|
Record |
Links |
|
Author |
Ben Abdallah, M.A.; Bacchi, A.; Parisini, A.; Canossa, S.; Bergamonti, L.; Balestri, D.; Kamoun, S. |
|
|
Title |
Crystal structure, vibrational, electrical, optical and DFT study of C₂H₁0N₂(IO₃)₂.HIO₃ |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Journal Of Molecular Structure |
Abbreviated Journal |
J Mol Struct |
|
|
Volume |
1215 |
Issue |
|
Pages |
128254-12 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The reinvestigation of the EDA-HIO3-H2O system using a different stoichiometric ratio gives rise to a new iodate salt C2H10N2(IO3)(2 center dot)HIO3 denoted as EBIMIA. In this study, we reported the structural properties of ethylenediammonium bis iodate mono iodic acid using X-ray powder and single crystal diffraction at room temperature. The Hirshfeld and the potential energy surface analysis reveal that I center dot center dot center dot O and N-H center dot center dot center dot O are the most noticeable interactions that took place inside the crystal and contribute to the cohesion and stability of the synthesized compound. The DSC measurement shows that this iodate salt undergoes two structural phase transitions, the first occurs at T = 290 K while the second occurs at T = 363 K. However, the dielectric analysis confirms only the second transition because it lies in the studied temperature domain 338-413K. Besides, the impedance data obey a circuit model consisting of a parallel combination of a bulk resistance and CPE. The frequency dispersion of the conductivity follows Jonscher's law and the charge carrier transport may be interpreted using the correlation barrier hopping mechanism (CBH). Finally, the electronic properties and the vibrational analysis of this novel iodate salt are studied using DFT and compared to the experimental data given by the FT-IR, Raman and UV-visible spectroscopies. (C) 2020 Elsevier B.V. All rights reserved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000537221300012 |
Publication Date |
2020-04-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-2860 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
3.8 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
; The authors are grateful to Pr. Giovani Predieri, Pr. Pier Paolo Lottici, and Pr. Danilo Bersani, for their help with the vibrational measurement. Moreover, authors wish to thank, Pr. Salvatore Vantaggio and Dr. Silvio Scaravonati for their contribution in carrying out the impedance spectroscopy measurements. The authors acknowledge also the Analytical Chemistry, Cultural Heritage, Inorganic Chemistry and Crystallography Unit (SCVSA department, university of Parma, Italy) and the Tunisian Ministry of Higher Education and Scientific Research (LR11ES46) for their support. ; |
Approved |
Most recent IF: 3.8; 2020 IF: 1.753 |
|
|
Call Number |
UA @ admin @ c:irua:170148 |
Serial |
6480 |
|
Permanent link to this record |