in cooperative formation. Cooperatives with a high degree of heterogeneity in members' participation are found to be about 98% less efficient, while cooperatives that have paid employees are 33% more efficient. Besides, results show that cooperatives in Ethiopia function more efficiently if they incentivize committee members through monetary compensation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487651200001 Publication Date 2019-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-1853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited Open Access  
  Notes (up) ; The authors acknowledge funding from the VLIR-UOS TEAM Program (VLIR-UOS-ZEIN2015PR406 (13V95615T), Belgium. ; Approved Most recent IF: 1.3; 2020 IF: 0.224  
  Call Number UA @ admin @ c:irua:163772 Serial 6184  
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
  Year 2020 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 49 Issue 30 Pages 10486-10497  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555330900018 Publication Date 2020-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes (up) ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029  
  Call Number UA @ admin @ c:irua:171149 Serial 6450  
Permanent link to this record
 

 
Author Wang, H.; Su, L.; Yagmurcukardes, M.; Chen, J.; Jiang, Y.; Li, Z.; Quan, A.; Peeters, F.M.; Wang, C.; Geim, A.K.; Hu, S. pdf  doi
openurl 
  Title Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue 12 Pages 8634-8639  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 angstrom in diameter with an estimated density of about 10(12) cm(-2). The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599507100032 Publication Date 2020-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 29 Open Access  
  Notes (up) ; The authors acknowledge supported from National Key Research and Development Program of China (2019YFA0705400, 2018YFA0209500), and National Natural Science Foundation of China (21972121, 21671162). M. Y. acknowledges the Flemish Science Foundation (FWO-Vl) postdoctoral fellowship. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:175048 Serial 6685  
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Wang, J.; Verbeeck, J.; Blom, F.; Koster, G.; Houwman, E.P.; Rijnders, G. pdf  url
doi  openurl
  Title Interfacial dielectric layer as an origin of polarization fatigue in ferroelectric capacitors Type A1 Journal article
  Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 10 Issue 1 Pages 7310  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Origins of polarization fatigue in ferroelectric capacitors under electric field cycling still remain unclear. Here, we experimentally identify origins of polarization fatigue in ferroelectric PbZr0.52Ti0.48O3 (PZT) thin-film capacitors by investigating their fatigue behaviours and interface structures. The PZT layers are epitaxially grown on SrRuO3-buffered SrTiO3 substrates by a pulsed laser deposition (PLD), and the capacitor top-electrodes are various, including SrRuO3 (SRO) made by in-situ PLD, Pt by in-situ PLD (Pt-inPLD) and ex-situ sputtering (Pt-sputtered). We found that fatigue behaviour of the capacitor is directly related to the top-electrode/PZT interface structure. The Pt-sputtered/PZT/SRO capacitor has a thin defective layer at the top interface and shows early fatigue while the Pt-inPLD/PZT/SRO and SRO/PZT/SRO capacitor have clean top-interfaces and show much more fatigue resistance. The defective dielectric layer at the Pt-sputtered/PZT interface mainly contains carbon contaminants, which form during the capacitor ex-situ fabrication. Removal of this dielectric layer significantly delays the fatigue onset. Our results clearly indicate that dielectric layer at ferroelectric capacitor interfaces is the main origin of polarization fatigue, as previously proposed in the charge injection model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559953800003 Publication Date 2020-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 18 Open Access OpenAccess  
  Notes (up) ; The authors acknowledge the financial support of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. ; Approved Most recent IF: 4.6; 2020 IF: 4.259  
  Call Number EMAT @ emat @c:irua:169865 Serial 6374  
Permanent link to this record
 

 
Author Zhang, L.; Zhang, Y.-Y.; Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P. url  doi
openurl 
  Title Skyrmionic chains and lattices in s plus id superconductors Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 6 Pages 064501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report characteristic vortex configurations in s + id superconductors with time-reversal symmetry breaking, exposed to magnetic field. A vortex in the s + id state tends to have an opposite phase winding between s- and d-wave condensates. We find that this peculiar feature together with the competition between s- and d-wave symmetry results in three distinct classes of vortical configurations. When either s or d condensate absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant, vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the s +/- id order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at high magnetic field. When s and d condensates have comparable strength, vortices split cores in two chiral components to form full-fledged skyrmions, i.e., coreless topological structures with an integer topological charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their identification in, e.g., scanning Hall probe and scanning SQUID experiments. These unique vortex states are relevant for high-T-c cuprate and iron-based superconductors, where the relative strength of competing pairing symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish s + is and s + id superconducting phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510745600005 Publication Date 2020-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 7 Open Access  
  Notes (up) ; The authors acknowledge useful discussions with Yong-Ping Zhang. This research was supported by the National Natural Science Foundation of China under Grants No. 61571277 and No. 61771298. L.-F.Z. and M.V.M. acknowledge support from Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:166507 Serial 6605  
Permanent link to this record
 

 
Author Asfora, V.K.; Bueno, C.C.; de Barros, V.M.; Khoury, H.; Van Grieken, R. pdf  doi
openurl 
  Title X-ray spectrometry applied for characterization of bricks of Brazilian historical sites Type A1 Journal article
  Year 2020 Publication X-Ray Spectrometry Abbreviated Journal X-Ray Spectrom  
  Volume Issue Pages 1-8  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents the results of X-ray fluorescence (XRF) analysis of bricks sampled from historical places in Pernambuco, a state in the northeastern region of Brazil. In this study, twenty bricks found in historical sites were analyzed. Two bricks made in the 17th century, presumably used as ballast in ships coming from Holland, five locally manufactured bricks: one from 18th century, three from 19th century, and one from 20th century, and thirteen bricks collected from a recent Archeological investigation of Alto da Se, in the town of Olinda. Qualitative determination of the chemical elements present in the samples was undertaken using a self-assembled portable XRF system based on a compact X-ray tube and a thermoelectrically cooled Si-PIN photodiode system, both commercially available. X-ray diffraction analysis was also carried out to assess the crystalline mineral phases present in the bricks. The results showed that quartz (SiO2) is the major mineral content in all bricks. Although less expressive in the XRD patterns, mineral phases of illite, kaolinite, anorthite, and rutile are also identified. The trace element distribution patterns of the bricks, determined by the XRF technique, is dominated by Fe and, in decreasing order, by K, Ti, Ca, Mn, Zr, Rb, Sr, Cr, and Y with slight differences among them. Analyses of the chemical compositional features of the bricks, evaluated by principal component analysis of the XRF datasets, allowed the samples to be grouped into five clusters with similar chemical composition. These cluster groups were able to identify both age and manufacturing sites. Dutch bricks prepared with different geological clays compositions were defined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568830300001 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.2 Times cited Open Access  
  Notes (up) ; The authors are grateful to CNPQ (Process: 305903/2011-0 and 407458/2013-1) for providing funds to carry out the present work and for supporting a visitor professor to UFPE through the program science without frontier. The authors also thank Mr. Roberto Araujo from the Center of Advanced Studies on Integrated Environmental Protection-CECI that made available the bricks to be analyzed. ; Approved Most recent IF: 1.2; 2020 IF: 1.298  
  Call Number UA @ admin @ c:irua:171960 Serial 6654  
Permanent link to this record
 

 
Author Ben Abdallah, M.A.; Bacchi, A.; Parisini, A.; Canossa, S.; Bergamonti, L.; Balestri, D.; Kamoun, S. pdf  url
doi  openurl
  Title Crystal structure, vibrational, electrical, optical and DFT study of C₂H₁0N₂(IO₃)₂.HIO₃ Type A1 Journal article
  Year 2020 Publication Journal Of Molecular Structure Abbreviated Journal J Mol Struct  
  Volume 1215 Issue Pages 128254-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The reinvestigation of the EDA-HIO3-H2O system using a different stoichiometric ratio gives rise to a new iodate salt C2H10N2(IO3)(2 center dot)HIO3 denoted as EBIMIA. In this study, we reported the structural properties of ethylenediammonium bis iodate mono iodic acid using X-ray powder and single crystal diffraction at room temperature. The Hirshfeld and the potential energy surface analysis reveal that I center dot center dot center dot O and N-H center dot center dot center dot O are the most noticeable interactions that took place inside the crystal and contribute to the cohesion and stability of the synthesized compound. The DSC measurement shows that this iodate salt undergoes two structural phase transitions, the first occurs at T = 290 K while the second occurs at T = 363 K. However, the dielectric analysis confirms only the second transition because it lies in the studied temperature domain 338-413K. Besides, the impedance data obey a circuit model consisting of a parallel combination of a bulk resistance and CPE. The frequency dispersion of the conductivity follows Jonscher's law and the charge carrier transport may be interpreted using the correlation barrier hopping mechanism (CBH). Finally, the electronic properties and the vibrational analysis of this novel iodate salt are studied using DFT and compared to the experimental data given by the FT-IR, Raman and UV-visible spectroscopies. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537221300012 Publication Date 2020-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes (up) ; The authors are grateful to Pr. Giovani Predieri, Pr. Pier Paolo Lottici, and Pr. Danilo Bersani, for their help with the vibrational measurement. Moreover, authors wish to thank, Pr. Salvatore Vantaggio and Dr. Silvio Scaravonati for their contribution in carrying out the impedance spectroscopy measurements. The authors acknowledge also the Analytical Chemistry, Cultural Heritage, Inorganic Chemistry and Crystallography Unit (SCVSA department, university of Parma, Italy) and the Tunisian Ministry of Higher Education and Scientific Research (LR11ES46) for their support. ; Approved Most recent IF: 3.8; 2020 IF: 1.753  
  Call Number UA @ admin @ c:irua:170148 Serial 6480  
Permanent link to this record
 

 
Author Bourgeois, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Medhekar, N., V url  doi
openurl 
  Title Transforming solid-state precipitates via excess vacancies Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 11 Issue 1 Pages 1248  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Many phase transformations associated with solid-state precipitation look structurally simple, yet, inexplicably, take place with great difficulty. A classic case of difficult phase transformations is the nucleation of strengthening precipitates in high-strength lightweight aluminium alloys. Here, using a combination of atomic-scale imaging, simulations and classical nucleation theory calculations, we investigate the nucleation of the strengthening phase theta' onto a template structure in the aluminium-copper alloy system. We show that this transformation can be promoted in samples exhibiting at least one nanoscale dimension, with extremely high nucleation rates for the strengthening phase as well as for an unexpected phase. This template-directed solid-state nucleation pathway is enabled by the large influx of surface vacancies that results from heating a nanoscale solid. Template-directed nucleation is replicated in a bulk alloy as well as under electron irradiation, implying that this difficult transformation can be facilitated under the general condition of sustained excess vacancy concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549162600025 Publication Date 2020-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 5 Open Access OpenAccess  
  Notes (up) ; The authors are indebted to Matthew Weyland for his expert advice on aberrationcorrected scanning transmission electron microscopy. L.B. would like to acknowledge initial discussions with B.C. Muddle and J.F. Nie many years ago regarding the possible thermodynamic role of vacancies in solid-state precipitation. The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. The authors thank Flame Burgmann, Dougal McCulloch and Edwin Mayes for access to and assistance at the Microscopy and Microanalysis Facility at RMIT University. L.B. and N.M. acknowledge the financial support of the Australian Research Council (DP150100558). Authors also gratefully acknowledge the computational support from MonARCH, MASSIVE and the National Computing Infrastructure and Pawsey Supercomputing Centre. ZZ and YZ are thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship. Z.Z. is grateful for a Monash Centre for Electron Microscopy Postgraduate Scholarship. The authors are grateful to Anita Hill for advice. ; Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:170797 Serial 6635  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Surmenev, R.A.; Neyts, E.C. url  doi
openurl 
  Title Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2020 Publication RSC advances Abbreviated Journal  
  Volume 10 Issue 62 Pages 37800-37805  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hydroxyapatite (HAP) is frequently used as biocompatible coating on Ti-based implants. In this context, the HAP-Ti adhesion is of crucial importance. Here, we report ab initio calculations to investigate the influence of Si incorporation into the amorphous calcium-phosphate (a-HAP) structure on the interfacial bonding mechanism between the a-HAP coating and an amorphous titanium dioxide (a-TiO2) substrate, contrasting two different density functionals: PBE-GGA, and DFT-D3, which are capable of describing the influence of the van der Waals (vdW) interactions. In particular, we discuss the effect of dispersion on the work of adhesion (W-ad), equilibrium geometries, and charge density difference (CDD). We find that replacement of P by Si in a-HAP (a-Si-HAP) with the creation of OH vacancies as charge compensation results in a significant increase in the bond strength between the coating and substrate in the case of using the PBE-GGA functional. However, including the vdW interactions shows that these forces considerably contribute to the W-ad. We show that the difference (W-ad – W-ad(vdW)) is on average more than 1.1 J m(-2) and 0.5 J m(-2) for a-HAP/a-TiO2 and a-Si-HAP/a-TiO2, respectively. These results reveal that including vdW interactions is essential for accurately describing the chemical bonding at the a-HAP/a-TiO2 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000583523300025 Publication Date 2020-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes (up) ; The authors gratefully acknowledge financial support from the Russian president's grant MK-330.2020.8 and BOF Fellowships for International Joint PhD students funded by University of Antwerp (UAntwerp, project number 32545). The work was carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant and in part using the Turing HPC infrastructure of the CalcUA core facility of the UAntwerp, a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerp, Belgium. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:173603 Serial 6499  
Permanent link to this record
 

 
Author Delvaux, A.; Lumbeeck, G.; Idrissi, H.; Proost, J. pdf  doi
openurl 
  Title Effect of microstructure and internal stress on hydrogen absorption into Ni thin film electrodes during alkaline water electrolysis Type A1 Journal article
  Year 2020 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 340 Issue Pages 135970-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Efforts to improve the cell efficiency of hydrogen production by water electrolysis continue to address the electrochemical kinetics of the oxygen and hydrogen evolution reactions in detail. The objective of this work is to study a parasitic reaction occurring during the hydrogen evolution reaction (HER), namely the absorption of hydrogen atoms into the bulk electrode. Effects of the electrode microstructure and internal stress on this reaction have been addressed as well in this paper. Ni thin film samples were deposited on a Si substrate by sputter deposition with different deposition pressures, resulting in different microstructures and varying levels of internal stress. These microstructures were first analyzed in detail by Transmission Electron Microscopy (TEM). Cathodic chrono-amperometric measurements and cyclic voltammetries have then been performed in a homemade electrochemical cell. These tests were coupled to a multi-beam optical sensor (MOS) in order to obtain in-situ curvature measurements during hydrogen absorption. Indeed, since hydrogen absorption in the thin film geometry results in a constrained volume expansion, internal stress generation during HER can be monitored by means of curvature measurements. Our results show that different levels of internal stress, grain size and twin boundary density can be obtained by varying the deposition parameters. From an electrochemical point of view, this paper highlights the fact that the electrochemical surface mechanisms during HER are the same for all the electrodes, regardless of their microstructure. However it is shown that the absolute amount of hydrogen being absorbed into the Ni thin films increases when the grain size is reduced, due to a higher grain boundaries density which are favourite absorption sites for hydrogen. At the same time, it was concluded that H-2 evolution is favoured at electrodes having a more compressive (i.e. a less tensile) internal stress. Finally, the subtle effect of microstructure on the hydrogen absorption rate will be discussed as well. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000521531800011 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited 2 Open Access Not_Open_Access  
  Notes (up) ; The authors gratefully acknowledge financial support of the Public Service of Wallonia e Department of Energy and Sustainable Building, through the project WallonHY. The ACOM-TEM work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15 N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. We also like to cordially thank Ronny Santoro for carrying out the ICP-OES measurements. ; Approved Most recent IF: 6.6; 2020 IF: 4.798  
  Call Number UA @ admin @ c:irua:168536 Serial 6497  
Permanent link to this record
 

 
Author Jorgensen, M.; Shea, P.T.; Tomich, A.W.; Varley, J.B.; Bercx, M.; Lovera, S.; Cerny, R.; Zhou, W.; Udovic, T.J.; Lavallo, V.; Jensen, T.R.; Wood, B.C.; Stavila, V. url  doi
openurl 
  Title Understanding superionic conductivity in lithium and sodium salts of weakly coordinating closo-hexahalocarbaborate anions Type A1 Journal article
  Year 2020 Publication Chemistry of materials Abbreviated Journal  
  Volume 32 Issue 4 Pages 1475-1487  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid-state ion conductors based on closo-polyborate anions combine high ionic conductivity with a rich array of tunable properties. Cation mobility in these systems is intimately related to the strength of the interaction with the neighboring anionic network and the energy for reorganizing the coordination polyhedra. Here, we explore such factors in solid electrolytes with two anions of the weakest coordinating ability, [HCB11H5Cl6](-) and [HCB11H5Br6](-), and a total of 11 polymorphs are identified for their lithium and sodium salts. Our approach combines ab initio molecular dynamics, synchrotron X-ray powder diffraction, differential scanning calorimetry, and AC impedance measurements to investigate their structures, phase-transition behavior, anion orientational mobilities, and ionic conductivities. We find that M(HCB11H5X6) (M = Li, Na, X = Cl, Br) compounds exhibit order-disorder polymorphic transitions between 203 and 305 degrees C and display Li and Na superionic conductivity in the disordered state. Through detailed analysis, we illustrate how cation disordering in these compounds originates from a competitive interplay among the lattice symmetry, the anion reorientational mobility, the geometric and electronic asymmetry of the anion, and the polarizability of the halogen atoms. These factors are compared to other closo-polyborate-based ion conductors to suggest guidelines for optimizing the cation-anion interaction for fast ion mobility. This study expands the known solid-state poly(carba)borate-based materials capable of liquid-like ionic conductivities, unravels the mechanisms responsible for fast ion transport, and provides insights into the development of practical superionic solid electrolytes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517351300014 Publication Date 2020-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access OpenAccess  
  Notes (up) ; The authors gratefully acknowledge support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract no. AC04-94AL85000. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract no. DE-NA-0003525. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract no. ACS2-07NA27344. We also gratefully thank Kyoung Kweon for useful discussions. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The Danish council for independent research, technology and production, HyNanoBorN (4181-00462) and SOS-MagBat (9041-00226B) and NordForsk, The Nordic Neutron Science Program, project FunHy (81942), and the Carlsberg Foundation are acknowledged for funding. Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged. V.L. acknowledges the NSF for partial support of this project (DMR-1508537). The authors would like to thank the Swiss-Norwegian beamlines (BM01) at the ESRF, Grenoble, for the help with the data collection, DESY for access to Petra III, at beamline P02.1, and Diamond for access to beamline I11. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167754 Serial 6645  
Permanent link to this record
 

 
Author Muys, M.; Papini, G.; Spiller, M.; Sakarika, M.; Schwaiger, B.; Lesueur, C.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 307 Issue Pages 123242-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528857700051 Publication Date 2020-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes (up) ; The authors kindly thank (i) i-Cleantech Flanders MIP (Milieu-innovatieplatform) for financial support through the MicroNOD project (Microbial Nutrients on Demand), (ii) Erik Fransen (StatUA) for the helpful advice on the statistical analysis, and (iii) Ilse De Leersnyder and Diederik Leenknecht for assistance with the EAA analysis. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:169452 Serial 6491  
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K. url  doi
openurl 
  Title Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
  Year 2020 Publication Electrochemistry Communications Abbreviated Journal Electrochem Commun  
  Volume 117 Issue Pages 106767-5  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000552618700004 Publication Date 2020-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited 1 Open Access  
  Notes (up) ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved Most recent IF: 5.4; 2020 IF: 4.396  
  Call Number UA @ admin @ c:irua:169924 Serial 6547  
Permanent link to this record
 

 
Author McNaughton, B.; Milošević, M.V.; Perali, A.; Pilati, S. url  doi
openurl 
  Title Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks Type A1 Journal article
  Year 2020 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 101 Issue 5 Pages 053312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The autoregressive neural networks are emerging as a powerful computational tool to solve relevant problems in classical and quantum mechanics. One of their appealing functionalities is that, after they have learned a probability distribution from a dataset, they allow exact and efficient sampling of typical system configurations. Here we employ a neural autoregressive distribution estimator (NADE) to boost Markov chain Monte Carlo (MCMC) simulations of a paradigmatic classical model of spin-glass theory, namely, the two-dimensional Edwards-Anderson Hamiltonian. We show that a NADE can be trained to accurately mimic the Boltzmann distribution using unsupervised learning from system configurations generated using standard MCMC algorithms. The trained NADE is then employed as smart proposal distribution for the Metropolis-Hastings algorithm. This allows us to perform efficient MCMC simulations, which provide unbiased results even if the expectation value corresponding to the probability distribution learned by the NADE is not exact. Notably, we implement a sequential tempering procedure, whereby a NADE trained at a higher temperature is iteratively employed as proposal distribution in a MCMC simulation run at a slightly lower temperature. This allows one to efficiently simulate the spin-glass model even in the low-temperature regime, avoiding the divergent correlation times that plague MCMC simulations driven by local-update algorithms. Furthermore, we show that the NADE-driven simulations quickly sample ground-state configurations, paving the way to their future utilization to tackle binary optimization problems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535862000014 Publication Date 2020-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755; 1550-2376 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 15 Open Access  
  Notes (up) ; The authors thank I. Murray, G. Carleo, and F. RicciTersenghi for useful discussions. Financial support from the FAR2018 project titled “Supervised machine learning for quantum matter and computational docking” of the University of Camerino and from the Italian MIUR under Project No. PRIN2017 CEnTraL 20172H2SC4 is gratefully acknowledged. S.P. also acknowledges the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support. M.V.M. gratefully acknowledges the Visiting Professorship program at the University of Camerino that facilitated the collaboration in this work. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:170244 Serial 6463  
Permanent link to this record
 

 
Author Smith, J.D.; Bladt, E.; Burkhart, J.A.C.; Winckelmans, N.; Koczkur, K.M.; Ashberry, H.M.; Bals, S.; Skrabalak, S.E. pdf  url
doi  openurl
  Title Defect-directed growth of symmetrically branched metal nanocrystals Type A1 Journal article
  Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume 59 Issue 59 Pages 943-950  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near-field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single-crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000498760200001 Publication Date 2019-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 23 Open Access OpenAccess  
  Notes (up) ; The authors thank Samantha Harvey for her initial observations of branched structures, Alexander Chen for his help with SAED, the staff of the Nanoscale Characterization Facility (Dr. Yi Yi), Electron Microscopy Center (Dr. David Morgan and Dr. Barry Stein), and Molecular Structure Center at Indiana University. J.S. recognizes a fellowship provided by the Indiana Space Grant Consortium. E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). This project has received funding to S.E.S. from the U.S. National Science Foundation (award numbers: 1602476 and 1904499) and Research Corporation for Scientific Advancement (2017 Frontiers in Research Excellence and Discovery Award) as well as to S.B. from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). ; sygma Approved Most recent IF: 16.6; 2020 IF: 11.994  
  Call Number UA @ admin @ c:irua:165124 Serial 6293  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Van Doorslaer, S.; Meynen, V.; Gorton, L.; De Wael, K. url  doi
openurl 
  Title Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 92 Issue 92 Pages 3643-3649  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M–1 cm–2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518234700023 Publication Date 2020-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited 3 Open Access  
  Notes (up) ; The authors thank Scientific Reseatch-Flanders (F-WO) (grant 12T4219N) for funding. ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:166241 Serial 5463  
Permanent link to this record
 

 
Author Castanheiro, A.; Hofman, J.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; Lenaerts, S.; De Wael, K.; Samson, R. pdf  url
doi  openurl
  Title Leaf accumulation of atmospheric dust : biomagnetic, morphological and elemental evaluation using SEM, ED-XRF and HR-ICP-MS Type A1 Journal article
  Year 2020 Publication Atmospheric Environment Abbreviated Journal Atmos Environ  
  Volume 221 Issue 221 Pages 117082  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Atmospheric dust deposition on plants enables the collection of site-specific particulate matter (PM). Knowing the morphology and composition of PM aids in disclosing their emitting sources as well as the associated human health risk. Therefore, this study aimed for a leaf-level holistic analysis of dust accumulation on plant leaves. Plant species (ivy and strawberry) with distinct leaf macro- and micro-morphology were exposed during 3 months at a moderate road traffic site in Antwerp, Belgium. Leaves collected every three weeks were analyzed for their magnetic signature, morphology and elemental content, by a combination of techniques (biomagnetic analyses, ED-XRF, HR-ICP-MS, SEM). Dust accumulation on the leaves was observed both visually (SEM) and magnetically, while the metal enrichment was limited (only evident for Cr) and more variable over time. Temporal dynamics during the second half of the exposure period, due to precipitation events and reduction of atmospheric pollution input, were evidenced in our results (elements/magnetically/SEM). Ivy accumulated more dust than strawberry leaves and seemed less susceptible to wash-off, even though strawberry leaves contain trichomes and a rugged micromorphology, leaf traits considered to be important for capturing PM. The magnetic enrichment (in small-grained, SD/PSD magnetite particles), on the other hand, was not species-specific, indicating a common contributing source. Variations in pollution contributions, meteorological phenomena, leaf traits, particle deposition (and encapsulation) versus micronutrients depletion, are discussed in light of the conducted monitoring campaign. Although not completely elucidative, the complex, multifactorial process of leaf dust accumulation can better be understood through a combination of techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503097100001 Publication Date 2019-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access  
  Notes (up) ; The authors thank the Flemish Environment Agency (VMM) for their collaboration and air quality and meteorological data, and Karen Wuyts for the discussion about plant leaf characteristics. A.C. gratefully acknowledges the Research Foundation Flanders (FWO) for her PhD fellowship (1S21418N). J.H. received a FWO postdoctoral fellowship grant (1214816N). ; Approved Most recent IF: 5; 2020 IF: 3.629  
  Call Number UA @ admin @ c:irua:165458 Serial 5691  
Permanent link to this record
 

 
Author Osca, J.; Sorée, B. doi  openurl
  Title Skyrmion spin transfer torque due to current confined in a nanowire Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 12 Pages 125436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work we compute the torque field present in a ferromagnet in contact with a metallic nanowire when a skyrmion is present. If the nanowire is narrow enough, then the current is carried by a single conduction band. In this regime the classical torque model breaks down and we show that a skyrmion driven by spin transfer torque moves in a different direction than predicted by the classical model. However, the amount of charge current required to move a skyrmion with a certain velocity in the single-band regime is similar to a classical model of torque where it is implicitly assumed current transport by many conduction bands. The single-band regime is more efficient creating spin current from charge current because of the perfect polarization of the single band but is less efficient creating torque from spin current. Nevertheless, it is possible to take profit of the single-band regime to move skyrmions even with no net charge or spin current flowing between the device contacts. We have also been able to recover the classical limit considering an ensemble of only a few electronic states. In this limit we have discovered that electron diffusion needs to be considered even in ballistic nanowires due the effect of the skyrmion structure on the electron current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000573775300004 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes (up) ; The authors thanks Llorenc Serra for useful discussion on the conduction electron quantum model. We also want to show gratitude to Dimitrios Andrikopoulos for sharing his knowledge about the available bibliography and to F. J. P. van Duijn for his comments on earlier versions of this manuscript. We acknowledge the Horizon 2020 project SKYTOP “Skyrmion-Topological Insulator and Weyl Semimetal Technology” (FETPROACT-2018-01, No. 824123). Finally, J.O. also acknowledges the postdoctoral fellowship provided by KU Leuven. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:172727 Serial 6604  
Permanent link to this record
 

 
Author Parchomenko, A.; Nelen, D.; Gillabel, J.; Vrancken, K.C.M.; Rechberger, H. pdf  doi
openurl 
  Title Evaluation of the resource effectiveness of circular economy strategies through multilevel statistical entropy analysis Type A1 Journal article
  Year 2020 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 161 Issue Pages 104925-16  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In a circular economy (CE), materials, components and products should be kept at the highest level of functionality, while phenomena like dilution, mixing and contamination, often referred to as the loss of resources, should be avoided. One method that can assess the performance of systems to concentrate or avoid dilution of resources is Statistical Entropy Analysis (SEA). Up till now, the method has been applied on the substance level (elements and compounds) only, but showed its applicability to various scales and a variety of systems. Further development of the method allowed to consider information on the product, component and material levels, which makes the method applicable to different combinations of CE strategies, both destructive (e.g. recycling) and non-destructive (e.g. reuse). The method is demonstrated on a simplified vehicle life-cycle, which is modeled through four component groups and six materials. It shows that the method allows to evaluate different CE strategies and identify critical stages which lead to the most severe resource and functionality losses. Based on the methods results, it is possible to determine a perfect circularity reference level, representing a system state that preserves functionality and avoids resource losses. The introduction of a circularity reference level enables the establishment of a framework for resource effectiveness in which diluting and concentrating effects of activities (e.g. sorting) are quantified. The distance of a system to an ideal circular state determines the deviation from a resource-effective system that maintains the original product functionality over a maximum period of time, with minimal efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569610400032 Publication Date 2020-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited Open Access  
  Notes (up) ; The authors would like to acknowledge the support of Prof. David Laner for his valuable inputs, as well as the financial support of Vito (Flemish Institute for Technological Research) and Altstoff Recycling Austria AG (ARA). ; Approved Most recent IF: 13.2; 2020 IF: 3.313  
  Call Number UA @ admin @ c:irua:171925 Serial 6512  
Permanent link to this record
 

 
Author Sakarika, M.; Spanoghe, J.; Sui, Y.; Wambacq, E.; Grunert, O.; Haesaert, G.; Spiller, M.; Vlaeminck, S.E. url  doi
openurl 
  Title Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment Type A1 Journal article
  Year 2020 Publication Microbial biotechnology Abbreviated Journal  
  Volume 13 Issue 5 Pages 1336-1365  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulphur bacteria (PNSB) are phototrophic microorganisms, which increasingly gain attention in plant production due to their ability to produce and accumulate high-value compounds that are beneficial for plant growth. Remarkable features of PNSB include the accumulation of polyphosphate, the production of pigments and vitamins and the production of plant growth-promoting substances (PGPSs). Scattered case studies on the application of PNSB for plant cultivation have been reported for decades, yet a comprehensive overview is lacking. This review highlights the potential of using PNSB in plant production, with emphasis on three key performance indicators (KPIs): fertilization, resistance to stress (biotic and abiotic) and environmental benefits. PNSB have the potential to enhance plant growth performance, increase the yield and quality of edible plant biomass, boost the resistance to environmental stresses, bioremediate heavy metals and mitigate greenhouse gas emissions. Here, the mechanisms responsible for these attributes are discussed. A distinction is made between the use of living and dead PNSB cells, where critical interpretation of existing literature revealed the better performance of living cells. Finally, this review presents research gaps that remain yet to be elucidated and proposes a roadmap for future research and implementation paving the way for a more sustainable crop production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482388700001 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 10 Open Access  
  Notes (up) ; The authors would like to acknowledge: (i) the MIP i-Cleantech Flanders (Milieu-innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD) for financial support; (ii) the China Scholarship Council for financially supporting Y. Sui (File No. 201507650015); (iii) the DOCPRO4 project 'PurpleTech', funded by the BOF (Bijzonder onderzoeksfonds); Special research fund from the University of Antwerp for financially supporting J. Spanoghe, and (iv) E. Koutsoukou for constructing components of Figs 5 and 6. ; Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:162876 Serial 6587  
Permanent link to this record
 

 
Author Spiller, M.; Muys, M.; Papini, G.; Sakarika, M.; Buyle, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Environmental impact of microbial protein from potato wastewater as feed ingredient : comparative consequential life cycle assessment of three production systems and soybean meal Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 171 Issue Pages 115406  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Livestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.e. dried microbial biomass. To date, only few life cycle assessments (LCAs) for MP have been carried out, none of which has used a consequential modelling approach nor has been investigating the production of MP on food and beverage wastewater. Therefore, the objective of this study is to evaluate the environmental impact of MP production on a food and beverage effluent as a substitute for soybean meal using a consequential modelling approach. Three different types of MP production were analysed, namely consortia containing Aerobic Heterotrophic Bacteria (AHB), Microalgae and AHB (MaB), and Purple Non-Sulfur Bacteria (PNSB). The production of MP was modelled for high-strength potato wastewater (COD = 10 kg/m3) at a flow rate of 1,000 m3/day. LCA results were compared against soybean meal production for the endpoint impact categories human health, ecosystems, and resources. Soybean meal showed up to 52% higher impact on human health and up to 87% higher impact on ecosystems than MP. However, energy-related aspects resulted in an 8–88% higher resource exploitation for MP. A comparison between the MP production systems showed that MaB performed best when considering ecosystems (between 13 and 14% better) and resource (between 71 and 80% better) impact categories, while AHB and PNSB had lower values for the impact category human health (8–12%). The sensitivity analysis suggests that the conclusions drawn are robust as in the majority of 1,000 Monte Carlo runs the initial results are confirmed. In conclusion, it is suggested that MP is an alternative protein source of comparatively low environmental impact that should play a role in the future protein transition, in particular when further process improvements can be implemented and more renewable or waste energy sources will be used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514748900032 Publication Date 2019-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 10 Open Access  
  Notes (up) ; The authors would like to thank (i) the MIP i-Cleantech Flanders (Milieu innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD; 150360) for financial support, (ii) the Research Foundation Flanders (FWO-Vlaanderen) for supporting Gustavo Papini with a doctoral fellowship (strategic basic research; 1S38917N), (iii) Research Foundation Flanders (FWO-Vlaanderen) for supporting Matthias Buyle with a post-doctoral fellowship (Postdoctoral Fellow junior; 1207520N), and (iv) Bo Weidema, Abbas Alloul, Yixing Sui and Tim Van Winckel for their insightful discussions. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:164944 Serial 6509  
Permanent link to this record
 

 
Author Yasui, Y.; Lahabi, K.; Fernández Becerra, V.; Fermin, R.; Anwar, M.S.; Yonezawa, S.; Terashima, T.; Milošević, M.V.; Aarts, J.; Maeno, Y. url  doi
openurl 
  Title Spontaneous emergence of Josephson junctions in homogeneous rings of single-crystal Sr₂RuO₄ Type A1 Journal article
  Year 2020 Publication npj Quantum Materials Abbreviated Journal  
  Volume 5 Issue 1 Pages 21-28  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The chiral p-wave order parameter in Sr2RuO4 would make it a special case amongst the unconventional superconductors. A consequence of this symmetry is the possible existence of superconducting domains of opposite chirality. At the boundary of such domains, the locally suppressed condensate can produce an intrinsic Josephson junction. Here, we provide evidence of such junctions using mesoscopic rings, structured from Sr2RuO4 single crystals. Our order parameter simulations predict such rings to host stable domain walls across their arms. This is verified with transport experiments on loops, with a sharp transition at 1.5 K, which show distinct critical current oscillations with periodicity corresponding to the flux quantum. In contrast, loops with broadened transitions at around 3 K are void of such junctions and show standard Little-Parks oscillations. Our analysis demonstrates the junctions are of intrinsic origin and makes a compelling case for the existence of superconducting domains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525721000001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access  
  Notes (up) ; The authors would like to thank S. Goswami, A. Singh, M. Kupryianov, S. Bakurskiy, J. Jobst, T. Nakamura, K. Adachi, Y. Liu, and Y. Asano for valuable discussions and comments, and F. Hubler, Y. Nakamura, and Y. Yamaoka for their technical contribution. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Topological Materials Science” (KAKENHI Grant Nos. JP15H05852, JP15K21717, JP15H05851), JSPS-EPSRC Core-to-Core program (A. Advanced Research Network), JSPS research fellow (KAKENHI Grant No. JP16J10404), Grant-in-Aid JSPS KAKENHI JP26287078 and JP17H04848, and the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program. V.F.B. acknowledges support from the Foundation for Polish Science through the IRA Programme co-financed by EU within SG OP. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:168553 Serial 6613  
Permanent link to this record
 

 
Author Canossa, S.; Graiff, C.; Crocco, D.; Predieri, G. url  doi
openurl 
  Title Water structures and packing efficiency in methylene blue cyanometallate salts Type A1 Journal article
  Year 2020 Publication Crystals Abbreviated Journal Crystals  
  Volume 10 Issue 7 Pages 558  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystal structure prediction is the holy grail of crystal engineering and is key to its ambition of driving the formation of solids based on the selection of their molecular constituents. However, this noble quest is hampered by the limited predictability of the incorporation of solvent molecules, first and foremost the ubiquitous water. In this context, we herein report the structure of four methylene blue cyanometallate phases, where anions with various shapes and charges influence the packing motif and lead to the formation of differently hydrated structures. Importantly, water molecules are observed to play various roles as isolated fillings, dimers, or an infinite network with up to 13 water molecules per repeating unit. Each crystal structure has been determined by single-crystal X-ray diffraction and evaluated with the aid of Hirshfeld surface analysis, focussing on the role of water molecules and the hierarchy of different classes of interactions in the overall supramolecular landscape of the crystals. Finally, the collected pieces of evidence are matched together to highlight the leading role of MB stacking and to derive an explanation for the observed hydration diversity based on the structural role of water molecules in the crystal architecture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000554226900001 Publication Date 2020-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4352 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.566 Times cited Open Access OpenAccess  
  Notes (up) ; The Elettra Synchrotron (CNR Trieste) is gratefully acknowledged for the beamtime allocated at the beamline XRD1 (proposal nr 20175216). S.C. acknowledges the Research Foundation Flanders (FWO) for supporting his research (grant nr. 12ZV120N). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171279 Serial 6653  
Permanent link to this record
 

 
Author Choisez, L.; Ding, L.; Marteleur, M.; Idrissi, H.; Pardoen, T.; Jacques, P.J. url  doi
openurl 
  Title High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 11 Issue 1 Pages 2110  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Extensive use of titanium alloys is partly hindered by a lack of ductility, strain hardening, and fracture toughness. Recently, several beta -metastable titanium alloys were designed to simultaneously activate both transformation-induced plasticity and twinning-induced plasticity effects, resulting in significant improvements to their strain hardening capacity and resistance to plastic localization. Here, we report an ultra-large fracture resistance in a Ti-12Mo alloy (wt.%), that results from a high resistance to damage nucleation, with an unexpected fracture phenomenology under quasi-static loading. Necking develops at a large uniform true strain of 0.3 while fracture initiates at a true fracture strain of 1.0 by intense through-thickness shear within a thin localized shear band. Transmission electron microscopy reveals that dynamic recrystallization occurs in this band, while local partial melting is observed on the fracture surface. Shear band temperatures of 1250-2450 degrees C are estimated by the fusible coating method. The reported high ductility combined to the unconventional fracture process opens alternative avenues toward Ti alloys toughening. Specific titanium alloys combine transformation-induced plasticity and twinning-induced plasticity for improved work hardening. Here, the authors show that these alloys also have an ultra-large fracture resistance and an unexpected fracture mechanism via dynamic recrystallization and local melting in a deformation band.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558816700010 Publication Date 2020-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes (up) ; The Fonds National de Recherche Scientifique FNRS is gratefully acknowledged for the grant no. T.0127.19, the research grant of L.C. and the research mandate of H.I. The authors are thankful to J. Adrien and E. Maire for their help with the X-ray tomography analysis, to J.D. Embury for the fruitful discussions and to F. Prima for provisioning the material. ; Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171318 Serial 6536  
Permanent link to this record
 

 
Author Van Dijck, J.G.; Mampuys, P.; Ching, H.Y.V.; Krishnan, D.; Baert, K.; Hauffman, T.; Verbeeck, J.; Van Doorslaer, S.; Maes, B.U.W.; Dorbec, M.; Buekenhoudt, A.; Meynen, V. pdf  url
doi  openurl
  Title Synthesis – properties correlation and the unexpected role of the titania support on the Grignard surface modification Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 527 Issue Pages 146851-17  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract While the impact of reaction conditions on surface modification with Grignard reactants has been studied for silica supports, such information is absent for metal oxides like titania. Differences between modified titania and silica are observed, making it paramount to explore the reaction mechanism. A detailed study on the impact of the reaction conditions is reported, with a focus on the chain length of the alkyl Grignard reactant, its concentration, the reaction time and temperature, and the type of titania support. While the increase in the chain length reduces the amount of organic groups on the surface, the concentration, time and temperature show little/no influence on the modification degree. However, the type of titania support used and the percentage of amorphous phase present has a significant impact on the amount of grafted groups. Even though the temperature and concentration show no clear impact on the modification degree, they can cause changes in the surface hydroxyl population, which are thus not linked to the modification degree. Furthermore, the titania support is reduced during functionalization. This reduction dependents on the reaction temperature, the titania support and the chain length of the Grignard reactant. Similarly, this reduction is not linked to the modification degree.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000564205300003 Publication Date 2020-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 5 Open Access OpenAccess  
  Notes (up) ; The FWO (Fonds Wetenschappelijk Onderzoek) is gratefully acknowledged for the VITO-FWO grant of fellow Jeroen G. Van Dijck (11W9416N) and the financial support granted in project GO12712N. The E.U. is acknowledged for H.Y. Vincent Ching's H2020-MSCA-IF (grant number 792946, iSPY). Dileep Krishnan and Johan Verbeeck acknowledge funding from GOA project “solarpaint” of the University of Antwerp. ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:169722 Serial 6712  
Permanent link to this record
 

 
Author Vohra, A.; Makkonen, I.; Pourtois, G.; Slotte, J.; Porret, C.; Rosseel, E.; Khanam, A.; Tirrito, M.; Douhard, B.; Loo, R.; Vandervorst, W. url  doi
openurl 
  Title Source/drain materials for Ge nMOS devices: phosphorus activation in epitaxial Si, Ge, Ge1-xSnx and SiyGe1-x-ySnx Type A1 Journal article
  Year 2020 Publication Ecs Journal Of Solid State Science And Technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 9 Issue 4 Pages 044010-44012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper benchmarks various epitaxial growth schemes based on n-type group-IV materials as viable source/drain candidates for Ge nMOS devices. Si:P grown at low temperature on Ge, gives an active carrier concentration as high as 3.5 x 10(20) cm(-3) and a contact resistivity down to 7.5 x 10(-9) Omega.cm(2). However, Si:P growth is highly defective due to large lattice mismatch between Si and Ge. Within the material stacks assessed, one option for Ge nMOS source/drain stressors would be to stack Si:P, deposited at contact level, on top of a selectively grown n-SiyGe1-x-ySnx at source/drain level, in line with the concept of Si passivation of n-Ge surfaces to achieve low contact resistivities as reported in literature (Martens et al. 2011 Appl. Phys. Lett., 98, 013 504). The saturation in active carrier concentration with increasing P (or As)-doping is the major bottleneck in achieving low contact resistivities for as-grown Ge or SiyGe1-x-ySnx. We focus on understanding various dopant deactivation mechanisms in P-doped Ge and Ge1-xSnx alloys. First principles simulation results suggest that P deactivation in Ge and Ge1-xSnx can be explained both by P-clustering and donor-vacancy complexes. Positron annihilation spectroscopy analysis, suggests that dopant deactivation in P-doped Ge and Ge1-xSnx is primarily due to the formation of P-n-V and SnmPn-V clusters. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000531473500002 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access  
  Notes (up) ; The imec core CMOS program members, European Commission, the TAKEMI5 ECSEL project, local authorities and the imec pilot line are acknowledged for their support. Air Liquide Advanced Materials is acknowledged for providing advanced precursor gases. A. V. acknowledges his long stay abroad grant and a grant for participation in congress abroad from the Research Foundation-Flanders (Application No. V410518N and K159219N). I. M. acknowledges financial support from Academy of Finland (Project Nos. 285 809, 293 932 and 319 178). CSC-IT Center for Science, Finland is acknowledged for providing the computational resources. ; Approved Most recent IF: 2.2; 2020 IF: 1.787  
  Call Number UA @ admin @ c:irua:169502 Serial 6607  
Permanent link to this record
 

 
Author Almohammadi, G.; O'Modhrain, C.; Kelly, S.; Sullivan, J.A. url  doi
openurl 
  Title Ti-doped SBA-15 catalysts used in phenol oxidation reactions Type A1 Journal article
  Year 2020 Publication ACS Omega Abbreviated Journal  
  Volume 5 Issue 1 Pages 791-798  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Two Ti-SBA-15 catalysts are synthesized using techniques that should either deposit Ti atoms specifically at the SBA-15 surface or allow Ti-containing species to exist at both the surface and within the bulk of SBA-15. The materials have been characterized by Fourier transform infrared (FTIR), Raman and UV visible spectroscopies, transmission electron microscopy, scanning electron microscopy/energy-dispersive X-ray spectrometry microscopies, and N-2 physisorption experiments. They have been applied in the total oxidation of phenol under catalytic wet air oxidation (CWAO) conditions and using photo- and plasma promotion. The materials retain the structure of SBA-15 following the doping in both cases and Ti incorporation is confirmed. The nature of the incorporated Ti remains unclear-with evidence for anatase TiO2 (from Raman and UV vis analysis) and evidence for atomically dispersed Ti from FTIR. In terms of reactivity, the presence of Ti in the in situ-prepared catalyst improves reactivity in the photopromoted reaction (increasing conversion from 28 to 60%), while both Ti catalysts improve reactivity in the CWAO reaction (by 7% over the in situ catalyst and by 25% over the grafted material). The presence of Ti has no beneficial effect on conversion in the plasma-promoted reaction. Here, however, Ti does affect the nature of the oxidized intermediates formed during the total phenol oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507578300086 Publication Date 2019-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.1 Times cited Open Access  
  Notes (up) ; The KSA Ministry of Higher Education is acknowledged for providing G.A.'s studentship, and IRC funded the plasma work under grant ref: GOIPD/2017/1000. ; Approved Most recent IF: 4.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:166578 Serial 6629  
Permanent link to this record
 

 
Author Bencs, L.; Horemans, B.; Buczyńska, A.J.; Deutsch, F.; Degraeuwe, B.; Van Poppel, M.; Van Grieken, R. url  doi
openurl 
  Title Seasonality of ship emission related atmospheric pollution over coastal and open waters of the North Sea Type A1 Journal article
  Year 2020 Publication Atmospheric Environment: X Abbreviated Journal  
  Volume 7 Issue Pages 100077-11  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The seasonal changes of a large set of atmospheric pollutants (i.e., gases, water-soluble aerosols, metallic/elemental components and black carbon (BC) content) have been studied over the southern bight of the North Sea (the Belgian Continental Shelf) and the English Channel during several marine sampling campaigns, carried out in 2010-2011. A coastal research station at De Haan, Belgium was concurrently used as a background air monitoring site. Size-segregated aerosols (PM1, PM2.5-1, PM10-2.5) were analyzed for particulate mass, elemental content and water-soluble (ionic) compounds, while the equivalent BC content in PM10 was monitored with an Aethalometer. The results clearly demonstrated that the aerosols originating from ship exhaust emissions contributed mostly to fine fraction (PM1), and to a lesser extent to medium-sized fraction (PM2.5-1), whereas components of sea spray and of mineral/soil origin were dominating in the medium-size and coarse aerosol fractions. Looking at seasonal differences, more ship emission related components occurred in the fine and medium-sized PM during winter. Mineral aerosol components were more apparent in coarse PM and especially during the cold season, increased levels were noted. Similarly, higher concentrations of marine fine PM were found during winter, likely due to more extensive ship emissions and/or calm weather conditions. Gaseous pollutants (e.g., HNO2, HNO3, HCl, SO2, NH3) originating from exhaust fumes of ocean-going ships mostly reached the maximum levels in the cold season as well, thus supporting the more intense formation of secondary aerosols. The seasonal trends of total (inorganic) ionic species sampled on the open sea and at the coastal station were usually similar to those of the corresponding PM masses, peaking in the cold season. Sea salt bound fine sulfate and nitrate peaked in spring or the cold season for marine areas, whereas for the coastal site they clearly reached the maximum in the cold season. Ammonium-bound nitrates and sulfates in each PM fraction reached their peak air levels in the cold season over marine sites. Similar seasonal trends could be observed for the coastal station. The general tendency of aerosol distribution over the study areas was independent of the sampling site: the higher the aerosol mass on the open sea with ship traffic, the higher the suspended particulate mass sampled at the coast.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571429900007 Publication Date 2020-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2590-1621 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes (up) ; The participating researchers of this study gratefully acknowledge the funding from the Belgian Science Policy Office (BELSPO) under the SHIPFLUX project (assignation No.: SD/NS/07A). The researchers thank Jan Van Loock (UA), Andr.e Cattrijsse (VLIZ) and Frank Broucke (VLIZ) for their help with the logistics, sampling and organization of the field/marine studies and Francisco (Tjess) Hernandez (VLIZ) for his help in getting access to the weather data. The participants also want to express their sincere thanks to the crew of R/V Belgica for their help and cooperation in the marine expeditions. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171924 Serial 6599  
Permanent link to this record
 

 
Author Nord, M.; Webster, R.W.H.; Paton, K.A.; McVitie, S.; McGrouther, D.; MacLaren, I.; Paterson, G.W. url  doi
openurl 
  Title Fast pixelated detectors in scanning transmission electron microscopy. Part I: data acquisition, live processing, and storage Type A1 Journal article
  Year 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume 26 Issue 4 Pages Pii S1431927620001713-666  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of fast pixelated detectors and direct electron detection technology is revolutionizing many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualization, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software are available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555537900004 Publication Date 2020-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 4 Open Access OpenAccess  
  Notes (up) ; The performance of this work was mainly supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (grant no. EP/M009963/1). G.W.P. received additional support from the EPSRC under grant no. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 838001. The studentship of R.W.H.W. was supported by the EPSRC Doctoral Training Partnership grant no. EP/N509668/1. S.McV. was supported by EPSRC grant no. EP/M024423/1. I.M. was supported by EPSRC grant no. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (no. ST/P002471/1) with Quantum Detectors Ltd. as the industrial partner. D.McG. was also supported by EPSRC grant no. EP/M009963/1. As an inventor of intellectual property related to the MERLIN detector hardware, he is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under grant no. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891  
  Call Number UA @ admin @ c:irua:171185 Serial 6518  
Permanent link to this record
 

 
Author Moro, G.; Barich, H.; Driesen, K.; Montiel, N.F.; Neven, L.; Mendonca, C.D.; Thiruvottriyur Shanmugam, S.; Daems, E.; De Wael, K. pdf  doi
openurl 
  Title Unlocking the full power of electrochemical fingerprinting for on-site sensing applications Type A1 Journal article
  Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Electrochemical sensing for the semi-quantitative detection of biomarkers, drugs, environmental contaminants, food additives, etc. shows promising results in point-of-care diagnostics and on-site monitoring. More specifically, electrochemical fingerprint (EF)-based sensing strategies are considered an inviting approach for the on-site detection of low molecular weight molecules. The fast growth of electrochemical sensors requires defining the concept of direct electrochemical fingerprinting in sensing. The EF can be defined as the unique electrochemical signal or pattern, mostly recorded by voltammetric techniques, specific for a certain molecule that can be used for its quantitative or semi-quantitative identification in a given analytical context with specified circumstances. The performance of EF-based sensors can be enhanced by considering multiple features of the signal (i.e., oxidation or reduction patterns), in combination with statistical data analysis or sample pretreatments or by including electrode surface modifiers to enrich the EF. In this manuscript, some examples of EF-based sensors, strategies to improve their performances, and open challenges are discussed to unlock the full power of electrochemical fingerprinting for on-site sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523396300002 Publication Date 2020-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access  
  Notes (up) ; The presented review is the result of a concerted effort and fruitful discussions among enthusiastic, young, and (for the occasion) female researchers of the AXES research group, each of them with specific expertise and background, under the guidance of the corresponding author. The authors acknowledge FWO-Flanders, BOF-UA, IOF-UA, FAPESP and EU for funding. ; Approved Most recent IF: 4.3; 2020 IF: 3.431  
  Call Number UA @ admin @ c:irua:168563 Serial 6647  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: